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ABSTRACT

We propose a new semi-automatic framework for tooth segmentation
in Cone-Beam Computed Tomography (CBCT) combining shape
priors based on a statistical shape model and graph cut optimiza-
tion. Poor image quality and similarity between tooth and cortical
bone intensities are overcome by strong constraints on the shape and
on the targeted area. The segmentation quality was assessed on 64
tooth images for which a reference segmentation was available, with
an overall Dice coefficient above 0.95 and a global consistency error
less than 0.005.

1. INTRODUCTION

Teeth segmentation in Cone-Beam Computed Tomography (CBCT)
is an essential step towards the development of a new era of den-
tal practice, supported by the increasing number of CBCT-equipped
dental offices. Analyzing and exploiting 3D acquisitions require a
considerable amount of time for practitioners, since they need to re-
view the entire image to detect any potential pathology for diagno-
sis. Thus there is a need for developing automatic or semi-automatic
methods to facilitate and support dental evaluation, diagnosis, sur-
gical and orthodontic planning. Among the different structures in
the maxillo-facial area, teeth are the central focus for most of the
dental procedures, enhancing the need for their segmentation. Nev-
ertheless, this task is still challenging. First, CBCT images have a
poor contrast, with increased noise compared to Multi Slice Spiral
(Helical) Computed Tomography (MSCT) due to increased scatter
radiations [1]. Secondly, the dentine, which composes most of each
tooth, has an intensity similar to the neighboring cortical bone, dis-
turbing the delimitation of teeth area. Another difficulty is caused
by metallic elements that are frequent due to dental procedures such
as fillings, crown replacements, implants, bridges, or braces. The
presence of metal in CT acquisitions produces numerous image ar-
tifacts such as high intensity streaks, blackened areas (loss of data)
or blur due to the beam hardening and the scatter in the imaging
physical process. The last challenging point is the diversity of ac-
quisition protocols, resulting in diverse resolutions (from 75 µm up
to 400 µm in each direction) and signal-to-noise ratios. In this con-
text, relying only on intensity for the segmentation does not achieve
consistent results. To cope with these difficulties, we propose to inte-
grate shape information and user input into the segmentation process
to design an efficient framework to achieve precise results with rea-
sonable computation time. In Section 2, we review related works,
before introducing our method in Section 3. Results are presented in
Section 4, and conclusion in Section 5.

corresponding author: tevain@telecom-paristech.fr

2. RELATED WORKS

Most of the recent efforts on teeth segmentation rely on level sets
methods. In [2], two 3D level sets and a panoramic projection are
used in MSCT data. Satisfactory results could be obtained (sen-
sitivity and specificity around 0.88) but due to the aforementioned
context and shape variability, relying only on intensity penalizes the
method. Moreover, level-sets are computationally expensive, and
computation times are not reported. In [3, 4], an iterative segmen-
tation method by 2D level sets including shape priors provided by
the previous iteration result is applied to mixed MSCT/CBCT data.
Such priors allow achieving state-of-the-art results (reported Dice
over 0.95, on molars and incisors only) but lack consistency since
they can represent non-tooth shapes depending on the success of
the last segmentation, thus making the use of these iterative priors
hazardous in presence of metal. Additionally, computation times
are reasonable, but not ideal. Graph-cuts (GC) could be used as an
optimization of the energy problem as in [5], where its usability is
demonstrated, but results suffer from relying only on intensity (aver-
age Dice of 0.89). Nonetheless, GC has the advantage of supporting
hard constraint inputs with less parameter tuning, which is useful
for user interaction. In [6] a statistical shape model (SSM) is used
as prior in a probabilistic graph cut framework, but reported results
(average Dice of 0.86) suffer from the lack of intensity prior, and
computation times are not reported.

