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Abstract. In the framework of structural representations for applica-
tions in image understanding, we establish links between similarities,
hypergraph theory and mathematical morphology. We propose new sim-
ilarity measures and pseudo-metrics on lattices of hypergraphs based on
morphological operators. New forms of these operators on hypergraphs
are introduced as well. Some examples based on various dilations and
openings on hypergraphs illustrate the relevance of our approach.
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1 Introduction

The notion of similarity plays a very important role in various fields of applied
sciences. Classification is an example [6], and other examples such as indexing,
retrieval or matching demonstrate the usefulness of the concept of similarity [7],
with typical applications in image processing and image understanding. A recent
trend in these domains is to rely on structural representations of the informa-
tion (images for instance). Beyond the classical graph representations, and the
associated notion of graph similarity, hypergraphs (in which edges can have
any cardinality and are then called hyperedges), introduced in the 1960s [23],
have recently proved useful. This concept has developed rapidly and has become
both a powerful and well-structured mathematical theory for modeling complex
situations. This theory is now widely used in sciences as diverse as chemistry,
physics, genetics, computer science, psychology... [23], most of them requiring
the notions of comparison and similarity measure. In image applications, most
similarity measures rely on features computed locally, or among the vertices
of an hyperedge, and therefore do not completely exploit the structure of the
hypergraph at this level [10,11,14,15].
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In this paper, we propose new tools for defining similarity measures and met-
rics based on mathematical morphology. In order to deal with structured infor-
mation, mathematical morphology has been developed on graphs [8,17,21,22],
triangulated meshes [16], and more recently on simplicial complexes [9] and hy-
pergraphs [2,3], where preliminary notions of dilation-based similarity were intro-
duced. In this paper, we propose to study similarities on lattices and more specif-
ically on lattices of hypergraphs. We define some of them based on valuations on
hypergraphs and mathematical morphology operators. They are illustrated on
various types of lattices of hypergraphs, by also introducing new morphological
operators, showing the interest of the proposed definitions for achieving robust-
ness with respect to small variations of the compared hypergraphs. This paper
is organized as follows. In Section 2 we recall some definitions on hypergraphs
and lattices of hypergraphs on which morphological operators are defined. In
Section 3, we show some general results on similarities, valuations and pseudo-
metrics. Similarity and pseudo-metrics based on mathematical morphology are
then defined in Section 4, with a number of illustrative examples.1

2 Background and Notations

Basic Concepts on Hypergraphs [5]. A hypergraph H denoted by H = (V,E =
(ei)i∈I) on a finite set V is a family (which can be a multi-set) (ei)i∈I , (where I
is a finite set of indices) of subsets of V called hyperedges. Let (ej)j∈{1,2,...l} be a
sub-family of hyperedges of E. The set of vertices belonging to these hyperedges
is denoted by v(∪j∈{1,2,...l}ej), and v(e) denotes the set of vertices forming the
hyperedge e. If ∪i∈Iv(ei) = V , the hypergraph is without isolated vertex (a
vertex x is isolated if x ∈ V \∪i∈Iv(ei)). The set of isolated vertices is denoted by
V\E . By definition the empty hypergraph is the hypergraph H∅ such that V = ∅
and E = ∅. A hypergraph is called simple if ∀(i, j) ∈ I2, v(ei) ⊆ v(ej) ⇒ i = j.
The incidence graph of a hypergraph H = (V,E) is a bipartite graph IG(H)
with a vertex set S = V � E (where � stands for the disjoint union), and
where x ∈ V and e ∈ E are adjacent if and only if x ∈ v(e). Conversely, to
each bipartite graph Γ = (V1 � V2, A), we can associate two hypergraphs: a
hypergraph H = (V,E), where V1 = V and V2 = E and its dual H∗ = (V ∗, E∗),
where V1 = E∗ and V2 = V ∗. This notion is useful to prove some results in
Section 3.

Mathematical Morphology on Hypergraphs. In [3], we introduced mathematical
morphology on hypergraphs. The first step was to define complete lattices on
hypergraphs. Then the whole algebraic apparatus of mathematical morphology
applies [4,12,13,18,19] and is not recalled here.

