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Abstract. Hypergraphs can be built from a formal context, and con-
versely formal contexts can be derived from a hypergraph. Establishing
such links allows exploiting morphological operators developed in one
framework to derive new operators in the other one. As an example, the
combination of derivation operators on formal concepts leads to closing
operators on hypergraphs which are not the composition of dilations and
erosions. Several other examples are investigated in this paper, with the
aim of processing formal contexts and hypergraphs, and navigating in
such structures.
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1 Introduction

Mathematical morphology on structured representations of information is an
active field of research. Given a structured representation, often represented
using a graphical model, the classical way to proceed in the deterministic case
is to define a partial ordering inducing a lattice structure on this representation,
from which adjunctions and algebraic operators are defined. Operators using
structuring elements are defined from relationships or distances on the represen-
tation1. Since each representation has its own semantics and point of view on
the information, different definitions of morphological operators were proposed.
In this paper, our aim is to establish relationships between previous works on
two types of representations: formal concept analysis on the one hand [1,2,5],
and hypergraphs on the other hand [6,7]. The idea is to derive a formal context
from a hypergraph and conversely, so as to make each formalism inherit from
definitions proposed in the other one. A few examples in each direction will be
provided. Note that previous work on simplicial complexes [11,12] could be used,
by considering simplicial complexes as particular cases of hypergraphs, but this
may not be sufficient for our purpose since in general a concept lattice cannot
be fully reconstructed from a simplicial complex, as proved in [14].

1 In this paper we consider only the four basic operators (dilation, erosion, opening,
closing).
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Morphological Links Between Formal Concepts and Hypergraphs 17

In Sect. 2, preliminaries on formal concept analysis and hypergraphs are
recalled. A first direction is considered in Sect. 3, with the construction of hyper-
graphs from a formal context and the derivation of mathematical morphology
operators. In Sect. 4, the reverse direction is considered.

2 Preliminaries

In this section, we recall the main definitions and properties of formal concept
analysis and hypergraphs, that will be used in this paper.

2.1 Formal Concept Analysis (FCA) [15]

A formal context is a triplet K = (G,M, I), where G is the set of objects, M the
set of attributes or properties, and I ⊆ G × M a relation between objects and
attributes ((g, m) ∈ I means that the object g has the attribute m). A formal
concept of the context K is a pair (X, Y ), with X ⊆ G and Y ⊆ M , such that
(X, Y ) is maximal with the property X × Y ⊆ I. The set X is called the extent
and the set Y is called the intent of the formal concept (X, Y ). For any formal
concept a, we denote its extent by e(a) and its intent by i(a), i.e. a = (e(a), i(a)).

The set of all formal concepts of a given context can be hierarchically ordered
by inclusion of their extent (or equivalently by inclusion of their intent):

(X1, Y1) � (X2, Y2) ⇔ X1 ⊆ X2(⇔ Y2 ⊆ Y1).

This order induces a complete lattice which is called the concept lattice of the
context (G, M, I), denoted C(K), or simply C. Infimum and supremum of a
family of formal concepts (Xt, Yt)t∈T are given by:

�

t∈T

(Xt, Yt) =

��

t∈T

Xt, α(β(
�

t∈T

Yt))

�
, (1)

�

t∈T

(Xt, Yt) =

�
β(α(

�

t∈T

Xt)),
�

t∈T

Yt

�
. (2)

For X ⊆ G and Y ⊆ M , the derivation operators α and β are defined as:

α(X) = {m ∈ M | ∀g ∈ X, (g,m) ∈ I},

β(Y ) = {g ∈ G | ∀m ∈ Y, (g,m) ∈ I}.

The pair (α,β) is a Galois connection between the partially ordered power sets
(P(G), ⊆) and (P(M), ⊆) i.e.

∀X ∈ P(G), ∀Y ∈ P(M), Y ⊆ α(X) ⇔ X ⊆ β(Y ).

Saying that (X, Y ), with X ⊆ G and Y ⊆ M , is a formal concept is equivalent
to α(X) = Y and β(Y ) = X.

As a running example, we consider in this paper a set of objects which are
integers between 1 and 10, and some of their properties, as displayed in Fig. 1.
The table defining I and the corresponding lattice are shown. In this example,
the pair ({1, 9}, {o, s}) is a formal concept.
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18 I. Bloch

K composite even odd prime square

1 × ×
2 × ×
3 × ×
4 × × ×
5 × ×
6 × ×
7 × ×
8 × ×
9 × × ×
10 × ×

Fig. 1. A simple example of a context and its concept lattice from Wikipedia. Objects
are integers from 1 to 10, and attributes are composite (c) (i.e. non prime integer
strictly greater than 1), even (e), odd (o), prime (p) and square (s).