Apart from these applications on teeth, we could find interest-
ing related methods applied on different structures, such as in [7]
where GC and SSM are combined in a double optimization method
used on both CT and MRI. The SSM is formulated as a Point Den-
sity Model (PDM), which is classically optimized as in the Active
Shape Model (ASM) procedure [8], leading to a distance map shape
prior in the GC optimization with an original boundary-based shape
prior. Freedman et al. [9] used a deformed template to generate
a region-based shape prior into their graph energy for designing a
multi-purpose segmentation framework in medical or natural im-
ages. In [10] SSM is used in cardiac MRI to generate a distance map
highlighting space areas where shape deformations may occur by
creating deformed instances of the model. The shape prior then only
allows GC segmentation on these areas. These approaches could be
adapted to our problem and combined in order to improve the accu-
racy and the robustness of the teeth segmentation process.

To the best of our knowledge, no method currently allows per-
forming accurate tooth segmentation in CBCT images in presence of
metallic artifacts, with priors ensuring a consistent tooth shape, and
in a manner compatible with clinical practice, including easy user in-
put and reasonable computation time. The method proposed in this
paper addresses these issues and open problems.
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Fig. 1: Statistical model: mean shape distance map (M) with isoline
0 in red; two shape variations examples according to the first mode
(S+

1 and S−1 ); intensity mean model (M).

3. PROPOSED METHOD

Our method is based on a graph cut framework with a statistical
shape prior enhanced with a user input. The user input indicates a
focus region for each tooth, then a mean tooth model is registered on
the image, providing the shape prior. Once a preliminary segmen-
tation has been obtained by graph cut optimization with this prior,
the result is refined to discard potential missegmentation of the tooth
region.

3.1. Statistical Shape Model construction

The shape prior is based on a SSM obtained from 15 full arch CBCT
images, which have been manually segmented by experts (dentists
and radiologists), each tooth separately. The data are split into 10
different classes depending on their morphological characteristics
(e.g. mandibular incisors, maxillar left molars). A SMM is trained
for each class following the classical PCA procedure [8], resulting
in mean shapes and principal modes in the form of signed distance
maps. Then, the manual segmentations are warped by a B-spline
registration on the binary mean shape before averaging the intensity,
resulting in a mean model with intensity. Each class model is then
composed by a mean shape map, principal deformation modes maps
(both as signed distances, where negative ones are inside the object)
and an intensity mean model (see Figure 1). The intensity proba-
bility density functions (PDF) of each class of teeth as well as the
background are also computed.

3.2. Initialization

The user is asked to select for each tooth of interest a set of points
composed by the “crown point” which is located on the surface of the
tooth, approximately in the middle of the edge (for anterior teeth) or
in the center of fissures (for posterior teeth), and “root points”, which
are located inside each root apex. For each selected set of points, the
user is asked to assign the corresponding tooth label (according to
FDI World Dental Federation notation, described in ISO3950 stan-
dard). Using these data, each tooth is pre-processed by the following
method:

1. Crop a large region of interest (ROI).
2. Compute the barycenter of root points, then the top-bottom

axis with the crown point.
3. Resample the region to align the top-bottom axis with the ver-

tical direction.
4. Crop a precise ROI around the tooth, depending on the tooth

label.

This allows us to focus the subsequent processing on the selected
tooth, discarding as much as possible information coming from
neighboring teeth.

3.3. Registration

The next step is the rigid registration of the intensity mean model
of the class corresponding to the tooth label given by the user. The
transformation is initialized by aligning the grey levels moments be-
tween the intensity mean model and the image. The optimization is
carried out through a gradient ascent scheme to maximize the corre-
lation between intensities:

Corr(Im,M) =

∑
x∈N (Im(x) ·M(x))√∑

x∈N Im(x)2
∑
x∈N M(x)2

,

where Im and M are the image and intensity mean model respec-
tively, x a voxel, N the set of voxel samples (equal to the whole set
of voxels in the image in the case of a dense registration). Corre-
lation was experimentally preferred over mutual information for its
ability to achieve more precise registration in most cases (i.e. when
the grey level distribution of tooth is not damaged by artifacts) for
our dataset. Usually, thanks to the initialization, the number of itera-
tions required to reach satisfactory registration is less than a hundred.
To attenuate the impact of metallic artifacts, voxels above an empir-
ical threshold (stable for all our data) corresponding to metal range
are not included in the correlation computation.

