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ABSTRACT

Gradient Vector Flow has become a popular method to recover me-

dial information in medical imaging, in particular for vessels center-

line extraction. This renewed interest has been motivated by its abil-

ity to process gray-scale images without prior segmentation. How-

ever, another interesting property lies in the diffusion process used

to solve the underlying variational problem. We propose a method

to recover scale information in the context of vascular structures ex-

traction, relying on analytical properties of the Gradient Vector Flow

only, with no multiscale analysis. Through simple one-dimensional

considerations, we demonstrate the ability of our approach to esti-

mate the radii of the vessels with an error of 10% only in the pres-

ence of noise and less than 3% without noise. Our approach is eval-

uated on convolved bar-like templates and is illustrated on 2D X-ray

angiographic images.

Index Terms— gradient vector flow, diffusion, medialness,

skeleton, shape analysis

1. INTRODUCTION

Gradient Vector Flow (GVF) has first been introduced as an external

force field for active contours and active surfaces by Xu et al. [1].

The GVF of an image is the vector field obtained by diffusing its

gradients in homogeneous regions while keeping strong gradients

untouched. The diffusion process spreads edge information into uni-

form regions and acts as a long range force (see Fig. 2). Conse-

quently, it also introduces more robustness against initialization and

speeds up convergence.

Formally, the GVF of an image I over a domain Ω is defined as

the global minimizer V of the following energy functional E:

E =

∫

Ω

(

g(x) ‖ ∇V ‖2 (x) + h(x)|V (x)−∇I(x)|2
)

dx , (1)

where g : Ω → R and h : Ω → R are spatially-varying weight-

ing functions and ‖ ∇V ‖ is the vector norm for tensors given by√
∇V .∇V . The first term is a regularization term that controls the

diffusion over the whole image domain. The second term is a data

attachment term which ensures that V is close to the image gradient

at strong edges. This is the General Gradient Vector Field (GGVF)

devised by Xu et al. [2], which comes down to the original formu-

lation of the GVF [1] if g is constant and h(x) = |∇I(x)|2. The

most widely used functions are g(x) = e−|∇I(x)|/K , K ∈ R
∗ and

h(x) = 1 − g(x), and will be used in this paper too. Since both

GVF and GGVF formulations yield similar results, we will use the

term GVF in the remaining of the paper.

The first variation of the functional E yields the following Euler-

Lagrange equation1:

g(x)∆vi(x)− h(x)(vi(x)−∇I(x)) = 0 , (2)

where vi is the i-th component of the vector field and ∆ is the Lapla-

cian operator.

Recently, GVF has become popular in the field of medial infor-

mation extraction. Many ways of using it have been proposed since

it can be viewed as an improved gradient vector field to compute

various features. For instance, Bauer et al. [3] propose to recover

the centerlines of airways by computing the Hessian matrix from the

GVF. Then, they determine the cross-sectional planes of the tubular

structures and compute a tube-likeliness map from flux measures in

those planes, based again on the GVF. Flux measures were also used

by Engel et al. [4] for medial features detection. Several previous

works also exhibit GVF-based medialness maps derived from obser-

vations. Among them, the tube-likeliness from Bauer et al. [5] has

already been mentioned. Yu et al. [6] propose to build a skeleton

strength map from the GVF norm for gray-scale image segmenta-

tion. Finally, the GVF has also been used to extract skeletons from

binary shapes. In this context, the GVF is used by Hassouna et al. [7]

in a front propagation setting to design a speed function allowing

faster propagation at the center of structures.

Although the GVF has already been used to extract medial in-

formation, few approaches have been proposed to recover scale in-

formation. Unlike multiscale filters, which retain the maximum re-

sponse over several scales, the GVF diffuses information without

keeping track of the scale. Although one benefits from this by free-

ing oneself from scale constraints (e.g. Hessian matrices can be

computed on a 3x3 neighborhood only), scale information is still

of paramount importance for skeletons or medialness maps. Know-

ing the centerlines, the method by Bauer et al. [3] goes back to the

airways wall by tracking the GVF back to the edges in the image,

which is quite time-consuming. Engel et al. [4] recover the size of

the structures as the radius yielding a maximal circular (or spherical)

flux. It seems to contradict the multiscale-free approach of the GVF.

