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ABSTRACT

We propose a method for segmenting two unregistered images from
different modalities of the same patient and study at once, while en-
forcing a similarity constraint between the two segmentation masks.
Our method relies on a segmentation network and a registration net-
work, cooperating to get accurate and consistent segmentation masks
across modalities, while forcing the segmentor to use all information
available. Experiments on a dataset of T1 and T2-weighted liver
MRI show that our method enables to get more similar segmentation
masks across modalities than manual annotations, without deterio-
rating the performance (Dice = 0.95 for T1, 0.92 for T2).

Index Terms— Segmentation, Registration, Similarity, Liver,
Multimodal Imaging

1. INTRODUCTION

We address the problem of automatic segmentation of two images of
different modalities from the same study. Segmentation of multiple
modalities are used, for instance, as a preliminary step for automated
assessment of hepatic fat fraction or liver tumor burden.

As some modalities are acquired a few minutes apart, or on dif-
ferent machines, organs may not be aligned on the different images.
Therefore, every image needs its own segmentation mask of the same
organ.

The literature on automatic multimodal segmentation has pri-
marily focused on aligned images, needing only one segmentation,
with datasets such as the intervertebral disc dataset [1], in which
MRI images are acquired simultaneously. A review of such methods
and datasets can be found in [2].

Concurrently, integration of prior information in automatic
segmentation gained interest: structure-driven priors with regu-
larization [3], data-driven priors with adversarial learning [4], or
knowledge-driven priors by integrating anatomical constraints [5],
to name but a few.

Our work fits into the latter class of methods: we want to inte-
grate into the training the knowledge that, as both images represent
the same object, segmentation masks should only differ by a cer-
tain deformation. We propose to integrate this prior by adding a
relative similarity constraint as a regularization to the training pro-
cess. We say that two segmentation masks are similar relatively to
a class of transformations, if there exists a transformation in this
class that maps one mask into the other. The goal of integrating
this prior is three-fold: (i) to get more similar segmentations and
consequently get more consistent quantitative measurements across

Fig. 1. Overview of our method. Dashed arrows represent loss func-
tions we minimize during training, black arrows represent a forward
pass, and colored arrows represent the gradients with respect to the
loss of the same color. Diode symbols represent a “stop gradient”
operation.

modalities; (ii) to limit the effect of bias in the annotations that are
specific to a modality (for instance, T2-weighted MRIs often have
a poor z-axis resolution, which can cause artefacts in the annota-
tions); (iii) if the organ of interest is not equally easy to segment in
the two images (as is often the case, for instance, if one modality is
anatomical and the other functional), to teach the network to fetch
the relevant information of the easier modality to segment the harder
one.

Our method (illustrated in Figure 1, and detailed in Section 2)
consists in training simultaneously a segmentor network, which
takes a pair of images as input and predicts a segmentation for each
image, and a registror network which takes the predicted masks
as input, and returns a transformation that explains the difference
between the two masks. Both networks cooperate to minimize
the segmentation error and maximize the similarity between both
predictions, relatively to the predicted transformation.

This work is motivated by the problem of segmenting the liver in
T1 and T2-weighted MRI. Our experiments for this particular prob-
lem are detailed in Section 3.2.

2. METHOD

The principle of our method is to create a positive feedback cycle
between the segmentor network and the registor network to improve
the similarity: as the segmentor outputs more and more similar seg-
mentations, the registror is able to output more precise registrations,
which in turn enables to refine the predictions of the segmentor, by
learning to fetch the relevant information in the input more accu-
rately.
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More precisely, let us consider a dataset of pairs of images
(x1, x2), and the corresponding annotated segmentation masks
(s1, s2). We train a segmentor network S such that (ŝ1, ŝ2) =
S(x1, x2). We restrict ourselves to the setting where a single seg-
mentor is being used, rather than two independent networks, so
that it can take into account both images for segmenting each in-
dividual image. We simultaneously train a registror R such that
θ = R(ŝ1, ŝ2) ∈ Ω, where Ω, the set of deformations, controls
the acceptable transformation of the object to segment (for instance,
if we segment a rigid organ, we can set Ω to be the set of rigid
transformations). We denote by ŝ2

′ = θ(ŝ1) the predicted mask of
the first modality, transformed with the deformation predicted by R.
The two masks ŝ2

′ and ŝ2 must be as close as possible to s2, while
ŝ1 must be close to s1. As the images of the pair are from different
modalities, voxel intensity values do not compare, meaning that
simple image-based losses for registration are not suited. In contrast
to [6], where unpaired image translation is used, and to [7], where a
common representation is learnt, we propose to only register masks
to compare the images, which greatly eases the task of registration.

