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ABSTRACT

Multiple hypothesis tracking (MHT) is a preferred technique for
solving the data association problem in modern multiple target track-
ing systems. However in bioimaging applications, its use has long
been thought impossible due to the prohibitive cost induced by the
high number of objects that need to be tracked and the poor quality
of images. We show in this paper that this broadly accepted view
should change. We propose a MHT algorithm (fMHT) that is fast
even when dealing with very noisy images of very numerous targets.
We have applied the method to the analysis of two sets of real mi-
croscopy images that contain thousands of biological targets. By do-
ing so we prove the benefits of the approach when tracking in very
noisy environments such as low-light level fluorescent microscopy
images.

Index Terms— Particle tracking, biomedical microscopy, Mul-
tiple Hypothesis Tracking (MHT)

1. INTRODUCTION

Time-lapse microscopy combined with automatic particles tracking
is opening new ways to study and understand intracellular processes
by looking directly at dynamic systems at the nanometric scale.
The standard paradigm of particle tracking is a detection step of the
objects of interest, followed by an association procedure between
the measurement set and the active track set. This last procedure is
made difficult by the corruption of the set of detections in two ways:
(1) some artifacts originating from the acquisition noise are detected
as objects of interest, (2) some detections are missed due to the
temporary disappearance of targets in low image quality conditions
or due to fluorophore extinction events. The Bayesian framework
has been broadly adopted in the bioimaging community because it
allows modeling these two sources of corruption of the detection
process. Standard methods [1, 2] rely on an iterative selection of
the most likely association at the considered frame. However, in
dense target environments, associations are difficult to discriminate.
Moreover, numerous spurious detections make false associations
and false tracks creation a major issue with which instantaneous as-
sociation methods have difficulties to deal with since they consider
only one frame at a time.
Multiple hypothesis tracking (MHT) was proposed almost thirty
years ago [3] to cope with the limitations of instantaneous tracking.
The principle of the MHT is to delay the association step to a later
time when the decision is made easier by the knowledge of future
frames. In practice it relies on building all possible associations
between tracks and detections for a number of successive frames
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and comparing them. Since it takes advantage of temporal infor-
mation, the MHT is generally accepted as the method of reference
for solving the data association problem in modern multiple target
tracking systems. However, despite many improvements [4, 5], it
has not been used for tracking biological targets in multidimensional
microscopy images because its computational cost is generally pro-
hibitive for this specific domain in which targets and false detections
are numerous. Recently, particle filtering techniques, which try to
reproduce the principle of a delayed decision step as proposed by the
MHT, have gained popularity [6]. One main feature of the particle
filtering approach is the relaxation of the competition of tracks for
detections, which alleviates the time consuming step of enumerating
all possible associations. However, in noisy images and numerous
targets conditions, we argue that the competition principle between
tracks is a key advantage for discarding false measurements and de-
tecting tracks initiation and termination events. So in contrast with
the particle filtering approach, we do impose a strict competition
between tracks for detections.
We show in this paper that the broadly accepted view that the MHT
technique is not applicable for tracking numerous targets in multi-
dimensional microscopy images should be revisited. We propose
a MHT formulation (fMHT) that integrates the notion of target
perceivability [7], which is the capacity of a target to generate
measurements in the future, and prove its impact on the overall per-
formance of the algorithm. The model favors indeed good quality
tracks and allows the early detection of a track termination and the
initiation of tracks corresponding to real targets only. By doing so,
the algorithm is very robust to false detections, and the complexity
is reduced.
We introduce an algorithm design which allows us to define efficient
pruning strategies and to implement it by taking full advantage of
parallel computing technologies. The features of the proposed ap-
proach are studied by processing two image sequences in 2D and
3D fluorescent microscopy. While standard methods do not produce
satisfactory results because of the poor image quality and the pres-
ence of thousands of objects of interest, the proposed algorithm is
able to compute very good results in a short time.
We introduce the proposed tracking method in Section 2. In Section
3 comparative experimental results are presented, and the benefits
of the MHT technique are proved for processing noisy 2D and 3D
fluorescent images of numerous particles.

