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ABSTRACT

Combining anatomical and functional information from Magnetic
Resonance Imaging (MRI) and Positron Emission Tomography
(PET) scans brings great opportunities to improve diagnosis in
oncology and treatment planning in radiation oncology. In this
work, we propose a PET-guided MR tumor segmentation method
minimizing a globally convex energy in a multiphase framework
to account for the context variability of lesions. The method was
evaluated in four patients with atypical meningiomas of different
shapes, locations and metabolism, and the Dice index obtained by
comparing with a manual tumor segmentation performed by an ex-
pert was 0.65 ± 0.13. The results demonstrated a good ability of
the method to differentiate tumors from tissues with similar MRI
intensity values.

Index Terms— Multimodal segmentation, variational method,
Brain Tumor, Positron Emission Tomography (PET), Magnetic Res-
onance Imaging (MRI)

1. INTRODUCTION

Multimodality imaging in oncology is used to improve diagnosis and
treatment planning by making the most of the complementary prop-
erties of each image involved. For example, PET reveals suspicious
areas of high tracer uptake, and so highlights potential tumor activity,
while the high resolution of MRI allows confirming tumor location
and delineating precisely pathological structures. This paper aims at
using PET metabolic information to improve the delineation of brain
tumors in MR images.

Combining PET and MRI raises new challenges. Multimodality
imaging must cope with the different resolution and intensity prop-
erties of the two modalities. In addition, the MR signal suffers from
a great variability, and is not normalized against a standard scale un-
like the Hounsfield scale used in Computed Tomography (CT).

Several multimodal segmentation methods have addressed the
joint use of anatomical and functional information, especially in
PET-CT. Most of them lead to a single tumor volume [1, 2], which
does not account for the specific nature of boundaries in each modal-
ity, and can be biased by registration issues. The only method de-
lineating two specific tumor volumes in PET-CT [3] requires many
parameters to be set, while other promising models segmenting
anatomical modalities using PET information have emerged [4, 5].

In this paper, we propose a new PET-driven MR segmentation,
extending the method from [5] to a multi-phase framework to cap-
ture the variability of the tumor surroundings. Starting from the uni-
modal two-phase segmentation model, we first present its four-phase

extension before detailing the mechanism for integrating PET infor-
mation. The resulting multimodal four-phase segmentation method
is evaluated both quantitatively and qualitatively and then discussed.

2. A 3D MULTI-PHASE PET-DRIVEN MRI
SEGMENTATION METHOD

Image segmentation aims at finding a partition of an image into sev-
eral regions (or phases). This can be performed using a variational
approach where the optimal segmentation minimizes an energy cri-
terion depending on region and boundary features. Popular methods
emerged, such as the one by Chan [6] who changed the two-phase
level set method based on the piecewise-constant Mumford-Shah
model [7] into a convex formulation insensitive to local minima.

In this paper, a four-phase model is used to account for the po-
tentially heterogeneous signal around the tumor: one phase is as-
signed to the tumor and three to the surrounding tissues.

2.1. 3D multi-phase unimodal segmentation

In [8], a four-phase piecewise constant formulation of the segmen-
tation problem was derived for a single modality, based on the two-
phase model from [6]. This four-phase extension allows jointly mod-
eling the tumor and its surroundings while keeping an initialization-
independent model. It is built by combining two two-phase models,
respectively defined by the membership functions u = (u1, u2) ∈
[0, 1]2. We propose a compact formulation using phase mixing func-
tions ϕij(t, t′) = ϕi(t)ϕj(t

′) where ϕi : [0, 1] −→ [0, 1] , i ∈
{0, 1} is defined as:

ϕi(t) =

{
t if i = 1

1− t if i = 0

Starting from an initial partition of the MR image domain Ω, the
segmentation problem is solved by minimizing an energy E [8]:

E(u, c) =

∫
Ω

µ1 |∇u1(x)| dx+

∫
Ω

µ2 |∇u2(x)| dx

+
∑

(i,j)∈{0,1}2

∫
Ω

λijϕij(u1(x), u2(x))(IMRI(x)− cij)2dx (1)

where IMRI(x) is the normalized MRI intensity of voxel x, µ1,
µ2, λij , (i, j) ∈ {0, 1}2 are positive hyperparameters and c =
(c11, c01, c10, c00) are the constant approximations of the MRI in-
tensity in the various phases. Normalization of the MRI intensity
addresses the MR signal variability associated with the tumor type
or device.
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This energy is composed of two parts. On the one hand, the reg-
ularization terms, weighted by the µi constants, enforce a minimal-
length constraint on the boundary of each phase, which ensures the
smoothness of the segmentation (the gradient operator character-
izes the contours). On the other hand, the data consistency terms,
weighted by the λij constants, ensure that the voxels belonging to
the same phase share common features, here the same MRI intensity
(hence the term of "piecewise constant" formulation). Moreover, the
membership of a voxel to a phase is embedded in the ϕij functions
and depends jointly on u1 and u2. Thus, the six hyperparameters
control the trade-off between smoothness prior and region homo-
geneity.

