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Abstract. In this work, we propose a new criterion based on spatial con-
text to select relevant nodes in a max-tree representation of an image,
dedicated to the detection of 3D brain tumors for 18F -FDG PET images.
This criterion prevents the detected lesions from merging with surround-
ing physiological radiotracer uptake. A complete detection method based
on this criterion is proposed, and was evaluated on five patients with
brain metastases and tuberculosis, and quantitatively assessed using
the true positive rates and positive predictive values. The experimental
results show that the method detects all the lesions in the PET images.
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1 Introduction

Automatic tumor detection in Positron Emission Tomography (PET) imaging,
usually performed as a first step before segmentation, is a difficult task due to the
coexistence of physiological and pathological radiotracer uptake, both resulting
in a high signal intensity. For example, in 18F -FDG PET imaging, the distinc-
tion between brain metastases and the whole physiological brain uptake is not
obvious, especially for small lesions. In clinical routine, the detection problem is
overcome by manually defining a volume surrounding the tumor. The segmenta-
tion is then performed within this volume of interest using various strategies [1].

In a multimodal segmentation process, combining PET with an anatomical
modality, such as Magnetic Resonance Imaging (MRI), tumor detection can also
turn to be a critical initialization step to assess the location and number of
lesions, and so influences the final result. A typical initialization method con-
sists in thresholding the PET signal intensity, which can be further refined using
mathematical morphology [2]. However, using such a threshold as a detection
step has two main limitations. First, it is not adapted to patients having several
lesions of different metabolisms, and can lead to an under- or over-detection
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according the threshold value. Secondly, the use of a PET threshold does not
prevent the detected tumor from merging with adjacent structures of physiolog-
ical uptake, such as basal nuclei or other brain regions when using 18F -FDG as
a radiotracer. Thus, our goal was to design a detection method for brain PET
images, providing lesion markers for a subsequent PET-MR segmentation, and
detecting all the pathological areas of increased uptake, while preventing them
from merging with regions with physiologically increased uptake.

In this context, we propose a method to detect brain tumors on PET images,
embedding spatial context information about the tumor in a hierarchical app-
roach. We designed a new criterion to select relevant nodes in a max-tree rep-
resentation, based on contextual information modeling reasonable hypotheses
about the appearance of tumors in PET images. We first describe the tumor
detection method, which prevents the tumor from merging with nearby phys-
iological uptake. Then, we show and discuss the results, which will further be
used as an initialization step to our previous segmentation method performed
on MRI and guided by PET information [3].

2 Proposed Detection Method

The max-tree, as used in [4], is a hierarchical representation of an image based on
the study of its intensity thresholds. It can be built according to various methods
(see e.g. [5,6] for a comparison). Regions of interest are then selected according
to a given criterion. Since PET image threshold is a common method for tumor
segmentation [1], and since the max-tree representation highlights bright areas
in an image, and so potential tumors, it has already been used on PET images
for tumor segmentation, for example using a shape criterion [7]. In addition,
other criteria have been evaluated in hierarchical approaches, such as spatial
context [8]. In this paper, we propose a new spatial context criterion applied
on a max-tree representation of the image to detect potential tumors in PET
images. The detection results are then refined using topological and symmetry
information.

2.1 3D Hierarchical Tumor Detection Using Spatial Context
Information

In our method, the max-tree representation of the PET image is computed on
the SUV, and leads to a hierarchical representation of its flat zones (identified
by a letter in Fig. 1a), that are homogeneous regions of unique intensity value
(identified by a number in Fig. 1a). The SUV (Standardized Uptake Value) is a
standardization of the PET image widely used for quantification purposes [9],
which measures the tumor metabolism and depends of parameters proper to
the exam (duration and radiotracer) and the patient (weight). Formally, let Ω
be the spatial domain (here Z3 for discrete formulation). An image is defined
as a function I from Ω into N of R+. The max-tree of image I is a hierarchical
representation of the connected components of all its upper level sets L+

n , namely
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L+
n (I) = {x ∈ Ω | I(x) ≥ n}, given n ∈ N, within a defined neighborhood. The

tree is composed of nodes, associated to the previous connected components,
and edges, embedding the inclusion relation between them. A node N is said to
be a descendant of a node M if a path in the tree allows linking them and if N
is at a higher position in the tree than M (for example nodes F, E, D and C are
descendants of node B in Fig. 1a). Inversely, M is said to be an ancestor of node
N . In this paper, a node N is said to be a direct descendant of a node M if N
is a descendant of M that is directly connected to it in the tree (for example
nodes D and E are the direct descendants of node C in Fig. 1a).