2. MHT FOR SWITCHING STATES TARGETS

2.1. Tracks likelihood model

We adopt a Bayesian framework in which we aim at building the set
of tracks that has the greatest likelihood L(Θl), which is defined as
the probability of the tracks given the measurements from the se-
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quence of l images. We note respectively Zl and Θl the set of mea-
surements and tracks from time 1 to l. In particle tracking applica-
tions the set of measurements Z(k) at time k generally corresponds
to the set of detections in the kth frame: Z(k) = {zi(k)}i=1..mk ,
where each measurement is the vector of the detection coordinates
zi(k) = [xi(k), yi(k), zi(k)]T . Similarly, the set of tracks is com-
posed of n elements Θl = {θj}j=1..n, where each track θj is a
succession of the assumed positions of the jth target over time.
In the Bayesian formalism we decompose the likelihood L(Θl) in
the following way:

L(Θl) =P{Θl|Zl} = P{Θl, Zl}/P{Zl} ∝ P{Θl, Zl} (1)

At each frame k, the set Z0(k) contains detections remaining unas-
signed to any track. These measurements are considered as being
spurious detections coming from the sensor noise, which does not
depend on the targets presence. Moreover, by assuming that target
measurement and motion do not depend on other targets, we then
write:

L(Θl) ∝
Y

k=1..l

P{Z0(k)}
Y

j=1..n

p(θ
Ij

j , z
Ij
tj

)} (2)

The couple (θ
Ij

j , z
Ij
tj

) corresponds to the set of positions of the tar-

get j and its associated measurements during the time interval Ij of
its presence in the images.
In order to model accurately targets appearance and disappearance
we define a two states model of targets perceivability. A target is
perceivable, i.e. is in the state s1, when it can be detected. The state
s0 corresponds to a non perceivable target which does not produce
any measurement in future frames. In microscopy images, such a
particle may have physically disappeared, bleached to a low level of
intensity, or left the surveillance volume, hence the corresponding
track has to be ended. Transitions between states occur with fixed
probability between two frames: we note πi,j the probability of tran-
sition from state i to state j. In the following we consider that a non
perceivable target cannot become perceivable again, hence π0,1 = 0.
The model leads us to write the measurement probability p(θk

j , zk
tj

)
by taking the target perceivability into account:

p(θk
j , zk

tj
) = p(θk

j , zk
tj

, s0
j (k)) + p(θk

j , zk
tj

, s1
j (k))

For each perceivability state si
j(k) at time k we derive the following

probability:

p(θk
j , zk

tj
, si

j(k)) � ξi
j(k)

= p(ztj (k)|zk−1
tj

, θk
j , si

j(k))p(θj(k)|zk−1
tj

, θk−1
j , si

j(k))

· p(si
j(k)|zk−1

tj
, θk−1

j )p(θk−1
j , zk−1

tj
) (3)

where it can be shown using the Bayes’ rule that:

λi
j(k) � p(si

j(k)|zk−1
tj

, θk−1
j ) =

π0jξ
0
j (k − 1) + π1jξ

1
j (k − 1)

ξ0
j (k − 1) + ξ1

j (k − 1)

which is the predicted probability of target perceivability at time k
for i = 1. The measurement probability p(ztj (k)|zk−1

tj
, θk

j , si
j(k))

takes two forms in Equation (3), depending on whether it is a real
detection or not. Indeed, when no measurement is assigned to a
target, we associate it to a predicted measurement. We therefore
derive the following probabilities:

p(ztj (k)|θk
j , zk−1

tj
, s1

j (k)) =

j
pdpgγk

j if ztj (k) is real,
1 − pdpg else.

(4)

p(ztj (k)|θk
j , zk−1

tj
, s0

j (k)) =

j
pfd/V if ztj (k) is real,
1 else.

(5)

Here γk
j is the probability that the measurement ztj (k) originates

from the target j under the assumption that it exists up to the time k.
In Equation (4), pd and pg are respectively the probability of detect-
ing a target and the probability that the target position falls within its
search gate. pfd is the probability that the measurement ztj (k) is a
false detection, and V is the volume of the search gate.
In Equation (3), the probability p(θj(k)|zk−1

tj
, θk−1

j , s1
j (k)) corre-

sponds to the probability of target position evolution. In the case of
biological targets, whose motion can change abruptly, we use the In-
teracting Multiple Models filter [8, 1] that allows to accurately model
switching type of movements by maintaining an adaptive mixture of
motion models. When the perceivability state is s0 this probability
is set to 1 as the target position does not exist anymore.
It is worth pointing out that since the probability of perceivability of
targets are integrated in the computation of the original score func-
tion (1) perceivable tracks are favored for association selection. Thus
results are robust to associations with false measurements.

2.2. Fast MHT design

Fig. 1. MHT flow chart

The MHT technique builds iteratively the set of tracks Θ�(k)
that maximizes the likelihood L(Θk+d) instead of maximizing
L(Θk) as instantaneous association algorithms do. At frame k the
set of tracks Θ�,k−1 has to be extended during d + 1 frames with
the set Zk:k+d of measurements up to time k + d. For each frame
we adopt a four steps procedure summarized in Figure 1.
First, from each track θ�,k−1

j we build Γk+d
j , the set of potential

associations with detections from Zk:k+d. We model this process as
the construction of a tree of potential tracks. Indeed the track θ�,k−1

j

may give birth to a set of potential tracks Γk
j by association with

the subset of measurements that fall into its search gate at frame k.
Tracks in Γk

j may in turn create the potential tracks Γk+1
j , and so on.

