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ABSTRACT
We propose a fast, automatic and versatile framework for the
segmentation of multiple anatomical structures from 2D and
3D images. We extend the work of [1] on implicit template
deformation to multiple targets. Our variational formulation
optimizes the non-rigid transformation of a set of templates
according to image-driven forces. It embeds non-overlapping
constraints ensuring a consistent segmentation result. We
demonstrate the potential of our approach on the segmenta-
tion of abdominal organs (liver, kidneys, spleen and gallblad-
der) with an evaluation on CT volumes (50 for training and
50 for testing). Our method reaches state-of-the-art accuracy,
ranging from 2mm (liver and kidneys) to 8mm (gallbladder).

Index Terms— Multi-organ segmentation, template de-
formation, automatic segmentation

1. INTRODUCTION

Segmentation is a key preliminary step in many medical ap-
plications such as planning and follow-up procedures, where
modeling patients’ organs is helpful for both visualization and
quantitative measurements. Manually segmenting numerous
organs is particularly tedious on large 3D acquisitions, em-
phasizing the need for automatic, fast and reliable algorithms.

Numerous works have been dedicated to single organ seg-
mentation, but their generalization to multiple organs is often
not straightforward. Despite refinements such as probabilistic
and multi-atlases, atlas-based methods remain computation-
ally expensive (e.g. ∼ 1h in [2]) and not always well-adapted
to acute pathological cases. Among faster, recent alternatives,
one can cite the work of [3] which proposes a level-set frame-
work with inter-organs constraints (e.g. preventing overlap).
It performs a fully automatic segmentation of several organs
within a few minutes but relies on a large amount of train-
ing data (more than 300 datasets for the liver) and seemingly
complex parameter tuning. Authors of [4] propose a very fast
method (a few seconds) using landmarks regression and sur-
face deformation based on discriminative classifiers. Authors
show robust results on MR and CT data, but the required land-
mark definition remains a complex task which may hinder
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Fig. 1. Results of fine segmentation given by our method on
two CT images, 3D rendering on the left and sagittal slice on
the right (liver, kidneys, spleen, gallbaldder and heart).

reproducibility and applicability to organs with large shape
variations. Despite recent variants such as [5], classification-
based approaches usually have difficulties enforcing spatial
coherence and high contour accuracy so that additional regu-
larization and refinement steps are often necessary.

Our framework offers a compelling tradeoff between ac-
curacy, computational efficiency and simplicity. It is fully
automatic, fast (less than 1min), flexible (multiple targets,
2D or 3D, easily tunable) and reaches state-of-the-art-level
accuracy. First, Random Forest regressors with shape pri-
ors [6] provide us with confidence maps for the target or-
gans (Sec. 2.1 and Fig. 2). These regressors are trained from
a relatively limited amount of manually annotated data (in
our case, 50 CT volumes). The confidence maps serve as
inputs for a subsequent optimization, which constitutes the
main contribution of this paper. We extend the work of [1]
on implicit template deformation to multiple objects. Organ
maps/templates are deformed jointly by composing individual
poses with a single, shared non-rigid deformation field. Our
variational framework relies on contrast-invariant region- and
edge-based image forces. A key feature is the introduction
of specific constraints preventing organ overlapping. Our ap-
proach balances the robustness of atlas-based methods with
the adaptivity of active contour techniques. It leverages the
efficiency of implicit template deformation [1] and extends it
to multiple objects for a limited computational overhead. We
demonstrate its potential on the segmentation of abdominal
organs from CT volumes (Sec. 3 and Fig. 1). Finally we give
an overview of the various perspectives of this work (Sec. 4).
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Fig. 2. Random forest localization, illustrated for the two kid-
neys (confidence maps overlayed on the right image).

2. METHOD

We present our generic framework for the automatic segmen-
tation of multiple objects. Automatic organ localization is
done following the method of [6]. Segmentation is based
on the generalization of implicit template deformation [7] to
multiple models, which is the main contribution of this paper.

2.1. Multi-Organ Localization

Organ localization is performed in an automatic, fast and ro-
bust fashion thanks to a cascade of regression random forests
with shape priors, as detailed in [6]. This approach provides
us with confidence maps for each organ (see Fig.2), combin-
ing inter-patient variability (through shape priors) and data-
specific uncertainty (through forest evaluation). Each map
gives the chance of a voxel of the image to belong to a given
organ. They are used to initialize subsequent segmentation
steps and to attenuate image-driven forces. Notice that this
step does not guarantee non overlapping between organs.

2.2. Multi-Objects Template Deformation Framework

2.2.1. Implicit Deformation with Multiple Templates

We denote an image I : Ω → R where Ω ∈ Rd is the im-
age domain (d = 2 or 3). For N target objects indexed by
n ∈ [[1, N ]], we define associated implicit shape templates
φn : Ωn → R where Ωn are the template referentials. These
shape templates can be for instance probabilistic atlases. In
our case, we can use directly the confidence maps given by
the localization step (thus giving a patient-specific model).
We define the transformations ψn = Gn ◦ L which acts on
object n, where Gn : Ω→ Ωn corresponds to the pose of ob-
ject n (e.g. rigid or similarity transformation) and L : Ω→ Ω
corresponds to the local deformation common to the set of
templates in the domain Ω (see Fig. 3).

