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Abstract. In this paper we address the question of defining and com-
puting Hausdorff distances between distributions in a general sense. We
exhibit some links between Prokhorov-Lévy distances and dilation-based
distances. In particular, mathematical morphology provides an elegant
way to deal with periodic distributions. The case of possibility distribu-
tions is addressed using fuzzy mathematical morphology. As an illustra-
tion, the proposed approaches are applied to the comparison of spatial
relations between objects in an image or a video sequence, when these
relations are represented as distributions.
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1 Introduction

Comparing distributions is important in image processing and understanding.
Typical applications concern the comparison of histograms of gray levels or col-
ors, or of key points [12,21]. At a more structural level, spatial relations between
objects, or between instances of objects at different times, are important to assess
the spatial arrangement of objects on a scene and its evolution, thus requiring
also comparison between representations, e.g. as distributions, of such spatial
relations [4].

In this paper we consider the general framework of comparison of distribu-
tions in a general sense (related to image information or not), that can have
a probabilistic or a possibilistic and fuzzy meaning. We focus on links between
dilation-based distances and optimal transport ones.

The Hausdorff distance is a good choice for comparing sets or functions, since
it has all the properties of a metric on compact sets. In this paper, we study
this distance between distributions, from a mathematical morphology perspec-
tive. In particular we highlight links between existing metrics such as Prokhorov
and Lévy, and existing or newly proposed expressions of the Hausdorff distance
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derived from morphological dilations. We consider distributions on the real line,
as well as periodic distributions, which are important for comparing histograms
of colors in some specific color spaces, or directional spatial relations. This prob-
lem has been addressed using the Wasserstein distance in [16], but not using the
Hausdorff distance.

The Hausdorff distance has been defined between functions in [17], and by
considering 1D functions as subsets of R2 in [18]. We will also investigate a similar
approach in this work. This idea was then further studied in [7] by considering
truncated umbras and dilations by a half ball, and in [13], where the case of
discontinuous functions was also addressed.

When functions are membership functions of fuzzy sets or possibility distri-
butions, different approaches for defining the Hausdorff distance have been pro-
posed. Some of them define the distance as a number, by combining the values of
the Hausdorff distances computed between α-cuts (thresholds of the functions,
hence sets), either as a weighted sum, or using the extension principle [5,6,15,22].
Several generalizations of the Hausdorff distance have also been proposed under
the form of fuzzy numbers [2,8]. Extensions of the Hausdorff distance based on
fuzzy mathematical morphology have been developed, either as a number in [10]
from the distance from a point to a fuzzy set [3], or as a fuzzy number [3]. This
last approach will be exploited in the present work too.

Some preliminaries on periodic and non periodic distributions are first given
in Section 2. Several types of dilations are then proposed in Section 3. Then
we propose Hausdorff distances on distributions based on optimal transport and
morphological methods in Section 4. The links between these two types of ap-
proaches allow us to address the case of non periodic distributions in Section 5.
This case is illustrated in Section 6 for comparing directional relations between
objects and their change in a synthetic video sequence.

2 Preliminaries

Distributions and cumulative distributions. Let f and g denote the distributions
(in a broad sense) to be compared, via the computation of a distance between
them. We denote by M the definition domain of these distributions. In this
paper, we consider only one-dimensional domains, and M can be R or R

+ for
non-periodic distributions, and [0, ρ] for periodic distributions of period ρ (for
instance [0, 2π] for the example of relative direction in Section 6). We denote
points of M by x, y..., or θ, α... when they are angles.

Normalized distributions are assumed in this paper. Two types of normal-
ization are considered: by the sup or max, or by the sum. The first case goes
with a fuzzy or possibilistic interpretation, while the second one corresponds to
a probabilistic interpretation.

The cumulative distributions of f and g are denoted by F and G. Note that
defining a distance between f and g from a distance between F and G actually
provides a distance between distributions. For some definitions, we will consider
F and G as sets in a 2D space, denoted by SF and SG. Cumulative distribu-
tions are right continuous. Jumps correspond to discontinuities in the underlying
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distributions. In such cases, SF and SG are completed by vertical segments cor-
responding to these jumps. In the sequel, we always assume that SF and SG
are completed graphs. Therefore, the subset SF associated with a cumulative
distribution F is the set defined as:

SF = {(x, F (x)) | x ∈ M} ∪ {(x, y) | x ∈ J(F ) and lim
x′→x−

F (x′) ≤ y ≤ F (x)}

where J(F ) denotes the set of points at which jumps occur (i.e. where the left
limit of F at x is not equal to F (x)).

