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ABSTRACT

Contrast Enhanced Spectral Mammography (CESM) and Contrast
Enhanced Digital Breast Tomosynthesis (CEDBT) are multi-energy
X-ray imaging techniques involving the injection of a vascular con-
trast agent. Both techniques provide information on hypervascular-
ization of lesions through contrast uptake. CESM has proved to de-
liver a better diagnosis of breast cancer than diagnostic mammogra-
phy. CEDBT is a promising technique which provides 3D informa-
tion on the contrast uptake distribution. In this paper, new steps in
the image acquisition process of a previously presented image acqui-
sition simulation platform are described, including models of scat-
ter, image lag and electronic noise. Using this simulation platform,
290 CESM and CEDBT images were generated. A human observer
experiment was then performed to compare lesion detectability and
characterization. The results indicate a similar detectability and an
improved characterization of shape and contrast enhancement distri-
bution using CEDBT.

Index Terms— X-ray image chain simulation, Contrast En-
hanced Spectral Mammography, Contrast Enhanced Digital Breast
Tomosynthesis, detection and characterization evaluation.

1. INTRODUCTION

Contrast-Enhanced Spectral Mammography (CESM) has been pro-
posed as a potential alternative of Contrast-Enhanced Magnetic Res-
onance Imaging (CE-MRI) for breast cancer diagnosis at a lower
cost [1]. Both imaging techniques use a vascular contrast agent and
provide both morphological and functional images of the breast, al-
lowing for the detection of abnormal vascular development and le-
sion contrast uptake. In CESM, projection images are acquired at
two energies and recombined to obtain iodine-equivalent images.
CESM remains however a two-dimensional technique providing a
2D representation of the contrast distribution in the 3D breast. It
is expected that Contrast Enhanced Digital Breast Tomosynthesis
(CEDBT) may partially alleviate this limitation. Conceived as a
dual-energy (DE) tomographic technique, CEDBT provides 3D re-
constructed information of the injected iodinated contrast uptake.

A recent preliminary report from an ongoing clinical feasibil-
ity study has demonstrated the potential clinical value of CEDBT
versus CESM in terms of lesion detectability and margins charac-
terization [2]. In previous research [3], we also compared lesion
detection and characterization performance of CESM and CEDBT
in simulated images. The images were created with a platform mod-
eling only partially the physics of the acquisition process. The real-
ism of the acquisition simulation may however impact detection and
characterization performance. In this work, we present an image ac-
quisition platform with augmented realism, by modeling image lag,

electronic noise and X-ray scatter. Finally, we performed a human
observer experiment to evaluate detectability and characterization of
CESM and CEDBT, using the BIRADS lexicon for CE-MRI, which
describes the accepted clinically important charateristics [4].

2. SIMULATION OF X-RAY IMAGES

2.1. Image acquisition

CESM and CEDBT acquisitions were simulated using an analyti-
cal ray-tracing projector [5]. In previous work, low-energy (LE)
and high-energy (HE) images were created by considering mono-
energetic primary X rays and quantum noise as the only noise source.
Detector blur of commercially available systems (SenoBright HD
and Senographe Pristina, GE Healthcare, Chicago, IL, USA) was
simulated by filtering the images with an empirically assessed con-
volution kernel. The photon flux was tuned to match the signal-to-
noise ratio (SNR) of simulated images with real images acquired
under automatic exposure mode. In this work, to increase the real-
ism of the simulations, three new elements, based on the underlying
physics and empirical data, were modeled and included into the plat-
form: imaging lag, electronic noise and X-ray scatter of the imaged
object.

Electronic noise refers to the random signal produced by the
different electronic components of the detector [6]. It is additive,
uncorrelated to quantum noise, detector integration time dependent,
and is composed of a heterogeneous collection of noise sources
(thermal noise and shot noise). The relative importance of electronic
noise to the total noise increases at low exposure acquisitions such
as in CEDBT [7]. The electronic noise is modeled as a random white
Gaussian noise with zero mean [8]. The relationship between noise
variance and detector integration time, t, is modeled as a quadratic
function: ε ∼ N(0, βt2), where β is the parameter used to fit the
model to experimental measures.