2.2 Hypergraphs [3,9]

A hypergraph H, denoted by H = (V, E), is defined by a finite set of vertices V
and a finite family (which can be a multi-set) E of subsets of V called hyperedges.
The set of vertices forming a hyperedge e, e ∈ E, is denoted by v(e). It is usual
to identify a hyperedge and the corresponding set of vertices. If ∪e∈Ev(e) = V ,
the hypergraph is without isolated vertex (a vertex x is isolated if x ∈ V \
∪e∈Ev(e)). The set of isolated vertices is denoted by V\E . By definition the
empty hypergraph is the hypergraph H∅ such that V = ∅ and E = ∅.

The incidence graph of a hypergraph H = (V, E) is a bipartite graph IG(H)
with a vertex set S = V 	 E (where 	 stands for the disjoint union), and
where x ∈ V and e ∈ E are adjacent if and only if x ∈ v(e). Conversely, to
each bipartite graph Γ = (V1 	 V2, A), we can associate two hypergraphs: a
hypergraph H = (V, E), where V = V1 and E = V2 and its dual H∗ = (V ∗, E∗)
by exchanging the roles of vertices and hyperedges, where V ∗ = V2 and E∗ = V1.

3 From Formal Contexts to Hypergraphs

In this section we propose a few ways to build hypergraphs from formal contexts.
Morphological operators defined on formal contexts then induce operations on
hypergraphs.

3.1 Construction of Hypergraphs from a Formal Context

With any context (G,M, I), we can associate a bipartite graph from the disjoint
union of objects and properties, and edges defined by the relation I, i.e. (G 	
M, I) [4,16], where 	 denotes the disjoint union (an extension to the fuzzy case
was proposed in [17]). Two vertices g ∈ G and m ∈ M are linked if and only if
(g, m) ∈ I. This bipartite graph can be considered as the incidence graph of two
dual hypergraphs.
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Definition 1. Let K = (G, M, I) be a formal context. Two hypergraphs are
defined from K as:

1. H1 = (V1, E1) where the set of vertices V1 is equal to G (i.e. the objects),
and a hyperedge e ∈ E1 links all objects sharing a given property m ∈ M , i.e.
v(e) = β({m}), where v(e) denotes the set of vertices of e;

2. H2 = (V2 = M,E2 = {α({g}), g ∈ G}), i.e. the vertices are now properties,
and each hyperedge e ∈ E2 corresponds to an object g and v(e) = α({g}).

Let us consider the example in Fig. 1, and the two aforementioned hyper-
graphs associated with this context. We have then V1 = {1, . . . , 10}, and for
instance s ∈ E1 and v(s) = {1, 4, 9}. Similarly V2 = {c, e, o, p, s}. A hyperedge
corresponding to object 5 is the subset of vertices v(5) = {o, p}. Note that in this
example we have multiple hyperedges. In particular we also have v(7) = {o, p},
since objects 5 and 7 have the same set of properties (the two corresponding lines
in the table in Fig. 1 are the same). If hypergraphs without repeated hyperedges
are considered as preferable, they can be obtained by making the context non
redundant, by clarification (removing in particular identical lines and columns
in the table for this example).

Instead of considering the bipartite graph defined from the relation I, hyper-
edges can be built on G 	 M from the formal concepts, which provides another
interesting hypergraph.

Definition 2. Let C be the concept lattice associated with the formal context
K = (G, M, I). We define a hypergraph associated with C as H = (V = G 	
M, E = C), i.e. a hyperedge is formed by the subsets X and Y of G and M
respectively, such that (X, Y ) ∈ C (X and Y are linked if α(X) = Y and β(Y ) =
X). The set of vertices of a hyperedge e is then denoted by v(e) = {g ∈ X} 	
{m ∈ Y }.

Graphically, the hyperedges of this hypergraph H correspond to the ele-
ments of the lattice, as displayed for the number example in Fig. 1. For instance
{1, 9, o, s} is a hyperedge of H.