In this paper, we propose a simple, segmentation-free and

multiscale-free algorithm to extract medial information from im-

ages, based on the GVF. Since our approach heavily relies on 1-D

analysis of the GVF (line by line in different directions), Sect. 2

gives a thorough review of the analytic solution for the 1-D case.

Section 3 details the algorithm, especially how scale information is

1As stated by Xu et al. [2], the calculus of variations yields a third term
〈∇g(x),∇vi〉 in the corresponding Euler-Lagrange equation, which does
not change the result much in practice.
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recovered. Finally, we discuss parameters and show results on 2D

angiographic images in Sect. 4.

2. ANALYTICAL SOLUTION FOR THE

ONE-DIMENSIONAL CASE

Equation 2 is a diffusion-reaction equation whose analytical solution

is not obvious without further assumptions on h and g (as defined in

Sect. 1). For a better understanding, we will first focus on the 1-D

case. We consider vessel edges as ramps which lead to plateau-like

patterns in the original gradient (Fig. 1). A bar-like convolved model

approximates well a vessel profile, but the influence of the convolu-

tion is limited in practice (see Sect. 4.1). The equation is decom-

posed and can be solved onto subdomains {Ωk}0≤k≤N where gk
and hk, the restrictions of g and h to Ωk, are constant. In the follow-

ing developments, fk will denote the restriction of any function f to

Ωk.

Two cases arise. If Ωk is a homogeneous region, ∇Ik = 0 so

gk(x) = 1 and hk(x) = 0. Equation 2 is then the 1-D heat equation
∂2Vk

∂x2 = 0, and the solution is a linear function:

Vk(x) = mkx+ pk , mk, pk ∈ R . (3)

If Ωk is a region where the gradient is non-zero, then ∇Ik is con-

stant (with the ramp model) and so are gk and hk. Equation 2 has

then the form:

∂2Vk

∂x2
−a

2(Vk−
∂I

∂x
) = 0 , a

2 =
1− gk

gk
, 0 < gk ≤ 1 . (4)

Solutions to this second order linear equation with constant coeffi-

cients are of the form Vk(x) = c
(1)
k eax + c

(2)
k e−ax + b(x), where

c
(1)
k , c

(2)
k ∈ R and b is a particular solution. Since ∇I is constant

over Ωk, it satisfies the equation. Finally, the solutions on such sub-

domains are of the form:

Vk(x) = c
(1)
k e

ax + c
(2)
k e

−ax +∇I(x) . (5)

The parameters mk, pk, c
(1)
k and c

(2)
k for each subdomain Ωk are

given by the Dirichlet boundary condition V = 0 on ∂Ω and the C0

and C1 properties of the global solution V at boundaries between the

N subdomains. This yields the following linear system (in the same

order):

p1 = 0

mNxN + pN = 0

mk−1xk + pk−1 = c
(1)
k e

axk + c
(2)
k e

−axk + Vk(xk)

mk+1xk+1 + pk+1 = ac
(1)
k e

axk+1 − ac
(2)
k e

−axk+1 , (6)

where xi denotes the point limiting Ωi−1 and Ωi, and 0 < k < N .

If there are M plateau-like patterns, this yields a linear system of

4M+2 equations. A numerical solution and the corresponding ana-

lytical solution, computed from a two ramps gradient, are illustrated

in Fig. 1. In practice, subdomains Ωk where ∇I 6= 0 tend towards

∅, which means that the GVF can be approximated by a piecewise-

linear function. Although this is a mere approximation, we will use

this property to derive our scale measure.

3. DETECTION OF MEDIAL POINTS AND THEIR

CORRESPONDING SCALE

The GVF energy functional in Eq. 1 contains a diffusion term which

is equivalent to a multiscale analysis, from a scale-space point of

(a) (b)

Fig. 1: (a) Original signal and (b) the analytical solution of the GVF

equation for K = 3, K = 15 and K = 30 (where K is the param-

eter of function g). The dotted line represents the original normal-

ized gradient, the analytical solution is plotted in plain red, and the

numerical solution is in plain blue. Both solutions overlap almost

completely. The zero-crossings are preserved for all values of K but

the positions of the maxima of the solutions are clearly impacted.

view. The method proposed here is driven by two ideas. First,

scale information should be available directly from the GVF, without

any further multiscale analysis. Second, given the sophistication of

the GVF, recovering scales should not use overcomplicated analysis

schemes of the solution.