Ground distance. Existing methods for comparing histograms or probability dis-
tributions [9] are usually categorized into two classes: (i) bin-to-bin distances,
and (ii) cross-bin distances, involving the distance on the support M (or ground-
distance) [9,16,21]. In this paper, we only consider distances of the second class,
keeping in mind the application to spatial relations. For instance, if two distribu-
tions are identical up to a translation and with disjoint supports, the distances
of the first class will always provide the same value, while the second ones will
differentiate situations with different translations.

Let us denote by d the ground distance on M . Its definition depends on M . If
M is equal to R or R+, then d is defined from an Lp norm, for instance d(x, y) =
|x − y| in 1D. For periodic distributions (or defined on a circle), the geodesic
distance is used. If the period is ρ, we will use d(x, y) = min(|x−y|, ρ−|x−y|) =
ρ
2 − ||x− y| − ρ

2 |. In case of distributions on the circle, with ρ = 2π, this ground
distance is expressed as d(θ, θ′) = min(|θ−θ′|, 2π−|θ−θ′|) = π−||θ−θ′|−π|. This
formulation allows us to consider that values close to 0 and 2π, respectively, are
at a short distance from each other. The distance values can also be normalized,

using for instance d(θ,θ′)
π or sin |θ−θ′|

2 .

3 Definition of Some Dilations of Distributions

3.1 Morphological Dilation of a Normalized Distribution

We assume in this section that the distributions are normalized by the sup (and
we restrict this work to distributions with bounded sup), or at least that they all
have the same maximum value. To simplify the presentation, we consider binary
structuring elements, defined as subsets of M .

If the distributions are defined on the real line (M = R or M = R
+), classical

mathematical morphology applies and the dilation of f by a structuring element
B is expressed by ∀x ∈ M, δB(f)(x) = supy∈Bx

f(y), where Bx denotes as usual
the translation of B at x (Bx = x+B).

If the distributions are periodic, this periodicity should be taken into account
in the dilation and the structuring element.

Definition 1. Let f be a distribution on the unit circle. Its dilation is defined by:

∀θ ∈ M = [0, 2π], δBα(f)(θ) = sup
θ′∈Bα

θ

f(θ′) (1)

where Bα is a structuring element of aperture α, defined as:
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– if α ≤ π: Bα
θ = [θ − α, θ + α] if θ − α ≥ 0 and θ + α ≤ 2π,

Bα
θ = [0, θ + α] ∪ [θ − α+ 2π, 2π] if θ − α ≤ 0 and θ + α ≤ 2π,

Bα
θ = [θ − α, 2π] ∪ [0, θ + α− 2π] if θ − α ≥ 0 and θ + α ≥ 2π,

– if α ≥ π: Bα
θ = [0, 2π]. (The case θ− α ≤ 0 and θ+ α ≥ 2π implies α ≥ π.)

Note that Definition 1 extends directly to any periodic function.
The normalization ensures that the core of the distribution (set of points with

maximum value) is extended according to the size of the structuring element. In
particular, it is always possible to find a size of dilation such that a given point
of the support of the distribution belongs to the core of the dilated distribution.
This propertywill be used for Hausdorff distances defined from such dilations. The
following proposition is easy to show (proofs are omitted due to lack of space):

Proposition 1. For all α, Bα is a ball or radius α of the ground distance d,
and for all f and α, we have ∀θ, δBα(f)(θ) = sup{f(θ′) | d(θ, θ′) ≤ α}.

3.2 Dilations of Cumulative Distributions

In this section we consider a cumulative distribution either as a function F from
M into [0, 1], or as a subset SF of M × [0, 1].

Let us consider as a structuring element a segment of length 2ε, with ε ≥ 0.
We denote by Bε

x = [x− ε, x+ ε]∩M the translation of this structuring element
at x, restricted to the support.