Our framework aims at optimizing the transformations
ψn : Ω → Ωn under image-derived forces fn and regular-
ity constraints on L. The energy E = E[ψ1(·), ..., ψN (·)] to
minimize is then defined as:

E =

N∑
n=1

(∫
Ω

H(φn ◦ ψn(x)).fn(x)dx

)
+
λ

2
‖L − Id‖2U

(1)

Fig. 3. Deformation scheme with two templates. The models
φ1 and φ2 are globally transformed through transformations
G1 and G2, where the non-overlapping constraint is applied,
and then locally deformed through local deformation L.

where H is the Heaviside function and λ is a constant balanc-
ing data and regularization terms. The latter penalizes high
amplitude deformations and thus controls the shape prior.

As in [1] we model the local transformation L as
L = Id + u. We follow the recent formulation of [8]
defining the displacement field u in a kernel Hilbert space
generated by a Gaussian kernel. Doing so ensures that L is a
diffeomorphic transformation (Sec. 2.3).

2.2.2. Non-Overlapping Constraint

Equation 1 does not prevent overlapping between objects.
Therefore we introduce non-overlapping constraints Ci,j ,
integrated as follows:

min
G1,..GN ,L

E(G1, ..,GN ,L)

s. t. ∀(i, j) ∈ [[1, N ]]2, i < j,

Ci,j =

∫
Ω

H(φi◦Gi(x))H(φj◦Gj(x))dx = 0

(2)

These constraints apply on the models transformed by the
pose transformations Gn. The deformation L, common to all
objects, is diffeomorphic and thus prevents overlapping.

2.2.3. Image-Derived Forces fn

The image-derived forces fn : Ω → R drive the segmen-
tation. They may be specific to each object n. This makes
the framework flexible, easily tunable towards modality- or
organ-specific information. In this paper, we define this term
as a combination of a non parametric region term rn and an
edge term en such that fn(x) = αrn(x)+(1−α)en(x) where
α is a constant in [0, 1]. The region term is given by:

rn(x) =
pin(I(x))− pout(I(x))

pin(I(x)) + pout(I(x))

where pin and pout are the intensity distributions inside and
outside the nth object estimated on the image I . The edge
term en proposed in [9] is based on the Haralick edge detec-
tor. It relies on the second image derivatives computed in the
direction orthogonal to the image level sets, thus guaranteeing
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the alignment of the edges and the isolines of the image. To
make this term contrast-invariant and object-dependent, the
authors weight this term with the sign of the projection of the
image gradient on the normal ~n to the object surface. Since
~n =

~∇φ
‖~∇φ‖

, we generalize it to 3D as follows:

en(x) = sign〈~∇I(x),
~∇φ
‖~∇φ‖

〉.
(
∆I(x)− ‖~∇I(x)‖div

(
~∇I(x)

‖~∇I(x)‖

))
The forces fn(x) can be adapted to take into account the

relationships between organs. The forces can be modulated
by using the confidence maps given by the localization step.
If Mk is a confidence map of the neighbor object k of object
n which has K neighbors, the force term can be defined as:

fn(x) =

( K∏
k=1

1−Mk(x)

)
.(αrn(x) + (1− α)en(x)) (3)

The force term could also be the output of a discriminative
classifier (as in [10]), at the cost of additional offline learning.

2.3. Numerical Optimization Scheme

We use the penalty method to turn Eq. 2 into a series of un-
constrained minimizations:

min
G1,..,GN ,L

Êk with Êk = E +
µk
2

∑
1≤i≤N
i<j≤N

C2
i,j (4)

where µk is the penalty coefficient. At each iteration k, µk
is increased, the unconstrained problem is solved by gradient
descent and used as the initialization for the next iteration.

The parametric transformations Gn are defined by Ng pa-
rameters pn = {pn,l}l=1...Ng

(e.g. Ng = 6 if Gn is rigid
in R3). We assume that forces fn are fixed during optimiza-
tion. The minimization of Eq. 4 is done by gradient descent
with composition update, since it guarantees a diffeomorphic
transformation [8]. Starting from an initialization, pn,l and u
are updated jointly and iteratively:

pn,l(t+1) ← pn,l(t) −∆tp
∂Êk
∂pn,l

u(t+1) ← u(t) ◦ (Id−∆tu~∇uÊk)−∆tu~∇uÊk

with ∆tp, ∆tu fixed time steps. The evolution equations are:

∂Êk
∂pn,l

=

(∫
Ω

δ(φn◦ψn).〈~∇φn◦ψn,
∂Gn
∂pn,l

◦L〉.fn
)

+µk.Qn,l

~∇uÊk=Kσ∗

{
N∑
n=1

δ(φn◦ψn).fn.(dGn)t~∇φn◦ψn

}
+λu

with:

Qn,l =
∑

1<j≤N
j 6=n

Cn,j

∫
Ω

H(φj◦Gj).δ(φn◦Gn).〈~∇φn◦Gn,
∂Gn
∂pn,l

〉

As in [1], the equations allow us to compute the terms
~∇φn ◦ ψn and φn◦ψn only near their zero level. By defining
φn as distance functions we can compute them in an efficient
coarse-to-fine approach using octrees (refer to [1] for details).