Fig. 1. A synthetic image (a) and its max-tree (b). A flat zone Rn in (a) is represented
by a node R at level n in (b).

To simplify the notations, we will use the notation N both for a node of
the max-tree and the corresponding region in Ω. The set of all the nodes is
denoted by MT (I). Let DD(N) be the set of direct descendant nodes of N ,
DD(N) =

�
N i, i ∈ I(N)

�
, with I(N) the index set of the direct descendants

of N . We also define D(N) and A(N), respectively the set of descendant and
ancestor nodes of N . Let �N be the region made of the node N and all its
descendant nodes D(N): �N = N ∪ D(N). Finally, |N | denotes the number of
voxels of node N , i.e its volume in Ω.

Once the tree is created, relevant nodes are selected according to a given
criterion. We expect tumors to correspond to some of the leaf nodes. However,
the distinction between nearby physiological and pathological radiotracer uptake
is difficult. We propose to first apply a criterion χt preventing a tumor node from
merging with a node including physiological uptake. We base this criterion on
two hypotheses. First, an acceptable merge should result in a node having several
direct descendant nodes, and a large difference in volume compared to at least
one of them. We thus design the following criterion χ1

t , taking values in [0, 1]:

χ1
t (N) = max

Ni∈DD(N)

��� �N
��� −

����N i
���

��� �N
���

(1)
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Moreover, the merge does not concern too voluminous nodes, associated with
almost all both physiological and pathological radiotracer uptake. The resulting
criterion χ2

t is then designed as follows:

χ2
t (N) = e

−
�

|�N|
Kt|Ib|

�2

(2)

where Kt is a positive parameter and Ib the binary mask of the brain, created by
thresholding the PET image converted into SUV. The final criterion χt combines
the two previous criteria in a conjunctive way:

χt(N) = χ1
t (N)χ2

t (N) (3)

The criterion χt is applied only to nodes having several direct descendant nodes,
called merged nodes in this paper (B and C in Fig. 1a). The process for node
selection based on χt is iterative, and promotes nodes having a high χt value
(Algorithm 1). Among these merged nodes, the one with maximal χt value (node
C depicted in red in Fig. 2a) and all its ancestors (crossed nodes A and B in
Fig. 2a) are removed from the tree. Its descendants are kept (E and D in Fig. 2a),
but not taken into account for the next search of the maximum χt value. This
process is repeated until there is no more merged nodes to process (the only
remaining node is F in Fig. 2a, which stops the search).

Algorithm 1. Node selection using χt

Input: I, k = 0, MT k = MT
Output: MT (filtered max-tree according to χt)

while ∃N ∈ MT k | |DD(N)| ≥ 2 do
k = k + 1
Nk = arg max

N||DD(N)|≥2

χt(N)

MT k = MT k−1\
�
Nk ∪ A(N)

�

end while
MT = MT k

After applying the χt criterion, we define a context criterion χc for tumor
detection. The spatial context volume is defined by using the distance trans-
form of �N , associating to each voxel x of the PET volume the value D �N (x) =
min
y∈ �N

d(x, y), where y is a voxel included in �N , and d is the distance between

two voxels (the Euclidian distance was used in this work). The context volume
C �N is obtained by thresholding this function, which can be formally written as
C �N =

�
x | 0 < D �N (x) ≤ s

�
, where s is a positive value. Finally, the PET image

is thresholded within the spatial context volume using Otsu’s method [10], to
exclude white matter.

The χc criterion design follows three hypotheses. First, the intensity of the
tumor in the PET image should be higher than the one of its surroundings. This
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is embedded in the criterion χ1
c , which should be greater than one for nodes

associated to tumors:

χ1
c(N) =

μ(IPET, �N)
μ(IPET, C �N )

(4)

where μ(IPET, V ) is the mean intensity value of the PET image IPET inside
volume V , C �N the context volume.

Then, the tumor should not be too voluminous. In fact, some voluminous nodes,
associated to almost all pathological and physiological radiotracer uptake, can
have a χ1

c value greater than one. The criterion χ2
c prevents from this situation:

χ2
c(N) = e

−
�

|�N|
K1

c |Ib|

�2

(5)

where K1
c is a positive parameter.

Finally, the tumor should not be too small. The criterion χ3
c embedds this

last hypothesis:

χ3
c(N) =

K2
c��� �N
���

(6)

where K2
c is a positive parameter.