The magnitude of electronic noise was experimentally assessed
from acquisitions without X-ray irradiation. The electronic noise
model was validated by comparing the signal intensity histograms
of simulated and experimentally acquired images using the Earth
Moving Distance (EMD) between histograms [9]. We found a nor-
malized EMD inferior to 0.9% compared to the maximum possible
value of EMD, for three different integration times. Considering
electronic noise contribution to total noise (i.e. 12.5% of total vari-
ance in worst case scenario in our study conditions), this was judged
a fair approximation.

Image lag is caused by incomplete detector read-out, resulting
in a fraction of the previous projection image being carried over to
the next projection images [10]. This causes a less efficient texture
cancellation in iodine-recombined images that may lead to residual
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signal which might be confounded with iodine uptake [11]. The
nature of this phenomenon can be interpreted as a finite impulse re-
sponse (FIR) filter, where signal intensity in a projection n of an
acquisition sequence depends on the signal intensities in the first
lag-free image and subsequent lag-containing previously acquired
projections:

y[n] = x[n] +

n−1∑
k=1

h[k]x[n− k] (1)

where y is a projection with lag, x a projection without lag, h the lag
coefficients, and n the projection number in an acquisition sequence.

From ideally identical projections (i.e. ∀(i, j) ∈ N, x[i] =
x[j]), the lag coefficients can be computed from actual acquisitions
as:

h[n] =
y[n+ 1]− y[n]

x[n]
(2)

In the CEDBT acquisition sequence considered here, nine pairs
of LE and HE projections are acquired, and the lag results from both
types of acquisitions. The signal intensities in the nth LE projections
can be estimated as:

yLE [n] = xLE [n] +

n−1∑
k=1

hLE [2(n− k)]xLE [k]+

n−1∑
k=1

hHE [2(n− k)− 1]xHE [k]

(3)

and a similar equation for yHE .

The lag coefficients were experimentally estimated from two
static DBT acquisition sequences (i.e. with tube angle at zero de-
gree) consisting of only LE and of only HE projections. Since the
magnitude of the image lag depends on the signal intensity, acqui-
sitions were acquired at the signal intensity levels corresponding to
those considered for the image simulations described in Section 3.
Our model of image lag was validated using an experimentally ac-
quired static CEDBT sequence consisting of 9 pairs of LE/HE ac-
quisitions. Maximum error between simulated and experimentally
acquired CEDBT sequences was found to be smaller than the max-
imum error between successive acquired CEDBT sequences. More
precisely, we obtained the following values:

max(|ymLEsim
[n]− ymLEacq

[n]|) = 0.4%

max(|yiLEacq
[n]− yjLEacq

[n]|) = 0.7%

max(|ymHEsim
[n]− ymHEacq

[n]|) = 0.1%

max(|yiHEacq
[n]− yjHEacq

[n]|) = 0.2%

where sim and acq refer respectively to simulated and experimen-
tally acquired CEDBT sequences, and i, m and j refer to indepen-
dent acquisition sequences.

Scatter refers here to the deflection of primary X rays when
passing through an imaged object and the deflection of light photons
generated in the CsI detector scintillator [12]. In DE X-ray imaging,
the scatter degrades the quality of DE recombined images by reduc-
ing the SNR and sharpness of iodine-enhancing lesions. The scatter
magnitude in an uniform object of thickness T can be expressed as
the multiplication of the MTF and the Fourier transform of the pri-
mary image [13]:

Î(ν) = P̂ (ν) ·(e−µT ·HG(ν)+SPR(T ) ·HS(ν, T ) ·HG(ν)) (4)

where P̂ is Fourier transform of the primary image, HS and HG the
MTF of the X-ray scatter in the imaged object and in the scintillator,
respectively, and SPR the scatter-to-primary ratio of X rays in the
imaged object.

LE and HE system MTFs, containing both the contributions
from X-ray and optical scattering in the CsI scintillator, were experi-
mentally assessed using an edge method [14]. LE and HE projection
images were acquired of a 2mm thick W edge positioned on top of a
5-cm thick PMMA slab covering the imaging field of view. PMMA
was used as breast equivalent material. The system MTF was then
computed from the edge spread function (ESF) as follows:

MTF (f) = F{ d
dx
ESF (x)} (5)

After implementation of the scatter model in the simulation platform,
the mean squared error between the system MTF in simulated and
experimentally acquired images was found smaller than 5 · 10−5.