3.2 Morphological Operators

As shown in [1,5] (and previously mentioned in [8]), there are some links between
derivation operators and Galois connections on the one hand, and morphological
operators and adjunctions on the other hand. This was extended to the fuzzy
case in [2]. In particular, the derivation operators α and β are anti-dilations,
and the compositions αβ and βα are closings. The Galois connection property
between α and β corresponds to the adjunction property between a dilation
and an erosion, by reversing the ordering on one of the two spaces. These links
are summarized in Table 12. In this section, we further explore how operations
on formal concepts, defined from P(G) into P(M), from P(M) into P(G), or
directly on C, lead to operations on hypergraphs.
2 In the table we denote by Inv(ϕ) the set of fixed points of an operator ϕ (i.e.

x ∈ Inv(ϕ) iff ϕ(x) = x).
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20 I. Bloch

Table 1. Similarities between some mathematical morphology notions and formal con-
cept analysis [1].

Adjunctions, dilations and erosions Galois connection, derivation operators

δ : (L, �) → (L�, ��), ε : (L�, ��) → (L, �) α : P(G) → P(M), β : P(M) → P(G)

δ(x) �� y ⇐⇒ x � ε(y) X ⊆ β(Y ) ⇐⇒ Y ⊆ α(X)

Increasing operators Decreasing operators

εδε = ε, δεδ = δ αβα = α, βαβ = β

εδ = closing (closure operator), δε =
opening (kernel operator)

αβ and βα = both closure operators
(closings)

Inv(εδ) = ε(L�), Inv(δε) = δ(L) Inv(αβ) = α
�
P(G)

�
, Inv(βα) = β

�
P(M)

�

ε(L�) is a Moore family, δ(L) is a dual
Moore family

α
�
P(G)

�
and β

�
P(M)

�
are Moore families

(or closure systems)

δ is a dilation: δ(∨xi) = ∨��δ(xi)
�

α is an anti-dilation: α(∪Xi) = ∩α(Xi)

ε is an erosion: ε(∧�yi) = ∧
�
ε(yi)

�
β is an anti-dilation: β(∪Yi) = ∩β(Yi)

Derivation Operators, Dilations and Anti-dilations. Let us first interpret
the derivation operators in terms of morphological operators on hypergraphs.
Considering H1, for a singleton g ∈ G, we have α({g}) = {m ∈ M | g ∈ v(m)}, in
this hypergraph. This means that with each g we associate the set of hyperedges
which contain g.

Proposition 1. The derivation operator α applied on singletons is equivalent to
the dilation on hypergraphs introduced in Example 4 of [6], defined from (P(V1),
⊆) into (P(E1), ⊆) as:

∀g ∈ V1, δ({g}) = {e ∈ E1 | g ∈ v(e)} and ∀X ⊆ V1, δ(X) =
�

g∈X

δ({g}).

We have α({g}) = δ({g}), and for any subset X of G,
�

g∈X α({g}) = δ(X).

As a consequence, since α(X) =
�

g∈X α({g}), α is the anti-dilation, counter-
part of this dilation δ on hypergraphs.

A similar reasoning applies for Y ∈ M , by considering now dilations from
(P(E1), ⊆) into (P(V1), ⊆) and corresponding links with β.

By exchanging the roles of G and M , the above interpretations of derivation
operators on H1 are transposed on H2.

Summarizing, α is interpreted as an anti-dilation from P(V1) into P(E1) (or
equivalently from P(E2) into P(V2)), and β as an anti-dilation from P(E1) into
P(V1) (or equivalently from P(V2) into P(E2)), in the sense of hypergraphs.

The combinations βα and αβ are closings on P(G) or P(M), which directly
define closings on the derived hypergraphs H1 and H2. These are new definitions
of closings, enriching the ones previously proposed in [6,7].

To illustrate the effect of βα, let us consider the example in Fig. 2, where the
represented hypergraph is derived from a formal context, as H1, i.e. the vertices
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correspond to objects and the hyperedges to properties. In this figure, vertices
are represented by dots, and hyperedges by closed lines including the vertices
composing them. Let us consider the vertex x1 (red dot in the figure). We have
α({x1}) = δ({x1}) = {m ∈ E1 | (x1, m) ∈ I} = {e1, e5}, and βα({x1}) =
β({e1, e5}) = {g ∈ V1 | (g, e1) ∈ I and (g, e5) ∈ I} = v(e1) ∩ v(e5) = {x1, x2}
(i.e. the red and magenta vertices in the figure). As a comparison, if we consider
the adjoint erosion of δ to perform the closing, we have εδ({x1}) =

�{X ∈
P(V1) | ∀x ∈ X, δ({x}) ⊆ δ({x1})} = v(e1) ∪ v(e5). This shows that the two
closings may provide completely different results.