3.4. Shape prior generation

Following the idea from [10], i.e. using the space of allowed shapes
from the SSM as segmentation constraints, we generate deformed
instances of the model along each principal mode by binarization of
the linear combination:

S±i = H(−(M± C
√
λiPmi))

where M is the mean shape map and Pmi the i-th principal mode
associated with eigenvalue λi,H being the Heaviside function. The
constant C controls the amplitude of deformation i.e. the extent of
allowed shapes space. These shapes (see Figure 1) are compared
with the mean one to retain only areas which have changed, leading
to a binary mask where “on” voxels are the ones likely to be part of
a deformed shape:

Mask(x) =
{

1 if ∃ i : S±i (x) 6= H(−M(x)),
0 otherwise.

This mask is applied to the mean shape map resulting in a sparse
distance map φ:

φ(x) =

 M(x) if Mask(x) = 1,
+∞ if Mask(x) = 0 andH(−M(x)) = 0,
−∞ if Mask(x) = 0 andH(−M(x)) = 1.

Finally, the registration transform is applied to φ, giving the shape
prior used hereafter (see Figure 2).

3.5. Graph Cut segmentation

Our graph cut formulation combines the usual image based terms as
in [11] with two shape prior terms relying on the previously com-
puted map, resulting in the following energy:

E =
∑
x∈N

[αRx(lx) + βDx(lx)] +
∑

x,y∈Neigh

[γBx,y + δTx,y],

with x, y voxels, N the set of all voxels, Neigh the desired neigh-
borhood (26-connected in our case) and lx the class label of x (object
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“O” and background “B” here). In the following “regional” refers to
edges connecting nodes and classes terminals, also known as t-links,
while “boundary” refers to edges between nodes, also known as n-
links. The image based regional and boundary terms are:

Rx(lx) =

{
− ln P(Im(x) | O) if lx = O,
− ln P(Im(x) | B) if lx = B,

Bx,y = exp

(
− (Im(x)− Im(y))2

2σ2

)(
1

dist(x, y)

)
.

The first term penalizes the assignation of a voxel to classes which
have very different grey levels according to the intensity PDF prior,
whereas the second favors cutting the graph along high gradients,
which are expected to be edges of objects in the image. The regional
shape prior term Dx is inspired by the work in [7] and the boundary
one Tx,y by [9]:

Dx(lx) =

{
1

1+exp(φ(x))
if lx = B,

1− 1
1+exp(φ(x))

if lx = O,

Tx,y = |φ
(x+ y

2

)
|.

The term Dx(lx) penalizes or favors voxels classification as object
based on the distance to the mean shape, while Tx,y tends to favor
cuts around the boundary of this shape. Voxels out of the allowed
segmentation area are considered as hard constraints by setting their
t-link value to infinity towards their opposite class (object if outside
the mean shape, background if inside). To help the segmentation of
roots, shortest paths from root points to crown points are computed
based on intensity (to stay inside the tooth). Ideally, we want the
paths to run through the root canals, so we enhance them by setting
to high intensity values all holes detected inside a thresholded image
of dentine. To compute this image, Otsu thresholds [12] are com-
puted for 2 and 3 intensity classes, giving t2, t3lower and t3upper where
t3lower 6 t2 6 t3upper . Usually, t2-thresholding gives a well-defined
tooth shape but with clogged canals, whereas t3upper one tends to lead
to non-closed tooth shape, so we sample values in a [t2, t3upper] range
to find the one giving the largest hole in terms of volume to select
it as the final threshold. Once shortest paths have been established,
a dilation of the paths is used as object hard constraint into the GC
(see Figure 2). The min-cut/max-flow is done with the Kolmogorov
open-implementation [13]. The parameters α, β, γ and δ, which are
the weights of each term, are set depending on the application.