Moreover, we create a tree from each detection in Zk:k+d in order
to model the possibility for new targets to appear.
We have taken advantage of the tree structure of the procedure to
implement a fast track construction procedure that is massively par-
allel and allows the use of multithreading computing technologies.
During the nodes formation process we label the potential tracks
according to their probability of perceivability. A track θt

j at frame

t is confirmed if ∃t′ ≤ t such that λ1
j (t
′) ≥ pc, and terminated

if λ1
j (t) ≤ pt. (Details on the computation of the confirmation and

termination thresholds, pc and pt, will be provided elsewhere.) It is
useless to continue a terminated track because of its low probability
of perceivability, so we stop the association in this case. For the
same reason we consider only confirmed potential tracks. These two
exclusion techniques reduce significantly the size of the association
problem.
The second step consists in dividing the global association problem
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into a set of smaller tasks by clustering the trees that are concurrent
for at least one measurement.
The aim of the association selection procedure is then to find a
subset of potential tracks in Γk+d that has the greatest likelihood.
To achieve this task, we propose a solver that takes benefit of the
tree structure of the tracks formation process in two ways: building
only a very limited number of associations by pruning huge sets of
solutions, and a massively parallel computing.
We begin by selecting a track θt1 in the first tree, so for now the
selected set of tracks is: Θ = {θt1}. The second tree is then consid-
ered. Its root compatibility θk−1

t2
is checked against measurements

used by Θ. If a common measurement exists, the association is
abandoned since each detection should be associated to one track at
most, else the process is repeated for each node linked to the root.
This procedure is applied until the end of the branch is reached.
Then a Θ duplicate is extended with the track with which we ended
θt2 : Θ = Θ ∪ θt2 , and another tree is selected. An association Θ
is valid if it contains a potential track for every non terminated track
in Θ�,k−1, but still it can be extended with tracks corresponding to
appearing targets.
We have also designed a branch and bound technique that discards
association hypotheses with low score at an early stage. The track
probability product in Equation (2) is decreasing with each addition
of a track to Θ. Hence, each time the product falls beyond the best
likelihood found until the current step, the best score cannot be at-
tained anymore with the addition of other tracks. We therefore stop
the association process for Θ in this case.
The association selection procedure has been designed in a recursive
way such that parallel computing can be used: each time a node is
considered a new thread is launched to perform the association task.
In the final step the best association is built by merging the asso-
ciation found for each cluster: Θ�k+d = ∪iΘ

�k+d
c,i . On this basis,

validated tracks are either continued or ended while a number of
new tracks are validated.

3. APPLICATION TO MICROSCOPY IMAGES

Fig. 2. Trajectories of Golgi units built by the fMHT

Trajectories of Golgi units in Chinese Hamster Ovary cells
(CHO) are of first interest for studying the trafficking of a caveolin
protein. The studied lineage of CHO expresses the Green Fluo-
rescent Protein fused with caveolin-1, so thousands of Golgi units

Fig. 3. Golgi units in a 2D restricted area at three times (first row).
Second row shows the corresponding tracking by the fMHT.

containing the protein are visualized in disk scanning confocal mi-
croscopy as bright spots in an uneven background. 462 time points
of a 504 by 405 pixels confocal slice of have been imaged, one of
them is shown in Figure 2. The tracking task is challenging due to
the numerous targets with various motions and the poor quality of
the images. Indeed, the Peak Signal to Noise Ratio (PSNR = ampli-
tude/noise standard deviation) is below 5 for low intensity particles.
In order to assess tracking performances, an expert has manually
identified Golgi unit trajectories in a 72 by 64 pixels crop during 128
time steps. In this small area 214 target trajectories were labeled.
We have applied a wavelet based detector [9] with sensitive settings
which allows detecting low intensity targets, but which produces
numerous false detections (24.5%). Hence the robustness to spuri-
ous measurements is a strong requirement for tracking procedures
to succeed. Moreover the detections set contains 86.6% of the man-
ually identified targets positions, hence taking into account missed
detections is also an important issue.
The manually identified tracks are used as references for comparing
the results obtained by different tracking procedures. Three standard
tracking procedures were applied to the set of detections obtained
by the wavelet analysis: instantaneous maximum likelihood track-
ing (IML) [1], Bayesian tracking with gap capping (GC)[2] and a
MHT algorithm of depth 3 proposed by Cox and Hingorani in the
computer vision field [5]. The fMHT algorithm performance was
also studied, four settings were used (d = 2, 3, 4, 5) to investigate
the influence of the depth of the algorithm.
For performances assessment purposes, we consider that a target has
been correctly tracked if more than 75% of its positions are close
(distance ≤ 3 pixels) to the measurements of a single track. In this
case this track is said significant, while a track is said false if less
than 75% of its measurements are close to the positions of reference
trajectories. To quantify the quality of the set of tracks we use the
Jaccard similarity index that takes into account both the number of
significant and false tracks. Indeed, the index is computed as the
ratio of the number of significant built tracks over the sum of the
number of reference and the number of false tracks. We summarize
tracking results obtained by the investigated methods in Table 1,
while tracks obtained by the fMHT for d = 4 are shown in Figure 3.