We denote the universe of hypergraphs by H = (V , E) with V the set of ver-
tices (that we assume to be finite) and E the set of hyperedges. The powersets of V

1 Proofs are omitted because of lack of space.
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and E are denoted by P(V) and P(E), respectively. We denote a hypergraph
by H = (V,E) with V ⊆ V and E ⊆ E . As developed in [3], several complete
lattices can be built on (V , E). Let us denote by (T ,	) any of these lattices.
We denote by ∧ and ∨ the infimum and the supremum, respectively. The least
element is denoted by 0T and the largest element by 1T . Here we will use three
examples of complete lattices: T1 = (P(V),⊆), T2 = (P(E),⊆) (which are simply
lattices over the power set of vertices and the power set of edges, respectively),
and T3 = ({H},	) where {H = (V,E)} denotes a set of hypergraphs defined
on (V , E) such that ∀e ∈ E, v(e) ⊆ V , and the partial ordering is defined as
∀(H1 = (V1, E1), H2 = (V2, E2)) ∈ T 2

3 , H1 	 H2 ⇔ V1 ⊆ V2 and E1 ⊆ E2 [3]. As
shown in [3], we haveH1∧H2 = (V1∩V2, E1∩E2) andH1∨H2 = (V1∪V2, E1∪E2).
Examples of dilations on these lattices can be found in [3]. In Section 4, we
provide further examples, along with the adjoint erosions, as well as examples
of openings.

3 Similarity, Valuation and Pseudo-Metric

3.1 Similarity and Pseudo-metric

A similarity on a set T is defined as a function from T × T into [0, 1] such that
∀(x, y) ∈ T 2, s(x, y) = s(y, x) and s(x, x) = 1. We will consider in particular the
case where T is a lattice defined on hypergraphs. From a similarity s, a semi-
pseudo-metric can be defined as ∀(x, y) ∈ T 2, d(x, y) = 1− s(x, y). If moreover s
satisfies ∀(x, y, z) ∈ T 3, s(x, z)+s(z, y)−1 ≤ s(x, y), then d is a pseudo-metric2.

Proposition 1. Let w be a positive, monotonous (increasing) real-valued func-
tion defined on a lattice T .

(a) If ∀(x, y, z) ∈ T 3, w(x∧ y) ≤ w(x∧ z)+w(z ∧ y) and w(x∨ y) ≥ max(w(x∨
z), w(z ∨ y)), then the function d1 defined as ∀(x, y) ∈ T 2, d1(x, y) =

w(x∧y)
w(x∨y)

if w(x ∨ y) �= 0, and 0 otherwise, is a pseudo-metric.
(b) If ∀(x, y, z) ∈ T 3, w(x∧ y) ≥ w(x ∧ z) +w(z ∧ y) and w(x ∨ y) ≤ min(w(x ∨

z), w(z ∨ y)), then the function d2 defined as ∀(x, y) ∈ T 2, d2(x, y) = 1 −
w(x∧y)
w(x∨y) if w(x ∨ y) �= 0, and 0 otherwise, is a pseudo-metric.

Note that the conditions involved in this proposition are quite strong. In partic-
ular, they do not hold for simple valuations such as the cardinality on a graded
lattice (see Section 3.2).

Proposition 2. Under condition (b) above d(x, y) = w(x∨y)−w(x∧y) defines
a pseudo-metric.

2 For a pseudo-metric, we have d(x, x) = 0 but we may have d(x, y) = 0 for x �= y,
and for a semi-metric the triangular inequality does not necessarily hold. So a semi-
pseudo-metric satisfies ∀(x, y) ∈ T 2, d(x, y) = d(y, x), d(x, x) = 0.
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3.2 Valuation on a Lattice (T ,�) and Pseudo-metric

Definition 1. [1] A valuation w on a lattice (T ,	) is defined as a real-valued
function such that: ∀(x, y) ∈ T 2, w(x)+w(y) = w(x∧y)+w(x∨y). A valuation
is increasing if ∀(x, y) ∈ T 2, x 	 y ⇔ w(x) ≤ w(y).