3. APPLICATION TO CT ORGAN SEGMENTATION

To evaluate our algorithm we propose to segment simultane-
ously several organs (the liver, the heart, the two kidneys, the
spleen and the gallbladder) in 3D CT images.

3.1. Workflow and Parameterization

A key feature of our framework is its flexibility. It can be
easily adapted to users’ requirements. For this application,
we perform the segmentation in an efficient two-steps coarse-
to-fine fashion following the approach of [11] for liver seg-
mentation. Forces are re-computed after each optimization
step, using the resulting contours from the previous step. In
the coarse step we initialize transformations ψn = Gn ◦ L,
with Gn as similarities, from the localization step and op-
timize them. Image forces rely equally on region and edge
terms (α = 0.5 in Eq.3). The second, refinement step aims
at reaching the edges of the organs. The transformation opti-
mized is here only local and non-rigid (ψn = L) and image
forces now mainly rely on edges (α = 0.8).

3.2. Database and Implementation

Our database includes 100 CT volumes from different pa-
tients, with varied fields of view, body shapes, resolution and
use or not of contrast agents. Slice and inter-slice resolutions
range from 0.5 to 1 mm and from 0.5 to 3 mm, respectively.
We split the database in 50 volumes for training (localization
part and parameters tuning) and 50 for testing. The organs
(liver, kidneys, spleen, gallbladder and heart) were segmented
manually by an expert for training and evaluation purposes.
Our method is implemented in C++ and running times are
given for a machine with two 2.3 GHz cores and 8 Gb RAM.

3.3. Results

The table of Fig. 4 reports computation times and quantita-
tive accuracy results for the liver, kidneys, spleen and gall-
bladder. The heart is omitted from the quantitative results,
as its visibility is highly variable in our database. It remains
however useful within the segmentation process, e.g. to con-
strain the liver contours. Figures 1 and 4 give examples of
the obtained results. For each organ, the accuracy increases
after each step. Eventually, we obtain results of the order
of the best reported methods (e.g., 2.9 and 1.35mm average
for the liver and kidneys in [3]). Our worst results are ob-
tained for the gallbladder, an organ with high shape and ap-
pearance variability. High localization errors largely impede
subsequent optimization. Our experiments also highlighted
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Localization Coarse step Refined step
MD Dice MD Dice MD Dice

(mm) (%) (mm) (%) (mm) (%)

Liver 21.2 59 4.1 93 2.3± 1 (2) 94± 3 (94)
Kidneys 7.6 64 5.3 86 1.8± 4 (0.6) 92± 16 (96)
Spleen 10.3 58 5.6 80 2.6± 3 (2) 87± 15 (92)

Gallbladder 9.1 29 7.9 32 7.5± 6 (5) 37± 36 (35)

Time (sec.) 7± 2 (6) 16± 6 (13) 11± 2 (10)

Fig. 4. Left: mean distances and dice coefficient (± standard deviation (median)) to ground truth results and computational
time after each step. Examples of results in axial (middle) and sagittal places (right) (liver, kidneys, spleen and gallbaldder).

the benefit of the non-overlapping constraint on segmentation
accuracy (e.g. 4mm mean distance for the kidneys without
the constraint). Overall, we believe that these results are very
promising, given that we kept our method as generic as pos-
sible. In particular, we used the same forces for each organ
and did not perform advanced parameter tuning. The entire
pipeline runs in about 30s on average. Such runtimes remain
compatible with most clinical workflows.

4. CONCLUSION AND PERSPECTIVES

We propose a fast, automatic and flexible framework for the
simultaneous segmentation of multiple objects from 2D or
3D images. It extends previous work on implicit template
deformation [1] to multiple objects with non-overlapping
constraints. We show the potential of our approach on a
challenging application, the segmentation of abdominal or-
gans from 3D CT data. We obtain state-of-the-art accuracy
results for low runtime (under 1min) while keeping our al-
gorithm as generic as possible. We believe parameter tuning
could further improve the accuracy of the method. One could
for instance incorporate organ-specific image forces learned
with discriminative classifiers, as in [10]. We emphasize the
genericity and flexibility of our approach. Our contributions
for multi-object segmentation integrate seamlessly within the
template deformation framework of [1] and can easily be
combined with refinements such as user constraints for inter-
active corrections [1] or region-specific tagged forces [10].
Finally, we intend to explore applications to other modalities
such as MRI or ultrasound data and other anatomies, such as
brain, cardiac or pelvic structures.
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