2.2. Image reconstruction

Iodine-recombined CEDBT slices were reconstructed using a FBP
algorithm. Traditional FBP with RamLak filter applied over recom-
bined projections delivers poor iodine image contrast in recontructed
slices [15]. We modified the filter proposed by Zhou et al. [16]
for FBP in DBT, to preserve an equivalent Contrast-to-Noise Ra-
tio (CNR) in CEDBT slices compared to CESM projections. The
filter, based on a modified RamLak filter combined with a weighting
window, was applied before back projecting the recombined iodine
images. It enables to deliver more contrasted uptakes while reducing
high frequency noise.

3. HUMAN OBSERVER EXPERIMENT

Image data set. We simulated seven breast mass types to cover
all morphological mass lesion descriptors in the CE-MRI BIRADS
lexicon. We used a modified version of the lesion simulation plat-
form presented in [3]. Table 1 shows the morphological lesion
characteristics and dimensions used in this study. They are based
on clinical findings described in [17]. Each of the lesions was
simulated with three different iodine concentrations: 0.3mg/cm3,
0.5mg/cm3, and 0.8mg/cm3, to provide difficult, moderate and
easy detection levels. The masses were inserted in a textured 3D
breast phantom [18], with 27% volumetric glandular density. To
model the Breast Parenchyma Enhancement (BPE) observed in clin-
ical images, attenuation coefficients corresponding to homogeneous
mixtures of fibroglandular tissue and 0.1mg/cm3 iodine were as-
signed to the fibroglandular tissue background. In total, to evaluate
characterization and detectability, 105 CESM and 105 CEDBT im-
ages with lesion and 40 CESM and 40 CEDBT images without
lesion were generated.

Image simulation. The proposed X-ray simulation platform
was used to simulate the images. The nominal geometry of a
Senographe Pristina was modeled. Mono-energetic spectra (22keV
for LE, and 34keV for HE images) were considered. The total LE
and HE quantum flux for the 9 CEDBT projections was the same as
for the LE and HE CESM images. Electronic noise, lag, and scatter
were modeled and simulated as described in Section 2.1.

Image review. Five GE Healthcare engineers, experts in mam-
mography imaging, participated in the human observer study. Be-
fore executing the actual study, all readers participated in a train-
ing session, where multiple examples of images with all mass-lesion
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Table 1. Characteristics of lesion database used in this study.
Morphological descriptors

Shape Margin Enhancement Maximum diameter size:
8mm

Round
Sharp

Homogeneous
Heterogeneous Size holes: 0.6 mm

Rim Thickness rim: 1.31 mm
Indistinct Heterogeneous

Oval Sharp Homogeneous Min axis: 5 / Max axis: 9

Irregular
Sharp Homogeneous

Spiculated Homogeneous
Spicules (Number = 40):
•Length = [4.8-22.5] mm
•Width = [1.6-0.2] mm

Fig. 1. Examples of simulated images. From left to right: rim, spic-
ulated, irregular and round homogeneous lesions. On top: CESM.
On bottom: CEDBT.

types and iodine concentrations as those in the actual study were pre-
sented. After training, each reader reviewed in total 57 trials. In each
trial, a randomly selected iodine-recombined CESM image or a full
stack of iodine-recombined CEDBT slices was presented (see exam-
ples in Figure 1). Between two trials a uniform image was presented,
to reduce bias between consecutive trials. The reader was asked to
answer the following questionnaire for each trial:
Q1: Is there a lesion? (Yes / No)
Q2: What is the shape of the mass? (Round / Oval / Irregular)
Q3: How can you describe its margins? (Circumscribed / Indistinct
/ Spiculated)
Q4: How can you describe the distribution of its contrast enhance-
ment? (Homogeneous / Heterogeneous / Rim)
For all questions: What is your confidence level? (1-4)
We used a 4-level confidence rating: not confident at all (1), not con-
fident (2), confident (3), very confident (4). The readers had no time
limitation to answer the questionnaire.