In the following we consider only increasing valuations. We have then ∀x ∈
T , w(0T ) ≤ w(x) ≤ w(1T ), and ∀(x, y) ∈ T 2, w(x ∧ y) ≤ w(x ∨ y). A pseudo-
metric can be derived as follows [1].

Theorem 1. [1] Let w be an increasing valuation on (T ,	). Then d, defined
by ∀(x, y) ∈ T 2, d(x, y) = w(x ∨ y)−w(x ∧ y) is a pseudo-metric. The following
inequality also holds: ∀(a, x, y) ∈ T 3, d(a ∨ x, a ∨ y) + d(a ∧ x, a ∧ y) ≤ d(x, y).

Note that this result requires weaker assumptions than the condition (b) used in
Proposition 2.

Let us consider the lattice T1 = (P(V),⊆) [3]. The cardinality defines an
increasing valuation: ∀V ⊆ V , w(V ) = |V |. We have w(V ) = 0 ⇔ V = ∅ = 0T
and w(1T ) = |V|. In this case, d is a metric (in particular we have d(V, V ′) =
0 ⇔ V = V ′), and can be expressed as: ∀(V, V ′) ∈ P(V)2, d(V, V ′) = |V ∪ V ′| −
|V ∩ V ′| = |V |+ |V ′| − 2|V ∩ V ′| = |V ΔV ′|.

Proposition 3. The lattice T3 = ({H},	) is modular.

Note that if the hypergraphs are supposed to be without isolated vertices, the
double partial ordering reduces to inclusion between hyperedge sets and T3 is
isomorphic to T2 = (P(E),⊆) and hence modular (this is derived from the fact
that this lattice is distributive). Here we consider the more general case where
V can contain isolated vertices.

As shown in [1], on any modular lattice, the height function (i.e. assigning
to every x ∈ T the least upper bound of the lengths of the chains from 0T to
x) defines a valuation w, leading to a graded lattice. This valuation is strictly
monotonous. An interesting property is that ∀(x, y) ∈ T 2, if y covers x (i.e.
x ≺ y and �z ∈ T , x ≺ z ≺ y) then w(y) = w(x) + 1.

Proposition 4. On T3 = ({H},	), the valuation defined by the height function
is equal to: ∀H = (V,E) ∈ T3, w(H) = |V |+ |E|.

4 Mathematical Morphology and Similarity between
Hypergraphs

4.1 Similarity and Dilation

If A and B are m ×m matrices, we denote by A ◦ B their entry-wise product,
i.e. the matrix whose mi,j entry is ai,jbi,j . It is called the Schur or Hadamard
product of A and B. It is known that if A and B are positive definite, then so is
A ◦B.
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Theorem 2. Let S be a set and s a similarity on S such that s(x) ∈ [0; 1]∩Q+,
for all x ∈ S (where Q+ denotes the set of positive rational numbers). Let us
assume that s can be written as:

∀(ui, uj) ∈ S2, i, j ∈ {1, . . . ,m}, s(ui, uj) =
(

xi,j
xi + xj − xi,j

)

with xi,j = xj,i, xi,i = xi and xj ≥ xi,j Then the matrix M(s) =
(s(ui, uj))i,j∈{1,...,m} can be written as the Hadamard product of two matrices
A and B verifying the following properties:

1. the matrix A is a semi-positive definite symmetric Cauchy matrix (i.e. having

the following form: A = (aij)i,j =
(

1
xi+xj

)
i,j

; xi + yj �= 0);

2. the matrix B is a matrix defined by the following process: there is a simple
hypergraph H = (V,E) with |E| = m and a dilation from (P(E),⊆) into
(P(V ),⊆) such that B = (|δ(ei) ∩ δ(ej)|)i,j∈{1,...,m}.

From this result it is easy to show the following result.

Corollary 1. Let S be a set and s a similarity on S defined as above. Let us
assume that s can be written as:

∀(ui, uj) ∈ S2, i, j ∈ {1, . . . ,m}, s(ui, uj) =
(

2xi,j
xi + xj

)

with xi,i = xi. Then the matrix M(s) = (s(ui, uj))i,j∈{1,...,m} can be written as

the Hadamard product of two matrices A and B verifying the following properties:

1. the matrix A is a Cauchy matrix;
2. the matrix B is a matrix defined by the following process: there is a simple

hypergraph H = (V,E) with |E| = m and a dilation on E such that B =
(|δ(ei) ∩ δ(ej)|)i,j∈{1,...,m}.