Proposition 2. The dilation of F by Bε is expressed as:

∀x ∈ M, δBε(F )(x) = sup
y∈Bε

x

F (y) =

{
F (x+ ε) if x+ ε ∈ M
1 otherwise

Let us now consider the dilation of SF , using different structuring elements,
that will prove useful in the following. Let us first consider a ball of radius ε
of the L∞ distance, with a positive proportionality factor λ on M to account
for the different scales of the two dimensions (i.e. the structuring element is a
rectangle). It is expressed, when translated at (x, y), as:

(Bε,λ
1 )(x,y) = (B̌ε,λ

1 )(x,y) = [x− λε, x+ λε]× [y − ε, y + ε].

Proposition 3. The dilation of any SF by Bε,λ
1 is expressed as:

δε,λ1 (SF ) = {(x, y) ∈ M × [0, 1] | ∃x′ ∈ M,max(
|x− x′|

λ
, |y − F (x′)|) ≤ ε}. (2)

This dilation is illustrated in Figure 1, for λ = 1.
Let us now consider an asymmetric dilation, with the following structur-

ing element centered at (x, y) and of size ε (still with the factor λ on M):

(Bε,λ
2 )(x,y) = [x − λε, x + λε]× [y − ε, 1]. Its symmetrical with respect to (x, y)

is then: (B̌ε,λ
2 )(x,y) = [x− λε, x+ λε]× [0, y + ε].



526 I. Bloch and J. Atif

0

1

M

F

xx − ε x + ε

B1(x,F(x))
ε

δ  (SF)
ε

1

0

1

M

F

xx − ε x + ε

ε

B2(x,F(x))
ε

  (SF)
ε

δ2

Fig. 1. Dilation with a symmetrical structuring element (left) and with a non-
symmetrical one (right)

Proposition 4. The asymmetric dilation of SF by Bε,λ
2 is expressed as:

δε,λ2 (SF ) = {(x, y) ∈ M × [0, 1] | ∃x′ ∈ M,max(
|x− x′|

λ
, F (x′)− y) ≤ ε}.

It is illustrated in Figure 1.

3.3 Dilations of Cumulative Distributions in the Periodic Case

All the definitions introduced above apply also to the periodic case, using the
following embedding of F into R:

∀x ∈ R, F (x+ ρ) = F (x) + 1 (3)

and then normalizing the space. For instance if ρ = 2π, it is sufficient to consider
an embedding in ]− π, 3π[×[−1, 2] since for λε ≥ π, the dilation would provide
the whole space M × [0, 1]. The extension of SF then writes:

SFE = SF ∪{(θ, F (θ+2π)− 1), θ ∈]−π, 0]}∪{(θ, F (θ− 2π)+ 1), θ ∈ [2π, 3π[}.
(4)

Dilations can be expressed directly from this set, and we have the following
simple form.

Proposition 5. The dilation of SF with a symmetrical structuring element and
λε ≤ π is expressed as:

δε,λc1 (SF )={(θ, y) ∈ [0, 2π]×[0, 1] | ∃θ′ ∈ [0, 2π], |θ−θ′| ≤ λε and |F (θ′)−y| ≤ ε}.
(5)

For λε > π, then δε,λc1 (SF ) = [0, 2π]× [0, 1].

Note that the simple expression obtained in Proposition 5 corresponds to a
geodesic way to process the boundaries of the domain, by truncating the trans-
lated structuring element to limit it to the part included in [0, 2π]× [0, 1]. This
dilation is illustrated in Figure 2.

Considering now the structuring element Bε,λ
2 to dilate only the subgraph

(and saturating its complement to 1) leads also to a simple expression:

Proposition 6. The dilation of SF with an asymmetrical structuring element
and λε ≤ π is expressed as:

δε,λc2 (SF ) = {(θ, y) ∈ [0, 2π]×[0, 1] | ∃θ′ ∈ [0, 2π], |θ−θ′| ≤ λε and F (θ′)−y ≤ ε}.
(6)

For λε > π, we have δε,λc2 (SF ) = [0, 2π]× [0, 1].
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Fig. 2. Dilation in the pe-
riodic case, for a symmetri-
cal structuring element. The
central circle corresponds to
0 and the larger one to 1.
The dashed area is an ex-
ample of structuring element
centered at (θ, F (θ)). The
dilation of SF includes SG.

θG(   )

θ

θF(  ) F

G

δ(SF)

4 Distances Between Distributions on the Real Line

4.1 Morphological Approach

Haudorff distance from dilations of cumulative distributions. Let us first consider
δε,λ1 introduced in Section 3.2, and let us derive a Hausdorff distance from it (see
Figure 3, for λ = 1).