Similarly, let us consider the following example for αβ: β({e1}) = {x ∈ V1 |
x ∈ v(e1)} = v(e1), i.e. all colored points (red, magenta and cyan in Fig. 2), and
αβ({e1}) = {m ∈ E1 | ∀x ∈ β({e1}), x ∈ v(m)} = {e1}. Considering adjoint
erosion and dilation, different results could be obtained.

Fig. 2. Example of hypergraph and closing defined from derivation operators:
α({x1}) = {e1, e5} and βα({x1}) = {x1, x2}; αβ({e1}) = {e1}. (Color figure online)

Interpretation of Morphological Operations on Formal Concepts in
Terms of Hypergraphs. In [1,2], morphological operators were introduced,
based on structuring elements defined either from I or from a distance. Let us
take as a structuring element centered at m ∈ M , or a neighborhood of m, the
set of g ∈ G such that (g, m) ∈ I (and conversely the set of m ∈ M such that
(g, m) ∈ I is a neighborhood of g). Operators δI and ε∗

I from P(M) into P(G),
and δ∗

I and εI from P(G) into P(M) were defined as:
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∀X ∈ P(G), ∀Y ∈ P(M)

δI(Y ) =
�
g ∈ G | ∃m ∈ Y, (g, m) ∈ I

�
,

εI(X) =
�
m ∈ M | ∀g ∈ G, (g,m) ∈ I ⇒ g ∈ X

�
,

δ∗
I (X) =

�
m ∈ M | ∃g ∈ X, (g, m) ∈ I

�
,

ε∗
I(Y ) =

�
g ∈ G | ∀m ∈ M, (g, m) ∈ I ⇒ m ∈ Y

�
.

The pairs of operators (εI , δI) and (ε∗
I , δ

∗
I ) are adjunctions (and δI and δ∗

I are
dilations, εI and ε∗

I are erosions). These operators also correspond to possibilistic
interpretations of formal concepts, as proposed in [13]. Moreover, the following
duality relations hold: δI(M \ Y ) = G \ ε∗

I(Y ) and δ∗
I (G \ X) = M \ εI(X).

Interpreting now G and M as sets of vertices and hyperedges of a hypergraph,
we come up with morphological operations on hypergraphs, from either the set
of vertices to the set of hyperedges or the converse, as also developed in [10] for
graphs, and [6,7] for hypergraphs. Let us consider H1, where vertices correspond
to objects and hyperedges to properties. We have the following interpretations:

– ∀Y ∈ P(E1), δI(Y ) =
�

m∈Y β({m}) =
�

m∈Y v(m), i.e. all vertices defining
the hyperedges in Y. This corresponds to Example 3 in [6].

– ∀X ∈ P(V1), εI(X) = {m ∈ E1 | v(m) ⊆ X}, which is the adjoint erosion ε�

of the dilation δ� defined as ∀Y ∈ P(E1), δ�(Y ) =
�

e∈Y v(e) (see Proposition
11 in [7]). The result is the set of complete hyperedges (i.e. with all vertices
contained in the hyperedges) formed by vertices of V1. The corresponding
opening γ� is the set of vertices of these hyperedges. Coming back to the
formal concepts, this means that in a given subset X of objects, we remove
by this opening the objects which are in incomplete hyperedges, i.e. which
have properties shared by objects which are not in X.

– ∀X ∈ P(V1), δ∗
I (X) =

�
g∈X α({g}) =

�
g∈X{m ∈ E1 | g ∈ v(m)}. It corre-

sponds to the dilation introduced in Example 3 in [6]. See also Proposition 1.
– ∀Y ∈ P(E1), ε∗

I(Y ) = {g ∈ V1 | α({g}) ⊆ Y }, which is the set of vertices such
that all hyperedges including these vertices are in Y .

Similar interpretations hold for the second construction H2 = (V2, E2).

Morphological Operations on Hypergraph Representations of Formal
Concepts. Morphological operations from distances and neighborhoods, as
defined on formal contexts in [1], can be proposed considering the representa-
tion as a hypergraph of formal concepts H = (V = G	M,E = C), as described
above.