4.2 Similarity from a Valuation and a Morphological Operator

Let us consider any lattice of hypergraphs (T ,	), an increasing valuation w and
a morphological operator ψ defined on this lattice. In this section, we generalize
ideas suggested in [3] in the particular case where the lattice was the power set
of vertices, w was the cardinality and ψ was a dilation.

Definition 2. Let (T ,	) be a lattice of hypergraphs, w an increasing valuation
on this lattice such that w(x) = 0 iff x = 0T , and ψ a morphological operator
from (T ,	) into (T ,	) such that ψ(x) = 0T ⇒ x = 0T . We define a real-valued

function s as: ∀(x, y) ∈ T 2 \ (0T , 0T ), s(x, y) = w(ψ(x)∧ψ(y))
w(ψ(x)∨ψ(y)) and s(0T , 0T ) = 1.

Proposition 5. The function s introduced in Definition 2 is a similarity.

In a similar way as in Theorem 1, we introduce a pseudo-metric defined from w
and ψ.
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Proposition 6. Let w and ψ defined on (T ,	) as in Definition 2. The real-
valued function dψ defined as: ∀(x, y) ∈ T 2, dψ(x, y) = w(ψ(x)∨ψ(y))−w(ψ(x)∧
ψ(y)) is a pseudo-metric. In the particular case where T is the power set of the
set of vertices or of hyperedges (with 	 equal to ⊆), and the valuation is the
cardinality, then dψ is a metric.

Note that again this result requires weaker assumptions than the condition (b)
used in Proposition 2.

The similarity s and the pseudo-metric dψ are linked by the following rela-

tion: ∀(x, y) ∈ T 2 \ (0T , 0T ), 1 − s(x, y) =
dψ(x,y)

w(ψ(x)∨ψ(y)) and 1 − s(0T , 0T ) =

dψ(0T , 0T ) = 0. The similarity is then a normalized version of dψ. If moreover
w ◦ψ satisfies the condition (b) of Proposition 1, then this normalized version is
a pseudo-metric.

We also have the following additional properties.

Proposition 7. Let w and ψ defined on (T ,	) as in Definition 2, and d and
dψ as in Theorem 1 and Proposition 6.

– Two elements of the lattice that are equivalent up to ψ have a zero distance:
∀(x, y) ∈ T 2, ψ(x) = ψ(y) ⇒ dψ(x, y) = 0.

– If ψ is a morphological filter (i.e. increasing and idempotent), then ∀(x, y) ∈
T 2, x 	 y ⇒ dψ(x, y) = w(ψ(y)) − w(ψ(x)), and dψψ = dψ.

– If ψ is moreover anti-extensive (i.e. ψ is an opening), then ∀x ∈ T , d(x, ψ(x))
= w(x) − w(ψ(x)). If ψ is extensive (i.e. ψ is a closing), then ∀x ∈ T ,
d(x, ψ(x)) = w(ψ(x)) − w(x).

– Let us denote by Inv(ψ) the set of invariants by ψ (i.e. x ∈ Inv(ψ) ⇔
ψ(x) = x). We have: ∀(x, y) ∈ Inv(ψ)2, dψ(x, y) = d(x, y).

The interest of the definitions and results of this section is that similarity and
metrics are defined up to a transformation, which makes the results robust to
variations of hypergraphs encoded by this transformation. The case where ψ is
a filter is then of particular interest.