In contrast-enhanced images, vascular structures are considered

as homogeneous regions surrounded by strong gradients. In those

regions, gradients having opposite directions collide at the center of

the structures because of the diffusion process. This interpretation

still holds in the 1-D case: thanks to the separability property of the

GVF, one can consider working on the projections of the solution V

along each dimension instead of working on the gradient vector field

itself. This means that analyzing the d-th component vd of V along

the d-th dimension only is relevant. In this outlook, the separability

of the GVF and results from Sect. 2 are exploited both to detect

medial points and to estimate the radius of vessel structures.

3.1. Detection of medial points

Associating gradients having opposite directions comes down to

finding projections along each dimension d having opposite signs

(see Fig. 1). According to Sect. 2, the GVF may be approximated

by a linear function and vanishes between those two gradients. To

ensure that zero-crossings happen in the center of structures, both

corresponding gradients must have exactly the same magnitude.

This is why we choose to diffuse the normalized image gradient.

In practice, the Point Spread Function (PSF) of the acquisition

system interferes with the linearity of the solution inside homoge-

neous regions so that the slope of the solution V is weaker near

edges. Along a given dimension d, medial points are thus detected

as zero-crossings of the GVF components vd, which can still be em-

phasized by taking the components ṽd of the normalized solution

Ṽ . Responses are summed over all dimensions to obtain the final

measure for medial points (see Fig. 2(c)):

M = div(Ṽ ) =
∑

d

dṽd
dxd

. (7)
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(a) (b) (c)

Fig. 2: (a) Original image, (b) normalized GGVF and (c) medialness

map M from Eq. 7.

3.2. Estimation of the radius of the structures

Following the remarks formulated in the previous paragraph con-

cerning the linear approximation, the slope of vd is inversely pro-

portional to the radius of the structures. Let rd,k be the size of the

structures along dimension d, delimited by two gradients vd(xk) and

vd(xk+1) at positions xk and xk+1, corresponding to edges of a

structure. The slope mk can be recovered where vd vanishes and the

radius can be estimated as:

rd,k =
vd(xk)− vd(xk+1)

2mk
. (8)

Knowing the positions xk and xk+1 is not obvious. This is why

previous works usually resort to an exhaustive search through multi-

scale analysis. On the contrary, since we are able to detect structures

(vessels or other structures) thanks to zero-crossings, we have all

the necessary information to approximate vd with a piecewise-linear

function. We are only interested in the positions where two linear

functions intersect. Thus, the approximation does not have to be ac-

curate (see Fig. 3). A position xk, at the boundary of linear regions

Ωk and Ωk+1 with corresponding zero-crossings ck and ck+1, is thus

recovered as:

xk =
mk+1ck+1 −mkck

mk+1 −mk
. (9)

Note that the radii rd,k are computed only once for a range

[xk;xk+1]. Thus, our algorithm scales well with the size of the

image.

Under the assumption that the curvature of the vessel wall is

locally small, the actual radius rk can now be computed with simple

geometrical considerations. For example, for 2D images where d ∈
{x, y}, the radius is:

rk = rx,k sin arccos





rx,k
√

r2x,k + r2y,k



 . (10)

The situation for a given medial point is summarized in Fig. 4. Fi-

nally, an additional smoothing of estimated radii is performed along

the centerlines to increase the robustness.

4. EVALUATION OF THE ESTIMATED SCALES AND

APPLICATION TO VASCULAR STRUCTURES

Equation 2 can be solved with various explicit, implicit or semi-

implicit schemes. We implemented the common explicit scheme for

simplicity (see [8] for more efficient explicit and implicit schemes).

In particular, unconditionnally stable explicit schemes exist (the Al-

ternating Direction Explicit scheme, for example). In practice, the

straightforward explicit scheme is still widely used and is very use-

ful for investigation. We recall the 1-D version of this scheme [2].