Proposition 7. The Hausdorff distance associated with δ1 is:

dH1(F,G) = max( sup
x∈M

inf
y∈M

max(
|x− y|

λ
, |G(x) − F (y)|),

sup
y∈M

inf
x∈M

max(
|x− y|

λ
, |F (y)−G(x)|)). (7)

0

1

M

G

F
δ

ε

1  (SF)

δ
ε
(F)

1

M

G

F

0

Fig. 3. Left: Minimal size of the dilation of SF such that it contains SG. Right: Com-
putation of the Hausdorff distance by dilating the cumulative distributions considered
as functions.

Let us now consider the asymmetric dilation δ2.

Proposition 8. The Hausdorff distance derived from δ2 is:

dH2(F,G) = max( sup
x∈M

inf
y∈M

max(
|x− y|

λ
,G(y)− F (x)),

sup
y∈M

inf
x∈M

max(
|x− y|

λ
, F (x)−G(y))). (8)

Finally, let us derive the Hausdorff distance from cumulative distributions
considered as functions.
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Proposition 9. We have:

dH(F,G) = inf{ε > 0 | ∀x ∈ M,G(x) ≤ F (x+ ε) and F (x) ≤ G(x+ ε)}. (9)

This is illustrated in Figure 3.

Proposition 10. All distances defined in this section are metrics (i.e. positive,
separable, symmetrical and satisfy the triangular inequality). If the distributions
are Dirac functions (with a unique non zero value at f0 and g0), the proposed
distances are all equal to d(f0, g0), where d is the ground distance.

Hausdorff distance from dilations of distributions. The idea here is to exploit
the link between morphological dilation and some distances, such as minimum
and Hausdorff distances, in the case of sets [3,19]. Indeed, the Hausdorff distance
between two sets is equal to the minimal size of the ball of the ground distance
such that the dilation of each set by this ball contains the other set. We propose
to use the same principle on distributions.

Definition 2. [3] The fuzzy Hausdorff distance is defined from the dilation
of the distributions, considered as fuzzy sets, and from an inclusion operator
Δ⊆(f, g), expressing the degree to which f is included in g:

∀
 ∈ R
+∗, dH(f, g)(
) = t(d′H(f, g)(
), d′H(g, f)(
)) (10)

with
d′H(f, g)(
) = t(Δ⊆(f, δB�(g)), inf

0≤�′<�
c(Δ⊆(f, δB�′ (g)))),

and d′H(f, g)(0) = Δ⊆(f, g), with t a t-norm.

The value dH(f, g)(
) expresses the degree to which the Hausdorff distance be-
tween f and g is equal to 
. A common definition of an inclusion degree in the
fuzzy set framework is Δ⊆(f, g) = infx∈M I(f(x), g(x)) where I is a fuzzy im-
plication. If a crisp number is needed, the center of gravity of this fuzzy number

can be used:
∫∞
0

dH(f,g)(�)�d�∫∞
0

dH(f,g)(�)d�
, or the following definition:

dH(f, g) = inf{
 ∈ R
+ | ∀x ∈ M, δB�(f)(x) ≥ g(x) and δB�(g)(x) ≥ f(x)},

(11)
which corresponds to a crisp version of the inclusion. This simplified expression
corresponds to the definitions in [7,13] for flat structuring elements.

Proposition 11. [3] The fuzzy distances introduced in Equations 10 and 11
are positive and symmetrical. The morphological Hausdorff distance between the
distributions and computed with a crisp version of the inclusion degree (Equa-
tion 11) is separable and satisfies the triangular inequality, while the fuzzy version
of the inclusion degree yields a distance (Equation 10) which is a fuzzy number,
and separable for Lukasiewicz implication (I(a, b) = min(1, 1− a+ b)), but does
not satisfy the triangular inequality.
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4.2 Lévy and Prokhorov Distances

An interesting distance between probability distributions, related to optimal
transport problems [20] and which involves dilations, is the Prokhorov-Lévy
metric dPr : P(M)2 → [0,+∞[ [14], defined for two distributions f and g as:

dPr(f, g) = inf{ε > 0 | ∀Z ∈ B(M), f(Z) ≤ g(δλε(Z)) + ε and g(Z) ≤ f(δλε(Z)) + ε}
(12)

where δλε(Z) is the dilation of size λε of Z (see Section 3.1, restricting functions
to sets), and B(M) denotes the set of all Borel sets on M . The definition has
been adapted here to introduce λ and thus to account for the potential different
scales of M and [0, 1], as in [17].