4.3 Example for a Dilation on (P(E),⊆)

Let us first consider the simple example introduced in [3]. For any hypergraph
(V,E), we define a dilation δ on (P(E),⊆) as: ∀A ⊆ E, δ(A) = {e ∈ E |
v(A) ∩ v(e) �= ∅} where v(A) = ∪e′∈Av(e′). Let H1 = (V,E1) and H2 = (V,E2)
be two hypergraphs without empty hyperedge and δE1 and δE2 dilations defined
on the set of hyperedges of H1 and H2, as above. We define a similarity function

s by: ∀A1 ⊆ E1, ∀A2 ⊆ E2, s(A1, A2) =
|δE1(A1)∩δE2(A2)|
|δE1(A1)∪δE2(A2)| , which corresponds to

the similarity introduced in Definition 2 for w = |.| and ψ = δ.
Let us consider an example where hypergraphs are defined to represent im-

age information. Vertices are pixels of the image, and hyperedges are subsets of
pixels. Let us assume that the two images have the same support, and hence the
corresponding hypergraphs have the same set of vertices. Let us denote them
by H1 = (V,E1) and H2 = (V,E2). In this example, the hyperedge were built
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from color and connectivity relations as follows: we define a neighborhood of
each pixel x as Γα,β(x) = {x′ | dC(I(x), I(x′)) < α and dN (x, x′) ≤ β}, were dC
denotes a distance in the color space (or gray scale), I denotes the color of the
intensity function, dN denotes the distance in the spatial domain and α and β are
two parameters to tune the extent of the neighborhood. The set of hyperedges
is then defined as the set of Γα,β(x) for all x ∈ V . A weighted average simi-
larity can be defined as: s(H1, H2) = 1

2 (
1∑

e∈E1
|δE1(e)|

∑
e∈E1

s(e, E2)|δE1(e)| +
1∑

e′∈E2
|δE2(e

′)|
∑
e′∈E2

s(e′, E1)|δE2(e
′)|) where s(e, E2)=maxe′∈E2

|δE1 (e)∩δE2(e
′)|

|δE1 (e)∪δE2(e
′)|

and a similar expression for s(e′, E1). In the example in Figure 1(a), the similar-
ity between the left image and its modification with an additional line is equal to
0.96. The figure on the right illustrates the dissimilarity between the two images.
The dilation leads to more robustness to small and non relevant variations in
the images (without the dilation, the similarity would be 0.94). Similarly, the
similarity is computed between registered x-ray images of normal (b) and patho-
logical (c) lungs, highlighting the pathological region (d). Its value is 0.75 (and
0.61 without dilation).

(a) (b) (c) (d)

Fig. 1. (a) An image and a modified version where a line has been introduced. The im-
age on the right illustrates the dissimilarity (darkest grey levels). The global similarity
is 0.96. Similarity (d) between normal (b) and pathological (c) lungs.

Another example is illustrated in Figure 2, where two images exhibiting some
differences are compared. The comparison is illustrated in four sub-images. The
similarity is equal to 1 in the top left part, to 0.75 in the top right part, to 0.98
in the bottom left part and to 0.97 in the bottom right part. Again this fits what
could be intuitively expected. The global similarity, computed over the whole
images, is equal to 0.93. The subdivision (even very simple here) allows us to
better localize the differences.

Fig. 2. Two images with some differences, and dissimilarity image
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4.4 Example for an Opening on T1 = (P(V),⊆)

Let us now consider T1 = (P(V),⊆) and T2 = (P(E),⊆). As in [3], we define
a dilation from T2 into T1 as: ∀e ∈ E,Be = δ({e}) = {x ∈ V | ∃e′ ∈ E , x ∈
v(e′) and v(e) ∩ v(e′) �= ∅} = ∪{v(e′) | v(e′) ∩ v(e) �= ∅}, and the dilation of any
subset of E is defined using the sup-generating property. The adjoint erosion ε,
from T1 into T2 is given by: ∀V ∈ P(V), ε(V ) = ∪{E ∈ P(E) | ∀e ∈ E, δ({e}) ⊆
V } = {e ∈ E | ∀e′ ∈ E , v(e′) ∩ v(e) �= ∅ ⇒ v(e′) ⊆ V }.

Proposition 8. The opening γ = δε is defined from T1 into T1 and is expressed
as: ∀V ∈ P(V), γ(V ) = ∪{v(e′) | ∃e ∈ ε(V ), v(e′) ∩ v(e) �= ∅} = ∪{Be | v(e) ⊆
V,Be ⊆ V }.