3.6. Post processing

Segmentation errors may occur during the previous step due to the
lack of gradient between neighboring crowns or blurred edges. A
watershed is performed on the inside of the signed distance map of
the segmentation and only the central component is kept, which dis-
cards touching crowns leaks. Finally a morphological opening is
performed with a spherical element of variable size (largest on crown
area and smaller toward roots) to avoid potential residues.

4. EXPERIMENTS

Experiments were conducted on clinical CBCT data obtained from
partners dental offices on a dual-core CPU (4 threads @ 2.9GHz).
Average computation times (from initialization to final segmenta-
tion, excluding user input) range from 12 seconds for anterior teeth
to 30 seconds for posterior ones, while memory consumption tops at
2 GB. The database was made of 64 teeth images with an isotropic

Fig. 2: Mean model (in red) registration (on 3 orthogonal views),
and constraint map applied to graph cut (same views): background
seeds (red, outside of allowed deformation area) and object seeds
(green: shortest path, blue is outside of allowed deformation area).

Fig. 3: Segmentation results on a mandibular incisor (tooth 31) along
axial, coronal and sagittal axes. For each view, the second image is
the graph cut output, and the third one is the result after the post
processing.

resolution of 150 µm (450K to 1.5M voxels depending on tooth,
all tooth classes were included). Note that patients were biting a
gum-shield since occlusal surface is barely visible in occlusion case,
and maxillar-mandibular teeth discrimination is a challenging task,
which is out of the scope of this paper. Implementation was done
in C++ based on the ITK library (www.itk.org). In the following,
the number of iterations for the registration is set to 30, with a 0.001
minimal gradient change, deformation constant C = 3, and parame-
ters are set to σ = 100, α = 1, β = 5, γ = 15 and δ = 1.

Figure 3 shows typical results of the method on an anterior tooth.
The missegmentation problem mentioned in Section 3.6 is visible
on the coronal slices, and is corrected by the post-processing stage.
These final results slightly underestimate the true tooth volume due
to the morphological opening, but this choice was made to be sure
to exclude neighboring teeth parts. Figure 4 reports the comparison

GC output Post-process output
Sensitivity 0.969 ± 0.023 0.972 ± 0.023
Specificity 0.998 ± 0.001 0.999 ± 0.001
Accuracy 0.998 ± 0.001 0.998 ± 0.001
Dice 0.953 ± 0.024 0.958 ± 0.023
GCE [14] 0.0041 ± 0.0026 0.0038 ± 0.0021

Table 1: Overall averages of sensitivity, specificity, accuracy, Dice
and global consistency error, as defined in [14].
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Fig. 4: Segmentation comparison with ground truth over the 64 sam-
ples. Red: GC output, blue: final result.

Fig. 5: Graph-cut segmentation output on maxillar molar with full
metallic crown and fillings.

with the manual delineations done by experts for each sample, while
the average values are shown in Table 1. Although the global results
are satisfactory, there are still complex cases where the algorithm
stumbles, as in Figure 5, where metallic artifacts reduce the registra-
tion consistency and induce false edges. In such cases, increasing the
α weight and using a more stringent segmentation area by reducing
the allowed deformation of the model (Section 3.4) increase dental
parts recovering, at the cost of an ill-defined contour.

5. CONCLUSION

We presented a new framework for the segmentation of teeth in den-
tal CBCT images, based on shape priors and user inputs to be able
to cope with modality-inherent and context-based problems such as
similarity with the immediate surroundings or weakly defined edges.
Experiments demonstrate state-of-the-art quality [3] of the results,
with an average Dice above 0.95, independently of the tooth class.
However, the method can still be improved, first by better handling
artifacts due to metallic objects, which penalize registration as well
as segmentation. Enhancing the images beforehand with a Metal-
lic Artifact Reduction (MAR) method should be considered for im-
proving the detection and segmentation quality. Also, the framework
should take advantages of considering multiple segmentations con-
currently (of several teeth) to improve neighboring teeth delineation.
Secondly, computation times are reasonable, but longer than [3]. The
most consuming task is the GC part, so code optimization and vol-
ume sub-sampling are currently investigated.
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