This distance generalizes the Lévy distance (also a metric), defined in 1D
between two cumulative distributions F and G as:

dL(F,G) = inf{ε > 0 | ∀x ∈ R, G(x− λε)− ε ≤ F (x) ≤ G(x + λε) + ε}. (13)

By restricting the Borel sets of R to the intervals of the form Z =] −∞, x[ (or
equivalently Z =]x,+∞[), which generate B(M), dPr is indeed equivalent to dL
in 1D. Note that if all Borel sets are considered, then we only have dL ≤ dPr.

Hausdorffian expression of dL. The Lévy distance can be expressed in a similar
way as the Hausdorff distance [17] and we have:

dL(F,G) = max( sup
x∈M

inf
y∈M

max(
|x− y|

λ
,G(y)− F (x)),

sup
y∈M

inf
x∈M

max(
|x− y|

λ
, F (x)−G(y))). (14)

Note that this expression involves explicitly the ground distance on M .
We now exhibit links with Hausdorff distances derived from the dilations

proposed in Section 3.2. Note that dPr already involves a dilation and that the
links between dPr, dL and its Hausdorff-like expression already suggest that all
these notions are closely related.

Proposition 12. Let F and G be any two cumulative distributions. We have
the following equivalences between their distances:

– the Lévy distance can be formulated as a Hausdorff-like expression (Equa-
tion 14);

– Equation 7 is similar to Equation 14, but with absolute values on G(x)−F (y),
providing one of the definitions in [17];

– Equation 8 is equivalent to Equation 14;
– Equation 9 is equivalent to Equation 13;
– Equation 11 is similar to dPr expressed on points.

All these links make it easier to extend the definitions to the periodic case
(next section).
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Proposition 13. dL is a probability metric [17]. Similarly, the Hausdorff dis-
tances defined in Equations 7 and 9 are probability metrics.

5 Distances Between Periodic Distributions

In this section we now assume periodic distributions. To fix the ideas, we set,
without loss of generality, ρ = 2π.

5.1 Lévy and Prokhorov Distances

Let us start again from dPr. We propose to express this distance from a circular
dilation and by restricting the Borelian sets to Z = [0, θ] (which are generating all
Borelian sets on [0, 2π]), taking 0 as origin, arbitrarily1. Let us define a dilation
of size ε, in the positive direction, as: δε(Z) = [0, θ+ ε] if θ + ε ≤ 2π and [0, 2π]
otherwise. This morphological expression allows us to derive easily the following
result.

Proposition 14. The Lévy distance, derived from the Prokhorov distance in 1D
in the periodic case, is expressed as:

dcL(F,G)=inf{ε > 0 | ∀θ ∈ [0, 2π], F (θ)≤G(θ+λε)+ε and G(θ) ≤ F (θ+λε)+ε}.
(15)

by setting G(θ + λε) = F (θ + λε) = 1 if θ + λε ≥ 2π.

5.2 Morphological Approach

Haudorff distance from dilations of cumulative distributions. Let us consider
symmetrical dilations.

Proposition 15. The Hausdoff distance derived from δc1 computed with a sym-
metrical structuring element is:

dHc1(F,G) = max( sup
θ∈[0,2π]

inf
θ′∈[0,2π]

max(
|θ − θ′|

λ
, |F (θ′)−G(θ)|),

sup
θ∈[0,2π]

inf
θ′∈[0,2π]

max(
|θ − θ′|

λ
, |G(θ′)− F (θ)|)).

The asymmetrical dilation δc2 leads to similar results, and the derived Haus-
dorff distance has a similar expression, without the absolute values:

dHc2(F,G) = max( sup
θ∈[0,2π]

inf
θ′∈[0,2π]

max(
|θ − θ′|

λ
,G(θ) − F (θ′)),

sup
θ∈[0,2π]

inf
θ′∈[0,2π]

max(
|θ − θ′|

λ
, F (θ)−G(θ′))).