Data analysis. The software platform iMRMC proposed by the
FDA [19] was used to compute detectability and characterization
ROC curves, as well as their areas under the curves (AUC). The sta-
tistical significance of the difference in the AUCs for CESM and
CEDBT was estimated with the Dorfman-Berbaum-Metz (DBM)
method for multi-reader ROC analysis [20] at 0.05 significance level.
Fleiss’ kappa coefficient was also computed to measure the agree-
ment between reader responses.

4. RESULTS

Pooled over all readers and mass lesion types, the lesion detectability
was found similar for CESM and CEDBT (p-value = 0.52) (Fig-
ure 2). The characterization of margins was found similar for both
modalities. CEDBT outperforms CESM for shape characterization,

Fig. 2. Detectability ROC curve based on the answers of five readers
over the ensemble of simulated images for CEDBT and CESM.

Fig. 3. Characterization ROC curves of the five readers, and corre-
sponding AUCs, for CEDBT and CESM. From top to bottom: con-
trast enhancement distribution, margin, and shape descriptors. Sig-
nificant difference are indicated by ? (α = 0.05).

and a significant difference was found for oval masses (p-value <
0.01). For contrast enhancement descriptors, the rim characteriza-
tion was found similar for both modalities, although homogeneous
and heterogeneous distributions were slightly better characterized
in CEDBT (Figure 3). We also noticed that one reader, compared
to the other four readers, underperformed in the characterization of
spiculated masses for CEDBT (reader AUCs equal to 0.65 and 0.86
compared to the total pooled AUCs 0.84 and 0.86, for CEDBT and
CESM respectively). Without considering this reader, the spiculated
AUC for CEDBT increases to 0.88. However, the AUCs are still
non-significantly different.

The inter-reader agreement pooled over all five readers was sim-
ilar for CESM and CEDBT, for all the three mass-lesion descriptors
considered. The highest response consensus was found for enhance-
ment pattern and the lowest one for margin type (Table 2).

5. DISCUSSION AND CONCLUSION

The characterization of shape and enhancement patterns of breast
masses was found better for CEDBT reconstructed slices than for
CESM images. This can be explained by the fact that CEDBT dis-
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Table 2. Fleiss’ kappa coefficient for each descriptor and modality
and its respective confidence interval (p-value = 0.05).

Shape Margin Enhancement
CESM 0.40[0.38-0.42] 0.34[0.32-0.35] 0.59[0.58-0.61]

CEDBT 0.42[0.40-0.43] 0.32[0.30-0.33] 0.57[0.56-0.59]

tributes the 3D information into multiple planes. The characteriza-
tion of lesion margins was found similar for CESM and CEDBT.
We presume that this can be attributed to the presence of off-focal
artifacts in the reconstructed slices.

With respect to our previous work, three main conclusions can
be highlighted. First, in this work, characterization of shape and con-
trast enhancement was found much better for CEDBT compared to
CESM. This may be due to the fact that the reviewers had access to
the full stack of CEDBT slices in this study, which is close to clini-
cal image review conditions, while in previous study only the central
CEDBT slice was presented. Secondly, in our previous study, lesion
detectability was found very low for CEDBT. As a consequence,
only few meaningful data was available on lesion characterization
performance. Also, in this previous work, poor CEDBT lesion de-
tectability resulted from the choice of the iterative reconstruction al-
gorithm, not optimized for CEDBT. In current work, the proposed
FBP reconstruction algorithm preserves a similar detectability level
for CESM and CEDBT. Finally, the weighting function introduced
in our FBP filter reduces spatial resolution, which can explain the
reduced margin characterization compared to our previous study.

Even if we increased the realism in our simulation platform,
some phenomena were not included, such as heel effect, focal spot
size and shape, and patient’s movement. The impact of these effects
remains for further investigation. We used a reconstruction FBP fil-
ter to match the CNR between CESM and CEDBT images. How-
ever, the recombination of LE and HE images delivers an MTF of the
DE recombined image where some frequencies are attenuated [21].
Future work will include reconstruction techniques able to reduce
this effect. Finally, the detectability and characterization tasks were
performed using a simulation framework. As a future work, the clin-
ical results anticipated thanks to the proposed simulation platform
should be compared to true clinical evaluations when a real system
will be available.
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