It is the set of vertices of the hyperedges whose neighbors (as defined by Be)
are in V and vertices of these neighbors. The example in Figure 3 illustrates
that vertices that belong to “incomplete” hyperedges (i.e. for which the set of
vertices is not completely included in V ) are removed. This can be used for
filtering hypergraphs by keeping only vertices of complete hyperedges (e4 and
e5 here), which can be interesting for indexing and retrieval purposes (vertices
from incomplete hyperedges being then considered as noise).

e1e1 e2e2

e3e3

e4e4 e5e5

Fig. 3. Example of an opening from T1 = (P(V),⊆) into T1 = (P(V),⊆) [3]. The red
circled vertices on the left represent V . Its opening is shown in blue on the right.

When computing the similarity s(V, V ′) = |γ(V )∩γ(V ′)|
|γ(V )∪γ(V ′)| , it is clear that if V ′

differs from V only by vertices from incomplete hyperedges, then s(V, V ′) = 1.
The similarity is then robust to noise vertices. In particular s(V, γ(V )) = 1
since γ(γ(V )) = V . Other examples are shown in Figure 4, which have the
same opening as in Figure 3 (right). Hence all these subsets of vertices have a
similarity equal to 1 (i.e. they are equivalent up to γ and only differ by their
isolated vertices).

e1e1 e2e2

e3e3

e4e4 e5e5

Fig. 4. Two other subsets of V having the same opening (shown in blue on the right
in Figure 3), i.e. vertices of e4 and e5
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Let us now consider another example of opening.

Proposition 9. The operator γ′ from T1 into T1 defined as ∀V ∈ P(V), γ′(V ) =
∪{v(e) | v(e) ⊆ V } is an opening.

This opening keeps all vertices of complete hyperedges, i.e. the ones that are “well
connected” in the hypergraph. Invariants of γ′ are the subsets V that contain
only vertices of complete hyperedges. An example is illustrated in Figure 5. The
subset V is shown in red on the left and its opening γ′(V ) = v(e5) in blue on
the right. Note that for this example we have γ(V ) = ∅, thus illustrating the
difference between γ and γ′.

e1e1 e2e2

e3e3

e4e4 e5e5

Fig. 5. Subset V (in red) and its opening γ′(V ) (in blue)

Again this makes the similarity robust to vertices which belong to incomplete
hyperedges. We have s(V, V ′) = 0 iff V ∩ V ′ is the set of noise vertices.

If we consider a binary version of the similarity, i.e. V and V ′ are equivalent iff
γ′(V ) = γ′(V ′), then equivalence classes are built of subsets of V which contain
the vertices of the same complete hyperedges. In particular V and γ′(V ) belong
to the same equivalence class. Using this equivalence relation can be useful for
robust indexing and retrieval, for robust entropy definition, etc.

4.5 Example on T3 = ({H},�)

Let us now consider the most interesting case where T is the lattice of hyper-
graphs T3 = ({H},	). We again consider opening.

Proposition 10. The operator γ1 defined for each hypergraph H = (V,E) in
T3 by γ1(H) = (∪e∈Ev(e), E) = (V \ V\E , E) is an opening.

Let us now consider the dilation introduced in [3] on this lattice. The canon-
ical decomposition of H , from its sup generating property, is expressed as:
H = (∨e∈E(v(e), {e}))∨(∨x∈V\E ({x}, ∅)). From this decomposition, a dilation is
defined as: ∀x ∈ V\E , δ({x}, ∅) = ({x}, ∅), for isolated vertices, and for elemen-
tary hypergraphs associated with hyperedges: ∀e ∈ E, δ(v(e), {e}) = (∪{v(e′) |
v(e′) ∩ v(e) �= ∅}, {e′ ∈ E | v(e′) ∩ v(e) �= ∅}). The dilation of any H is then
derived from its decomposition and from the commutativity of dilation with the
supremum.