The context criterion χc is then created by combining the three previous
criteria, for each node N ∈ MT :

χc(N) = χ1
c(N)χ2

c(N) − χ3
c(N) (7)

The product of χ1
c(N) and χ2

c(N) is less than 1 for a voluminous node N , even if
χ2

c(N) ≥ 1. Substracting χ3
c(N), increasing if

��� �N
��� decreases, from χ1

c(N)χ2
c(N)

allows having a final χc(N) value less than 1 for a node N of too small volume.
Thus, only the nodes with a χc value greater than 1 are taken into account in
the node selection process leading to the binary image of the detected tumors T
(Algorithm 2).

The nodes maximizing the χc value are then selected. Among the nodes kept
after the χt process (D, E and F in Fig. 2b), only the nodes with a value greater
than 1 are considered. Among these nodes, the one of maximum χc value is
selected, and its descendants and ancestors are removed. This process is repeated
until there is no node of χc value greater than 1 to process. Each selected node is
filled with its descendant nodes, which gives the signal intensity-based detection,
shown in red in Fig. 2c.

Thus, the aim of our method is twofold: removing nodes embedding both
pathological and physiological uptake, and then selecting only the tumors among
the remaining nodes.
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Fig. 2. Node selection process. (a) Assignment of a χt value to each merged node. The
node of maximal χt value is depicted in red. The nodes and their ancestors coming
from a too large node merging are not taken into account for further process (crossed
nodes). (b) Assignment of a χc value to nodes accepted after applying the criterion χt

(in green). (c) Contours of the resulting segmentation (in red). (Color figure online)

Algorithm 2. Node selection using χc

Input: I, k = 0, MT k = {N | N ∈ MT ∧ χc(N) ≥ 1}, T k = ∅
Output: T (selected nodes)

while MT k �= ∅ do
k = k + 1
Nk = arg max

N∈MT k

χc(N)

MT k = MT k−1\
�
Nk ∪ A(N) ∪ D(N)

�

T k = T k−1 ∪
�
Nk ∪ D(N)

�

end while
T = T k

2.2 Refinement Using Topological and Symmetry Information

Once the detection is obtained using the max-tree approach, we study each of
the detected lesions to remove false positives due to physiological radiotracer
uptake, using topological and symmetry hypotheses. First, we keep the detected
lesions having only one connected component (8-connectivity) by slice. Then,
based on the hypothesis that the PET signal is higher in the tumor than its
symmetrical region, we compute for the remaining lesions the ratio between the
mean intensity of the PET within the lesion and the mean intensity of the PET in
the symmetrical region of the lesion with respect to the inter-hemispheric plane,
which is automatically identified using the method from [11]. The symmetrical
region is thresholded via Otsu’s method [10], to exclude white matter. The set
of obtained ratio values that are greater than 1 is divided into two classes (using
k-means algorithm), and only the one corresponding to the highest values is
kept.
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3 Experimental Results

3.1 Patient Data

The proposed method was evaluated on images from 5 patients having brain
lesions (tuberculosis for patient P2, and metastasis for the others), who under-
went a whole body PET-MR scan. The exam was performed with a PET/MR

Table 1. Quantitative comparison between automatic lesion detections with or without
post-processing (PP). The True Positive Rate (TPR) and Positive Predictive Value
(PPV) are computed for each patient, before and after (TPR-PP and PPV-PP) post-
processing.

Patient P1 P2 P3 P4 P5 μ ± σ

TPR 1.00 1.00 1.00 1.00 1.00 1.00 ± 0.00

TPR-PP 1.00 1.00 1.00 1.00 1.00 1.00 ± 0.00

PPV 0.09 0.12 0.11 0.08 0.09 0.09 ± 0.02

PPV-PP 1.00 0.40 0.33 0.50 0.50 0.55 ± 0.23

Fig. 3. Evaluation of the PP for P2: comparison between the detected lesions, true (in
green) and false (in red) positives. Results shown on PET slices before (a) and after
((b) and (c)) PP, and in 3D after applying PP (d). (Color figure online)
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scanner (GE SIGNA) after an initial injection of 320 MBq 18F -FDG and about
100 min delay between injection and PET/MR acquisition. The voxel size in the
PET images is 3.12 × 3.12 × 3.78mm3.