2.1. Loss functions

To create the positive feedback cycle, we define three loss functions:

Segmentation loss: (red path in Figure 1)

Lr = Lbce(s1, ŝ1) + Lbce(s2, ŝ2)

where Lbce is the binary cross-entropy loss function.

Registration loss: (green path in Figure 1)

Lg = Lmse(ŝ2
′ ∗ f, s2 ∗ f)

where Lmse is the Mean Squared Error function, and f is a
low-pass filter. We blur the masks before applying Lmse in
order to soften the edges of the masks, thus avoiding disconti-
nuities, and get more consistent gradients with respect to this
loss.

Similarity loss: (pink path in Figure 1)

Lp = Lmse(ŝ2
′, ŝ2)

Both networks are trained to minimize

L = λrLr + λgLg + λpLp

where λr, λg, λp are hyperparameters. The purpose of Lr and Lg

is to train the segmentor and the registror, respectively. Meanwhile,
Lp acts as a regularization loss: it constrains the predicted masks ŝ1
and ŝ2 to differ only by the transformation predicted by the registror,
and λp is the regularization parameter which controls the trade-off
between relative similarity and segmentation precision.

The diode symbols in Figure 1 represent the operation that stops
gradients from being back-propagated. Their goal is to prevent the
segmentor from being affected by Lg , thus avoiding local minimas
where S predicts twice the same mask.

The similarity loss only affects the second channel, and con-
strains its prediction to be similar to the first channel. This asym-
metry between the two modalities is justified if we know that one
modality is harder to segment than the other, a situation that often
occurs in practice. In this case the first channel receives the easy
modality.

2.2. Training and testing

The training is done in three steps: we pre-train the segmentor with
the segmentation loss only, the registror with the registror loss and
annotation masks as input, and then the whole model with all three
losses.

To assess the effect of our method on the similarity of the pre-
dicted masks, we define the relative similarity metric of masks s1
and s2 relatively to the transformation set Ω:

DS(s1, s2,Ω) = max
τ∈Ω

Dice(τ(s1), s2)

where Dice(x, y) denotes the Dice index of two binary masks x
and y. When Ω is the set of smooth and dense deformations, we
compute an approximation of DS by blurring s1 and s2 to convexify
the problem, and finding the optimal τ by iterative gradient descent:

τ0 = Id

τk+1 = τk − α
∂

∂τk
||τk(s1 ∗ f)− (s2 ∗ f)||2

where f is a low-pass filter, and α is the gradient descent step. In
practice we found that a simple separable [1, 2, 1] was sufficient, for
both Lg and this approximation of DS

3. EXPERIMENTS

3.1. Toy dataset

In order to test the influence of λp on the similarity with a controlled
setting, we design an experiment with a toy dataset: We generate
240× 240 images, where the foreground to segment is made of ran-
dom blobs, slightly different and randomly translated (Ω is the set of
translations of 32 pixels maximum) in s1 and s2. To simulate two
different modalities, we fill the images with sine patterns where the
foreground/background is encoded by the angle in one modality, and
frequency in the other (see Figure 2).

Fig. 2. Pair of images from the toy dataset.

We train 30 models using different values of λp ∈ [0, 1], with
λr = 1 − λp and λg = 1. For each model we compute the sim-
ilarity metric (relatively to translations) of predictions on a test set,
and compare it to the similarity of the ground truth of the same test.
Distributions of differences in similarity are shown in Figure 3. We
can see a large gain in similarity compared to the ground truth for
λr = 1− λp < 0.5, which shows that λr and λp enable to tune the
trade-off between the accuracy towards the second modality and the
similarity.
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Fig. 3. Effect of λr on the toy setting. We compare the similarity
(relatively to translations) of the predictions to the similarity of the
ground truth. Each box represents the distribution of gain in similar-
ity for the test database, for a particular value of λr = 1− λp.