This model is called "fuzzy" because the segmentation functions
u1 and u2 have values in [0, 1] rather than in {0, 1} as in the classical
level set method. In fact, this formulation was proved in [8] to lead
to two important properties:

(i) Given (cij) ∈ R4, the problem (1) is convex in
u = (u1, u2) ∈ [0, 1]2, and therefore has a global minimum.

(ii) A region, which globally minimizes energy E(u, c) on the
space of binary functions, can be obtained by thresholding u1

and u2 at almost any value α ∈ [0, 1] (α = 0.5 is the standard
choice).

Thus, once the steady state is reached as stated by (i), the final
image partition can be obtained according to (ii) by associating each
voxel x ∈ Ω with a phase Pi, i ∈ {1..4} in the following way:

P1 = {x | u1(x) ≥ α, u2(x) ≥ α}
P2 = {x | u1(x) ≥ α, u2(x) < α}
P3 = {x | u1(x) < α, u2(x) ≥ α}
P4 = {x | u1(x) < α, u2(x) < α}

The main advantage of the method from [8] lies in its globally
convex formulation while partioning the whole image domain pre-
venting from overlaps and holes in the final segmentation.

According to (i), an alternate minimization scheme is proposed:

1. Set u1 and u2, then compute the weighted average MRI in-
tensity cij for each phase:

cij =

∫
Ω
ϕij(u1(x), u2(x))IMRI(x)dx∫

Ω
ϕij(u1(x), u2(x))dx

(2)

2. Set c and u2, then minimize:

min
u1∈[0,1]

{
G1(u1) = µ1

∫
Ω

|∇u1(x)| dx+

∫
Ω

r1(x)u1(x)dx

}
(3)

where

r1(x) = u2(x)
[
λ11(IMRI(x)− c11)2 − λ01(IMRI(x)− c01)2]

+(1− u2(x))
[
λ10(IMRI(x)− c10)2 − λ00(IMRI(x)− c00)2]

3. Set u1 and u2, compute the average MRI intensity as in 1.

4. Set c and u1, then minimize:

min
u2∈[0,1]

{
G2(u2) = µ2

∫
Ω

|∇u2(x)| dx+

∫
Ω

r2(x)u2(x)dx

}
(4)

where

r2(x) = u1(x)
[
λ11(IMRI(x)− c11)2 − λ10(IMRI(x)− c10)2]

+(1− u1(x))
[
λ01(IMRI(x)− c01)2 − λ00(IMRI(x)− c00)2]

Our convergence criterion is based on stable E(u, c), which means
that the energy does not differ much from one iteration to another. In

practice, convergence is reached in less than 1000 iterations. Steps 2
and 4 are implemented using the Chambolle’s dual algorithm [8, 9].
Note that the weighted average MRI intensities cij are updated every
iteration at steps 1 and 2, and not every n iterations at step 1 as
suggested in [8], for a more precise optimization.

As in [5, 10], the constant regularization parameters µi, i ∈
{1, 2} can be replaced by a contrast-dependent function defined as
follows:

µi(x) = µ(x) =
1

1 + |∇Gσ ∗ IMRI(x)|
where a Gaussian kernel Gσ is used for robust gradient estimation.
This map reduces the regularization where the edges are emphasized,
which is characterized by a high contrast.

2.2. 3D multi-phase MR segmentation using PET information

The main challenge in our multimodal segmentation model is to use
functional information provided by the PET image to guide the MR
image segmentation while preserving anatomic boundaries. Thus,
the resulting tumor volume is specific to the MRI data rather than
being a compromise between the two modalities. The method from
[5] addressed this issue in a two-phase framework to delineate lung
tumors in CT. The main idea in [5] is to turn the scalar homogene-
ity weights in a spatial function λ(x) of PET intensity to control the
impact of each term of the energy functional E(u, c). More pre-
cisely, while for high values of λ, the homogeneity prevails and the
segmentation is mostly guided by the anatomic information, when λ
takes low values, the smoothness prior is predominant. Moreover, λ
was implemented in [5] as a sigmoid function so as to preserve the
convexity property of the energy to minimize.