3.2 Hyperparameter Setting

The 3D 6-connectivity was used to define the connected flat zones in the SUV
image and create the max-tree, and to differentiate the detected lesions while
applying the post-processing. The parameter in the criterion χt was set to Kt =
0.5, while those of the spatial context criterion χc were set to K1

c = 0.5 and K2
c =

4. The spatial context parameter was set to s = 1 voxel. These hyperparameters
were set experimentally to reduce the number of detected lesions for the patients
having the smallest tumors (P1 and P3), and then applied to all the dataset.

3.3 Results

The ground truth PET brain lesions were those visually detected by a medical
expert using only the PET data. For each patient, the computational time for
the whole process (brain mask creation, lesion detection and post-processing) was
about 3min limiting the detection to a brain mask containing about 53000 voxels.

Fig. 4. Evaluation of the criterion χt for P2 (first row) and P5 (second row): comparison
between the true positive lesions detected with (in red) or without (in green) previously
applying the criterion χt. Results shown on a PET slice ((a) and (d)) zoomed in (b)
and (e), and in 3D ((c) and (f)). (Color figure online)
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The detection performance was characterized using the True Positive Rate
(TPR), defined as the ratio between the number of true tumors among the
detected lesions and the real number of tumors, and the Positive Predictive
Value (PPV), defined as the ratio between the number of true tumors among the
detected lesions and the total number of detected lesions. The true tumors were
defined as the detected tumors having a non empty intersection with the ground
truth. As shown by the TPR in Table 1, the algorithm detected all the lesions
visible in the PET images. As shown by the PPV in Table 1, the algorithm also
detected false positives, but drastically less after using topological and symmetry
information in a post-processing (PP) step.

The usefulness of the PP was also assessed visually. As shown in Fig. 3b,
the PP eliminates false positives due to the physiological uptake of symmetrical
structures such as basal nuclei. The remaining false positives are due to other
asymetrical physiological uptake in the brain (Fig. 3c).

Moreover, applying the criterion χt before the spatial context criterion χc

prevents the true detected lesions from merging with basal nuclei (Fig. 4c) or
other brain physiological uptake regions (Fig. 4f). However, as previously shown

Fig. 5. Influence of the spatial context parameter s for P4: comparison between the
detection setting s = 1 (in green) and s = 5 (in red). Results shown on a PET slice
(a), zoomed in (b), and in 3D for only the true positive (c) or all the detected lesions
before PP (d). (Color figure online)
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Fig. 6. Influence of the parameters K1
c , K2

c and Kt: comparison between the detected
lesions, true (in green) or false (in red) positives. Results shown on PET slices setting
K2

c = 4 (a) or K2
c = 5 (b) for P3, K1

t = 1 for P2 (c), K1
c = 1 for P1 with (d) or without

(e) previously applying the criterion χt. (Color figure online)

in Fig. 3b, applying χt does not reduce the detected volume for tumors isolated
from physiological radiotracer uptake.

The influence of the spatial context parameter s value was also tested. As
shown in Fig. 5 increasing the s value still allows detecting the actual lesion, but
reduces its volume and increases the number of false positives.

Finally, the influence of the other parameters K1
c , K2

c and Kt were tested. As
shown in Fig. 6, increasing K2

c or Kt can prevent the algorithm from detecting
too small tumors. Modifying the K1

c value has no effect on the detection (Fig. 6d).
However, the result is different if the criterion χt is not previously applied (Fig. 6e
where the whole brain is detected), which shows that applying χt also penalizes
too large nodes.

4 Discussion and Conclusion

In this paper, we proposed a method based on a 3D max-tree representation
and a new selection criterion based on the spatial context to detect brain lesions
on 3D PET images. Our algorithm identifies tumor locations, preventing the
detected lesions from merging with spatially close physiological uptake regions,
at the price of a final reduced tumor volume. Thus, it is intended to be a detection
method that can serve as a preliminary step for a segmentation method, such
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Fig. 7. Results of a MR segmentation method initialized with the PET for P1. (a)
Superimposing of the PET image on the contours of the detected lesion (in red). (b)
Superimposing of the MR image on the contours of the segmented lesion (in red).
(Color figure online)

as the one described in [3] to segment brain tumors on MR images in a varia-
tional approach using information from the PET (Fig. 7). However, the proposed
method still detects asymetrical areas of physiological increased uptake, which
could be further removed in our approach using complementary information from
MRI volumes. Moreover, using MRI allows detecting other lesions, not visible in
the 18F -FDG PET, which is not the standard imaging procedure for metastasis
diagnosis. Thus, our detection algorithm depends on the quality of the informa-
tion given by the PET image. Finally, our method can also be extended to other
brain lesions as shown in [12].
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