Let us consider operators defined from a distance on C. Several distances
were introduced in [1,2], for instance from valuations ωG and ωM defined as the
cardinality of the extent (ωG(a) = |e(a)|) or the intent (ωM (a) = |i(a)|) of a
formal concept a:

∀(a1, a2) ∈ C2, dωG
(a1, a2) = 2ωG(a1 ∧ a2) − ωG(a1) − ωG(a2),

∀(a1, a2) ∈ C2, dωM
(a1, a2) = ωM (a1) + ωM (a2) − 2ωM (a1 ∨ a2),
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where ∧ and ∨ are the infimum and supremum of formal concepts (Eqs. 1 and 2).
These two functions are metrics on C (this also holds in the fuzzy case [2]).
Structuring elements defined as balls of these distances can then be used as
structuring elements. An example of dilation is illustrated in Fig. 3 (from [2]),
using either dωG

or dωM
.

Fig. 3. Dilation of {a} = {({1, 9}, {o, s})} using a ball of dωG (red) and of dωM (blue)
as structuring element [2]. (Color figure online)

As mentioned above, each element of C can be interpreted as a hyperedge of
a hypergraph H = (V = G 	 M,E = C). Hence these dilations induce dilations
from P(E) on P(E), which are again new operators.

Another definition in [2] relies on the decomposition of each formal con-
cept as the disjunction of join-irreducible elements. Dilating each of these irre-
ducible elements (for instance using balls of dωG

or dωM
as structuring ele-

ments), defines new operations, which in turn induce new dilations on hyper-
graphs. An example is reproduced from [2] in Fig. 4, with a direct interpretation
in terms of hypergraphs (i.e. dilation from P(E) into P(E)). In this exam-
ple, the concept a1 = ({1, 4, 9}, {s}) is decomposed into irreducible elements
as a1 = ({4}, {c, e, s}) ∨ ({1, 9}, {o, s}) ∨ ({9}, {c, o, s}) and each element of the
decomposition is dilated using an elementary ball of dωG

as structuring element.
Another example of dilation from P(E) into P(E) can be defined as follows:

∀e ∈ E, δ({e}) = {e� ∈ E | v(e) � v(e�) �= ∅}, (3)

and ∀A ⊆ E, δ(A) =
�

e∈A δ({e}), with the pseudo non empty intersection
defined as:

v(X, Y ) � v(X �, Y �) �= ∅ ⇔ X ∩ X � �= ∅ and Y ∩ Y � �= ∅.

The conjunction of the two constraints allows limiting the neighborhood of a
concept and hence the extent of the dilation. For this example, a hypergraph
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Fig. 4. Dilation of {a1} = {({1, 4, 9}, {s})} using a ball of dωG as structuring element
for each irreducible element of its decomposition [2] (red), and dilation of ({1, 9}, {0, s})
using Eq. 3 (blue). (Color figure online)

is first built from a formal context, then morphological operators are defined
on the hypergraph, which induce operators on the original concept lattice. This
approach can therefore be considered as being in-between the ones in this section
and in the next one.

In the example in Fig. 1, the dilation of the formal concept ({1, 9}, {0, s}) is:

δ({1, 9}, {0, s}) = {(X �, Y �) ∈ C | X � ∩ {1, 9} �= ∅ and Y � ∩ {o, s} �= ∅} =

{({1, 4, 9}, {s}), ({1, 3, 5, 7, 9}, {o}), ({4, 9}, {c, s}), ({1, 9}, {o, s}), ({9}, {c, o, s})}.

Note that this dilation, illustrated in Fig. 4 (in blue) is different from the one
that can be built on the graph defined by the concept lattice (as depicted in
Fig. 1), where the dilation of a concept would include all the concepts linked
directly by an edge in the graph (then ({4, 9}, {c, s}) would not be included in
the dilation of ({1, 9}, {0, s}). It is also different from the dilations illustrated in
Fig. 3.

We can also limit the extent of dilations by limiting the number of changes
to go from one concept to another one.

4 From Hypergraphs to Formal Contexts

4.1 Construction of Formal Contexts from a Hypergraph

Conversely, formal contexts can be defined from a hypergraph H = (V, E).