In our formulation, we follow the same underlying biological
hypothesis, stating that the higher the PET intensity, the more likely
the tumor presence, physiological tracer uptake excepted. This idea
is also formulated by turning the scalar homogeneity weights λij in
spatial function λij(x) of PET intensity. Thus, the segmentation of
the MR image is biased by PET intensity information, but remains
consistent with the anatomic homogeneity and regularization con-
straints. Experimentally, simple positive increasing functions of PET
intensity have shown to preserve the convexity of the energy to min-
imize. Compared to [5], the main difference in our implementation
resides in the formulation of the spatial functions λ : R −→ [0,M ]
so as to reduce the number of parameters to set:

λij(x) = λ(x) = M
IPET(x)−mi
ma−mi (5)

where IPET (x) is the PET intensity of voxel x,ma = max
x∈Ω

IPET(x),

mi = min
x∈Ω

IPET(x) and M a positive hyperparameter.

The only hyperparameters to be set to solve the segmentation
problem are now the M positive constant, describing the influence
of PET image on the segmentation result, the standard deviation σ
of the Gaussian kernel Gσ and the threshold α.

3. EXPERIMENTAL RESULTS

3.1. Material

The proposed method was evaluated using four patients suffering
from atypical meningiomas. Before radiation therapy, these patients
underwent a brain MRI followed by a whole body PET scan, which
was acquired from 15 days to 6 months after the MR scan. The
PET exam was performed with a PET/CT scanner (GE Discovery
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LS, WEMS, Laukesha, WI, USA), using 18F -choline as radiophar-
maceutical and resulted into images with a 1.17× 1.17× 3.27mm3

sampling. After an initial injection of 3 to 3.5 MBq/Kg, the proto-
col included a dynamic aquisition (5 to 20 frames of 1 minute each),
followed by a static whole-body acquisition, and a late acquisition
centered on the brain was performed 60 minutes after injection. The
Gd-enhanced T1-weighted MR were performed on different MRI
machines and had different voxel sizes, as summarized in Table 1.

Tumor Scanner Voxel size (mm3)
a Siemens Aera 1.5T 1.0× 1.0× 1.0
b Siemens Skyra 3T 0.90× 0.90× 1
c Siemens Skyra 3T 0.90× 0.90× 1
d Siemens Aera 1.5T 1× 1× 0.99
e Siemens Skyra 3T 0.51× 0.51× 1.2

Table 1: Characteristics of MR images from the four patients (tu-
mors b and c are from the same one).

Atypical meningiomas are very challenging to segment, owing to
a high variability in terms of location, shape and signal intensity.
Pathological radiotracer uptake in PET could help in differentiating
tumor tissues from background surrounding structures with similar
MRI intensity but PET images have a relatively high noise level. For
all these reasons, the method was applied on a limited Volume Of
Interest (VOI) defined manually.

3.2. Hyperparameter setting

The PET images from the late acquisition were aligned to the
T1-Gd images via the Mipav software1 using normalized mutual
information-based registration. The threshold parameter for u1 and
u2 was set to α = 0.5. A 3 × 3 × 3 Gaussian kernel with stan-
dard deviation σ = 1 voxel was used for contrast estimate. Values
for M ranging from 10 to 500 with a step of 10 were tested. The
phase corresponding to the tumor was initialized by thresholding at
40% of the maximum PET intensity value within the VOI, while the
remaining volume was initialized using a three class k-means algo-
rithm applied to the MR. After the final thresholding, the phase with
the highest PET mean intensity was assigned to the tumor.

3.3. Results

The segmentations were evaluated against a manual MR tumor de-
lineation performed by a medical expert who had a prior knowledge
of the PET exam. The computational time for the tumor segmenta-
tion was about 3-4 minutes on MATLAB2012b on a Linux desktop
computer with Intel Core Xeon(R) CPU 3.7 GHz,15 GB RAM using
VOIs containing 50000 voxels on average. The Dice index obtained
by testing with different values for M in a model incorporating
PET intensity information or no prior information (i.e λ(x) = M )
showed that the typical ranges of M leading to relevant results are
different depending on whether PET information is taken into ac-
count or not, and, in each case, are prone to inter-patient variability.
As illustrated in Figure 1, one of the three values M = 50, 100 or
150 always gave a relevant qualitative result.
As shown in Figure 2, though introducing PET information may re-
sult into altering the convexity of E(u, c) (which holds when no
prior information is used), the algorithm still manages to reach a
global minimum and provides an appropriate segmentation.
Moreover, the results obtained by testing the three values of M ,
with or without PET information, showed that using PET intensity to

1mipav.cit.nih.gov

(a) (b)
Fig. 1: Segmentation results for Tumor a: (a) Plot of Dice index
as a function of M with no prior information (in blue) or with PET
intensity information (in red). (b) Manual (in green) vs. automated
segmentations obtained with no prior information with M = 50 (in
white) and with PET intensity information with M = 100 (in red).