3.2. Liver in T1 and T2-weighted MRI

3.2.1. Data

Our experiments on real data rely on a database containing 88 pairs
of T1-weighted and T2-weighted MRIs centered on the liver, coming
from 51 patients. The T1 images are acquired at a portal enhance-
ment time. Images have a plutot voxel size of 3mm on the z axis,
and 1.5mm for the x and y axes. Every patient’s liver has at least
one lesion.

Reference segmentation masks are obtained through manual an-
notations by a radiologist, using in-house 3D interactive tools. Note
that due to the low contrast of the liver in T2 images (see Figure 4),
as well as the lower resolution along the z axis, the manual annota-
tion of the liver in T2 images is difficult and less accurate than in T1
images.

Fig. 4. Two examples from the test dataset. Top: T1-weighted MRI,
bottom: T2-weighted MRI. In red, the manual annotation, in green
the prediction of our method. The rightmost column shows a partic-
ularly challenging case.

3.2.2. Training

We use a 3D U-net architecture with weights provided in [8] for the
segmentor, and refer to [8] for the architecture details. As the T1 and
T2 images are acquired a few minutes apart, the liver, being made of
soft tissue, undergoes a non-rigid deformation, mainly due to breath-
ing. To enforce smoothness, we chose Ω to be the set of elastic de-
formations defined by displacement vectors on a low-resolution grid,
and trilinearly interpolated between vectors.

To estimate this displacement vector field, the registor is a fully-
convolutional network, down-sampling the input by a factor 16 (4
blocks of two 3× 3× 3 convolutional layers with ReLU activations
followed by one 2×2×2 Max-Pooling layer, each block having 16,
32, 64 and 128 feature maps, respectively, and a 1×1×1 convolution
at the end). We then resample the resulting deformation field to full
resolution before warping. Both the warping and the deformation
field resampling are done using trilinear interpolation.

We split the dataset keeping 12 pairs for testing, and train the
model during 1500 epochs of 100 steps. For memory reasons, we
use batches of size 1, and crop inputs into cuboids of random sizes
and ratios. We use λr = 0.1, λg = 1, λp = 1 and add random
intensity shift as data augmentation.

3.2.3. Results

In order to get an idea of the extent of the liver misalignment, we
measure the overlap of annotated masks in each pair and get a Dice
score of 0.751. To get the relative similarity of the annotated masks,
we compute DS with Ω as described in Section 3.2.2, and obtain a
mean similarity of 0.955 for the annotations. A segmentor trained
independently (without a registror) achieves predictions with a sim-
ilarity of 0.954. Predictions of networks trained with our method
have a similarity of 0.965. We perform a Wilcoxon signed-rank test
to compare the similarity of pairs of our prediction vs. pairs of anno-
tations and get p = 0.0029, which tends to show that the difference
is not the effect of statistical noise.

We measure performance by comparing the predictions to an-
notations, and record a Dice of 0.946 for T1 images and 0.918 for
T2 images. As a comparison, performance with the segmentor only
(λp = λg = 0) is 0.942 for T1 and 0.897 for T2, whereas a single-
input U-net predicting one mask at a time achieves 0.961 for T1
and 0.938 for T2. We recall that the goal of the method was not to
improve the performance (as measured by a comparison with the an-
notations), but rather the similarity of the pairs of predicted mask.
For more details and discussion on performance of different training
strategies we refer to our other work [9].

T1 predictions warped with the predicted deformation compare
with T2 annotations by a Dice of 0.917, which shows the good per-
formance of the registror.

The left column of Figure 4 shows that our method produces
accurate segmentations, even when the liver has big lesions near
the edge. The right column of Figure 4 presents a challenging case
where the liver is abnormally elongated and pushed to the right hand
side of the image. No such case is present in the training dataset,
leading the network to mistake a part of the left kidney for the liver.
However, the consistency of this error in both images highlights the
similarity of the segmentations across modalities, which is a desired
behavior.
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4. CONCLUSION

We proposed a Deep Learning-based method to address the problem
of similarity between predictions in paired but unregistered multi-
modal segmentation. We first tested this method in a controlled set-
ting with a toy dataset, and showed the effect of the regularization
parameter, which tunes the trade-off between relative similarity and
accuracy. We then applied the method to a real database of liver
T1 and T2 MRIs, and showed that the resulting predictions were
more similar than the annotations, and than the predictions of naive
approaches, without compromising the performances too much. Fu-
ture work will test how this method enables to stabilize quantitative
measurements.
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