Definition 3. Let H = (V, E) be a hypergraph. Two formal contexts are defined
from H, by setting

1. either G = V , M = E, and ∀g ∈ G,∀m ∈ M, (g, m) ∈ I iff g ∈ v(m),
2. or G = E, M = V , and ∀g ∈ G, ∀m ∈ M, (g, m) ∈ I iff m ∈ v(g).
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The relation I corresponds to the incidence matrix of H, and the derivation
operators α and β can be expressed equivalently using I or using v(m) (or v(e)).
For instance in the first construction:

∀X ⊆ G = V, α(X) = {m ∈ M = E | ∀g ∈ X, g ∈ v(m)}; (4)

∀Y ⊆ M = E, β(Y ) = {g ∈ G = V | ∀m ∈ Y, g ∈ v(m)}. (5)

Then, as for any formal context, formal concepts are defined as pairs (A, B), A ⊆
G = V, B ⊆ M = E such that α(A) = B and β(B) = A. Similar expressions
hold for the second construction.

4.2 Morphological Operators

Several morphological operators on hypergraphs have been proposed in [6,7].
Thanks to the two constructions above, they yield directly operators on the
derived formal contexts.

Let us consider the operators introduced in the examples of [6], and re-
interpret them in terms of formal concepts. In Example 1, the structuring ele-
ment is defined as the set of hyperedges intersecting the considered one, and we
have for each m in M :

δ({m}) = {m� ∈ M | v(m) ∩ v(m�) �= ∅} = {m� ∈ M | β({m}) ∩ β({m�}) �= ∅},

which represents all properties that have at least one object in common with
m. This definition is similar to the one used in Eq. 3. The dilation of any subset
of M is defined as the disjunction of the dilations of its elements. The adjoint
erosion is given by:

∀Y ∈ P(M), ε(Y ) =
�

{Y � | ∀m ∈ Y �, δ({m}) ⊆ Y }.

Note that these operators are defined from P(M) into P(M). Operators from
P(V ) into P(V ) can be defined in a similar way.

Let us consider the property “composite” in the number example (Fig. 1).
We have δ({c}) = {c, e, s, o}, ε({c, e, s, 0}) = {c, s} (the dilation of all singletons
is provided in Table 2), i.e. the morphological closing of {c} is εδ({c}) = {c, s}.

Table 2. Elementary dilations of the properties in the example of Fig. 1.

m c e o p s

δ({m}) {c, e, s, o} {e, p, c, s} {o, s, p, c, s} {p, e, o} {s, o, c, e}

As mentioned in Example 2 in [6], a constraint on the cardinality of the
intersection between v(m) and v(m�) can be added to limit the extent of the
dilation:

δk({m}) = {m� ∈ M | |v(m) ∩ v(m�)| ≥ k} = {m� ∈ M | |β({m}) ∩ β({m�})| ≥ k}.
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This means that we consider in the dilation all properties that have at least k
objects in common with m. Such operations can be useful for clustering appli-
cations, among others.

We have for instance, for k = 2 and k = 3, δ2({c}) = {c, e, s}, δ3({c}) =
{c, e}.

As in [6], we can also define similar operations from P(M) into P(V ) by
considering as result of the dilation all vertices forming the hyperedges in the
above definitions. The compositions with the adjoint erosion define closings on
P(M) or on P(V ) that are different from αβ and βα.

As another example, let us consider the opening γ in Proposition 10 of [7]
on the power set of vertices as:

∀X ∈ P(V ), γ(X) =
�

{Be | e ∈ E, Be ⊆ X}, (6)

where ∀e ∈ E, Be = ∪{v(e�) | e� ∈ E, v(e�) ∩ v(e) �= ∅}. This opening acts as a
filter that removes at least vertices that belong to incomplete hyperedges in X
(i.e. for which the set of vertices is not completely included in X). Interpreting
the hypergraph as a formal concept leads to a natural interpretation in terms
of object filtering: the opening γ applied on a subset of G removes objects that
have a property shared by other objects, among which at least one is not in the
considered subset. Complete hyperedges can also be removed for this opening
(in contrary to γ� above).

5 Outlook

In this paper, we highlighted some straightforward links between formal concepts
and hypergraphs. These two ways of representing structured information corre-
spond to different points of view (starting with the graphical representations),
that suggest different ways of defining morphological operators. A few examples
were given, showing that the links between the two frameworks allow each one
to benefit from the other. In particular, operations that may seem very natural
in one setting provide new operators in the other one, such enriching the toolbox
for manipulating formal concepts and hypergraphs.

This paper presents a preliminary work, that can be developed in several
directions, to further explore new morphological operators on the one hand, in
particular based on different types of distances, and to derive useful applications
on the other hand. Examples of applications include filtering, redundancy elimi-
nation, clustering, operations robust to small changes and associated similarities,
etc.
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