(a) (b)
Fig. 2: Segmentation results for Tumor b: (a) Plot of the energy
E(u, c) during the iterative optimization process with no prior in-
formation (in blue) or with PET intensity information (in red) with
the same value M = 50. (b) Manual (in green) vs. automated seg-
mentations obtained with no prior information (in white) and with
PET intensity information (in red) with the same value M = 50.

guide the segmentation led to a more accurate tumor segmentation
of the MRI than when no PET information is used, and can pre-
vent from including non-tumor neighboring structures with similar
MRI intensities (Figure 3). This result is quantitatively confirmed
by the Dice indices, measuring the overlap between automatic and
manual segmentations, and the sensitivity and specificity indices, re-
spectively measuring the rate of voxels correctly assigned to the tu-
mor and non-tumor volume (Table 2). Multiple experts study would
be necessary to strengthen this conclusion, since manual segmenta-
tion of atypical meningiomas is a tedious task that can suffer from
a great inter-operator variability. The worst qualitative and quantita-
tive result was observed for the heterogeneous Tumor d as shown in
Figure 3b, which suffers from postoperative tissue reorganization.

Tumor a b c d e
Dice SegMRI 0.59 0.58 0.55 0.43 0.61

Dice SegPET-MRI 0.71 0.76 0.72 0.44 0.65
Sensitivity SegPET-MRI 0.63 0.96 0.88 0.31 0.55
Specificity SegPET-MRI 0.99 0.99 1.00 0.99 0.99

Table 2: Quantitative comparison between manual and the best au-
tomatic segmentation result obtained using M = 50, 100, 150 with
(SegPET-MRI) or without (Seg-MRI) PET information.

Dealing with atypical meningiomas, a four-phase model turned out
to be generally more efficient to distinguish between the tumor and
surrounding tissues with similar MRI intensities than a two-phase
formulation, as illustrated in Figures 4a and 4c. However, a four-
phase formulation can provide results similar to those delivered by a
two-phase model, as illustrated in Figure 4b.
As shown in Figure 5, the drawing of the VOI influences the results
when guiding segmentation with PET intensity. Indeed, the segmen-
tation is sensitive to the noise in the PET image.
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(a) (b) (c)

(d) (e) (f)
Fig. 3: Comparison between manual (in green) and automatic seg-
mentations of the tumor guided by PET intensity information (in red)
or with no prior information (in white) of Tumors c (a), d (b) and e
(c). λ map used to guide the segmentation with PET information for
Tumors c (d), d (e) and e (f).

(a) (b) (c)
Fig. 4: Influence of the number of phases: visual comparison be-
tween manual (in green) vs. automatic segmentations of the tumor
guided by PET intensity information using a two-phase (in white)
and four-phase (in red) model for Tumors a (a), b (b) and c (c).

4. DISCUSSION AND CONCLUSION

The goal of this paper was to extend a 3D PET-guided two-phase
globally convex variational segmentation method to a 3D four-phase
framework to address the variability of the MR signal in the sur-
rounding of the tumor. Guiding a multi-phase segmentation by func-
tional information was proven to be a solution to distinguish between
tumor tissues and structures with similar mean intensities. More-
over, guiding the anatomical segmentation by functional informa-
tion made the result closer to the manual delineation. However, this
model has currently two limitations. First, it was used on manually
drawn VOIs influencing the final segmentation result. Secondly, the
piecewise constant formulation of the segmentation model may be
unsuited for heterogeneous tumors. In our future work, these two
issues will be addressed by performing an automated detection of
the tumor VOI, and using other image approximation models. The
method will also be applied to a larger data set, including cerebral
lesions such as glioma, and tested with scans produced from an hy-
brid PET-MRI device so that PET and MR data do not need to be
registered. The results can then be the input of a clinical study to
determine, from retrospective studies, how the tumor volume esti-
mated from each modality should be used to define treatment plan in
a radiation therapy.
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(a) (b) (c)
Fig. 5: Influence of the VOI: Manual segmentation of the MR tumor
(in green) for two VOIs (in white and red) on the MR image (a). (b)
Superimposing of the two VOIs (in white and red) on the PET image
(b). (c) Visual comparison between manual (in green) vs. automatic
segmentations of the tumor guided by PET intensity information in
a four-phase model for the two VOIs.
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