Fig. 3: Solution to the GVF (in blue) for a 1-D profile extracted from

Fig. 2 and its corresponding piecewise linear reconstruction (in red).

Fig. 4: Provided the curvature is small with respect to the vessel

radius r, the latter can be approximated from the estimations rx and

ry along each direction by simple geometric considerations.

If V n
i is the value of the solution at point xi after the n-th iteration,

then:

V
n+1
i = (1− h∆t)V n

i +
g∆t

∆x
(V n

i−1 + V
n
i+1 − 2V n

i )+ h∇I∆t ,

(11)

where ∆x is the spatial resolution and ∆t is the time step.

4.1. Validation on synthetical vessel templates

As mentioned in Sect. 3.1, the PSF of the acquisition system and

partial volume effects impact the estimation of the vessels radius.

To study their influence, we apply our algorithm to vessel templates

with various radii and PSF. Vessels are modeled by convolved bar-

like cross-sections with radii r0 ranging from 1 to 25 pixels, and

the scale of the convolution σPSF is set to 0.5, 1 and 2 pixels (we

approximate the PSF by a Gaussian kernel).

The relative error of the estimation with respect to the ground

truth err(r) = |r−r0|

r0
is illustrated in Fig. 5. The algorithm intro-

duced in Sect. 3.2 is represented by blue lines. We compare it with

two alternative approaches. The first one, represented by red lines,

computes the radius by taking r = min (|xk − ck|, |xk+1 − ck+1|).
The second one, represented by the green lines, corresponds to the

distance from ck to the closest local maximum of ‖ V ‖. Finally, the

evaluation was performed on noise-free profiles (K = 5) in the first

line, and on profiles corrupted with a 10% random additive Gaus-

sian noise (K = 15 to compensate for the presence of noise) in the

second line.
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(a) (b) (c)

(d) (e) (f)

Fig. 5: Relative error err of the estimated radius for radii r0 ranging

from 1 to 25 pixels and a Gaussian PSF with (a,d) σPSF = 0.5,

(b,e) σPSF = 1, (c,f) σPSF = 2. The first row shows the result for

profiles with no noise, while a 10% random Gaussian noise has been

added to vessel templates in the second row (see Sec. 4.1 for further

details).

It is clear that our algorithm performs better for all PSF values

and is globally more robust to noise. When r0 ≤ σPSF with no

noise, the estimation is clearly unreliable but usable since the error

is still less than one pixel. For r0 > σPSF , the error is less than 3%

for noise-free profiles, and remains low (around 10%) in the presence

of additive Gaussian noise . However, for radii smaller than the PSF,

zero-crossings of the GVF may disappear and thus our algorithm

fails to recover the structure, which corresponds to very high errors

for small r0 values in Fig. 5.

4.2. Skeleton extraction of vascular structures

Our algorithm was also tested to extract the skeleton of vascular

structures in 2D angiographic images. The medialness map M from

Eq.7 and the radii are computed from the 2D GVF of the image. Seed

points are selected as directional maxima of M but discarded if they

are in regions with low local contrast. Finally, centerlines are ex-

tracted as the ridges of M going through seed points, as in [9]. The

centerlines and a segmentation reconstructed from the medial points

and their radius are shown in Fig. 6. Most vessels are correctly re-

covered, with accurate radii (they are slightly overestimated in the

case of very small vessels, as one should expect from Sect. 4.1).

5. CONCLUSION

We presented a new segmentation-free method to extract scale in-

formation of vascular structures from the GVF of an image, without

any additional multiscale analysis. We demonstrated that, through

fast and effective 1-D analysis of the GVF, we are able to devise

a method which is both accurate and robust to noise. The result

can serve as an input for deformable model-based algorithms, to fur-

ther refine the segmentation. The current bottleneck of our approach

lies in the computation of the GVF which is highly time-consuming,

as any process involving diffusion. Efforts will be put on efficient

schemes to solve the underlying variational problem. In the future,

we believe that our approach will prove to be a good alternative to

multiscale vessel analysis.

(a) (b)

(c) (d)

Fig. 6: Two examples of centerlines extracted from the medialness

map M and their corresponding vessel segmentation, on 2D X-ray

angiographies.
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