1 If the origin is taken at θ0, then the cumulative distribution is
∫ θ

θ0
f(t)dt =

∫ θ

0
f(t)dt−

∫ θ0
0

f(t)dt = F (θ)−F (θ0) if θ0 ≤ θ ≤ 2π, and
∫ 2π

θ0
f(t)dt+

∫ θ

0
f(t)dt = 1−F0(θ0) +

F0(θ) if 0 ≤ θ ≤ θ0. If we want a distance which is independent of the choice of the
origin, then infθ0 d

c
L(Fθ0 , Gθ0) could be considered.
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The computation of dHc1(F,G) is illustrated in Figure 2, where the minimal
size of dilation of SF such that it includes SG is shown.

Proposition 16. As in the non-periodic case, the Hausdorff distance derived
from asymmetrical dilation and the Lévy distance are equal:

dHc2(F,G) = dcL(F,G). (16)

Hausdorff distance from dilations of distributions. The definitions proposed in
Equations 10 and 11 apply directly to periodic distributions, by considering ap-
propriate dilations, taking the periodicity into account, as defined in Section 3.1.

An example of distribution on [0, 2π] is given in Figure 4, with three transla-
tions. The Hausdorff distances values, computed using morphological dilations of
the distributions (using Equation 11), between the first distribution of Figure 4
and the others, correspond to the distance between the cores of the distributions,
as expected in this simple case.

Fig. 4. Example of distribution on [0, 2π] and three translations (T = 2.45, T =
3.68, T = 4.9). The distances values (in radians) are 0 for T = 0, 2.45 for T = 2.45,
2.60 for T = 3.68, and 1.37 for T = 4.9.

6 Comparison Between Spatial Relations

Observing the evolution of a pathology in medical images, or of soil occupa-
tion in remote sensing, detecting changes in video sequences, updating a spa-
tial information system are examples that can all benefit from quantification
and comparison of spatial relations between objects in the observed scenes. In
this paper, to illustrate the proposed approaches, we consider spatial relations
represented as distributions or fuzzy numbers, with the typical example of di-
rectional relations, represented as a periodic function on [0, 2π] via the angle
histogram [11]. The normalized angle histogram haA,B between two 2D ob-

jects A and B is defined as: ∀θ ∈ [0, 2π], haA,B(θ) =
h′
A,B(θ)

supθ′∈[0,2π] h
′
A,B(θ′) , with

h′
A,B(θ) = |{(a, b), a ∈ A, b ∈ B | ∠(a, b) = θ}| and ∠(a, b) the angle modulo 2π

between the vector ab and the horizontal axis. This sum is further weighted by
the membership values of a to A and of b to B if the objects are fuzzy.

Let us consider, as an example, the application of the proposed approach to
quantify the evolution of directional relations between objects in a simulated
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Fig. 5. Simulated video sequence (top, some frames) and angle histograms (bottom).

video sequence (Figure 5). The grey object gets close to the white one in a con-
stant direction, and then changes direction and goes away. The angle histograms
ha between these two objects are also illustrated in this figure.

These histograms have been compared using the different proposed measures,
by computing the distance between the histogram at time t and the histogram
in the first frame. The curves showing the evolution of this distance along time
are displayed in Figure 6 for the morphological Hausdorff distance and for the
Prokhorov-Lévy distance. In all these curves a jump is observed at the instant
where the change in direction occurs, which was expected. We can also notice
the strong similarity between these curves, as also observed on other examples.

Fig. 6. Morphological Hausdorff distances between the histogram in each frame and
the one in the first frame (left). Prokhorov-Lévy distance between the histogram in each
frame and the one in the first frame, for histograms normalized by the sup (middle)
and by the sum (right).

7 Conclusion

In this paper we have investigated several forms of Hausdorff distances for com-
paring distributions or cumulative distributions. Based on existing definitions
and new ones proposed in this paper, we have exhibited interesting links be-
tween optimal transport metrics and morphological ones. In particular, these
links have allowed adaptations and extensions to the case of periodic distri-
butions. As an illustration, we have shown that the proposed distances allow
comparing spatial relations between objects in images or videos, represented as
distributions. This could lead to future applications for detection of ruptures in
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temporal sequences [1], for comparing different spatial configurations of objects,
as a guide for structural recognition and scene understanding, and more gener-
ally for spatial reasoning. In our future work we will also go deeper in the formal
properties of the proposed distances and their links.
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