In the particular case where H has no isolated vertices, then it is sufficient
to consider the hyperedges (since the set of vertices is automatically equal to
∪e∈Ev(e)), and δ can be written in a simpler form as δ({e}) = Be = {e′ ∈ E |
v(e) ∩ v(e′) �= ∅}, and δ(E) = ∪e∈Eδ({e}) = {e′ ∈ E | ∃e ∈ E, v(e′) ∩ v(e) �= ∅}.
An example is illustrated in Figure 6.
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e1e1 e2e2

e3e3

e4e4 e5e5

Fig. 6. The figure on the left represents V (vertices represented as points) and E (hy-
peredges represented as closed lines). The red lines indicate the hyperedges of H . The
vertices of H are the points enclosed in these lines. The blue lines on the right represent
the hyperedges of δ(H) and its vertices are the points enclosed in these lines. For this
example, ε(H) and γ2(H) are empty.

Proposition 11. Let us consider hypergraphs without isolated vertices. The ad-
joint erosion of δ is given by: ∀E ∈ P(E), ε(E) = ∪{E′ ∈ P(E) | δ(E′) ⊆ E} =
{e′ ∈ E | Be ⊆ E} and ε(H) = (∪e∈ε(E)v(e), ε(E)). The opening γ2 = δε is then
γ2(E) = ∪Be⊆EBe, and γ2(H) = (∪e∈γ2(E)v(e), γ2(E)).

This result is similar to Proposition 8 on the lattices built on vertices.
In Figure 6, the erosion of H shown in red is empty, and the opening is empty

as well. In Figure 7, the erosion of H is equal to (v(e1), {e1}) and the opening
is γ2(H) = H . Another example shows the filtering effect of this opening.

e1e1 e2e2

e3e3

e4e4 e5e5

Fig. 7. Top: H is represented on the left using the same conventions as in Figure 6. Its
erosion is shown on the right and γ2(H) = H . Bottom: H and its opening γ2(H).

If we now consider the more general case where the hypergraphs have isolated
vertices, since these are preserved by dilation, they are also preserved in the
adjoint erosion and in the derived opening. These isolated vertices do not induce
any change when using γ2 or not for computing the similarity or the distance. For
instance if H ′ is equal to H plus k additional isolated vertices, then d(H,H ′) =
dγ2(H,H

′) = k. Let us now consider as a valuation on T3 the height. As shown
in Proposition 4, we have ∀H = (V,E) ∈ T3, w(H) = |V | + |E|. We have:
d(H, γ1(H)) = |V\E |, which is the number of isolated vertices in H (the distance
evaluates the amount of “noise” in H if isolated vertices are interpreted as noise
vertices). If H and H ′ differ only by isolated vertices, then dγ1(H,H

′) = 0. If we
consider now γ2, then the general results expressed in Proposition 7 hold, along
with the associated interpretation. Let us give a few simple examples: For the
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first example of H depicted in Figure 7, d(H, γ2(H)) = d(H,H) = 0. For the
second example of H , d(H, γ2(H)) = 4 + 1 = 5. Two hypergraphs H1 and H2

having the same opening by γ2 are displayed in Figure 8. Hence dγ2(H1, H2) = 0.
Now if k isolated vertices are added to one of the two hypergraphs, their opening
will stay the same up to these isolated vertices, and dγ2(H1, H2) = k.

Fig. 8. Two hypergraphs H1 (left) and H2 (right). Their openings are γ2(H1) =
γ2(H2) = H2 and dγ2(H1,H2) = 0.

5 Conclusion

The proposed framework offers new tools for defining similarity measures and
pseudo-metrics, which are robust to variations (encoded by morphological
operators) of hypergraphs. They can be incorporated in existing systems for
hypergraph-based feature selection, indexing, retrieval, matching. As an exam-
ple, let us consider the equivalence relation on any lattice of hypergraphs T
defined by ∀(x, y) ∈ T 2, xRy ⇔ ψ(x) = ψ(y) where ψ is a morphological op-
erator on T . This equivalence relation induces a partition of T , denoted by

T = ∪iTi. A discrete probability distribution can then be defined as pi =
|Ti|
|T |

from which an entropy of T (up to ψ) can be derived. This defines a new entropic
criterion that can be used in feature selection methods such as [24]. Future work
aims at exploring other examples of morphological operators in the proposed
framework (for instance as the ones defined in [9] on simplicial complexes), and
weaker forms of valuations, by considering the sub- or supra-modular cases [20].
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