Results show that the corruption of the detection set by spurious
measurements leads instantaneous association algorithms such as
IML and GC to produce many false tracks. It reveals their lack of
robustness to cluttered conditions. The high corruption rate of the
tracks set makes the extracted trajectories useless for most down-
stream analyzes. On the other hand, Multiple Hypothesis tracking
algorithms show an improved robustness to spurious detections
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Tracking Significant False Process Jaccard
method tracks tracks time similarity

GC 51 30 6.9s 0.21
IML 175 142 2.3s 0.49

MHT [5] d =3 191 95 25s 0.62
fMHT d=2 183 37 8.8s 0.73
fMHT d=3 184 35 11.9s 0.74
fMHT d=4 177 34 17.0s 0.71
fMHT d=5 173 25 25.6s 0.72

Table 1. Golgi units tracking results. Top: performances for stan-
dard algorithms. Bottom: performances of the fMHT technique.

which is due to the automatic spurious detections exclusion made
possible by the processing of both past and future frames.
When comparing MHT techniques, the proposed approach is shown
to achieve the best Jaccard similarity index, whatever the value of
the depth. The main reasons of the superiority of the fMHT over the
MHT from [5] are twofolds: first we incorporate dedicated models
of motion for biological particles, and second, the robustness to false
detections is improved further, which results in a lower number of
false tracks. The robustness in noisy conditions is due to the accu-
rate model of target perceivability which is included in the tracks
likelihood computation.
It is worth pointing out that the algorithm depth influences the result-
ing tracks only to a limited extent. For instance, increasing the depth
improves only slightly the robustness to false detections. This char-
acteristic is explained by the short range autocorrelation of diffusive
motions, which are specific to biological applications. Indeed, when
observing diffusive motions, only the few previous and next frames
contain a significant information for the current tracking problem.
The fMHT can therefore be used in these applications with a small
depth (d ≤ 5), which reduces the computation time without any loss
of performance.
The fMHT procedure with a depth of 4 was also applied to the whole
sequence of images. It took only 6 minutes, with a Mac Pro Quad
2.66GHz, to process the 462 frames which is fast compared to the
complexity of the scene. In Figure 2 the 4024 resulting trajectories
are displayed. It shows the ability of the algorithm to deal with
high densities of targets, and to take into account various types of
movements, while results obtained by the other methods are not ex-
ploitable because of their poor quality. Result movies can be found
on line at http://bioimageanalysis.org/2435/.
In a second experiment the use of the fMHT technique on a 3D se-
quence of images was considered. The effect of the over expression
of the tau protein on the transport of vesicles was already inves-
tigated with tracking tools in [1]. Vesicles were labeled with red
fluorescent quantum dots and 3D images of living Hela cells were
acquired slice by slice with a disk scanning confocal microscope.
We have processed the whole sequence composed of 45 images
(440×360×5) with a wavelet based detector slice by slice, and with
the fMHT technique. The tracking task is made difficult both by
clutter and by areas with high densities of closely spaced targets.
Even in this case we were able to track the quantum dots in a short
time: 5 minutes and 30 seconds. The 792 resulting trajectories are
presented in Figure 4 (the movie is available on line). A qualitative
inspection reveals the good quality of the resulting tracks.

4. CONCLUSION

The use of a new multiple hypothesis tracking algorithm (fMHT) is
proposed for multidimensional images processing. The algorithm
incorporates the probability of perceivability of a target. The eval-

Fig. 4. 3D vesicles tracking in a Hela cell with the fMHT.

uation of the probabilistic model for a number of successive frames
allows us to automatically favor good quality tracks and to discard
associations with false measurements. We have proposed an imple-
mentation that makes the procedure very fast even when tracking
very numerous targets. This represents a major advance as MHT
techniques have been known to be too demanding for such complex
problems. The computation is efficient because the algorithm design
allows automatic and efficient hypothesis pruning and taking advan-
tage of advanced parallel computing technologies.
Our improved MHT algorithm was shown to outperform standard
instantaneous tracking methods even in the case of a difficult parti-
cle tracking application. One key point of the method is its robust-
ness to false measurements, which opens the way to the processing
of biological images that were previously too noisy to be analyzed
automatically.
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