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ABSTRACT

A statistical variational framework is proposed for the fetus and
uterus segmentation in ultrasound images. The Rayleigh and ex-
ponential distributions are used to model the pixel intensity. An
energy is derived to perform an optimal partition of the 3D data into
two classes corresponding to these two distributions, in a Bayesian
MAP framework. Some numerical difficulties are raised by the
combination of heterogeneous distributions in a variational level-set
formulation, as discussed in the paper. Results on simulated and real
data are presented and show that assuming different distributions
provides better results than with the sole Rayleigh distribution.

Index Terms— 3D ultrasound, segmentation, deformable
model, statistical prior

1. INTRODUCTION

Ultrasounds imaging (echography) is the main imaging modality
used for pregnancy follow up [1], combining several advantages such
as being portable, low-cost, non invasive and non ionizing. In order
to follow the fetus development, several biometric measurements are
extracted from ultrasound data. Recent 3D ultrasound systems en-
able volume measurements and provide useful additional informa-
tion. A segmentation process is desirable to automate these mea-
sures. In order to segment the fetus and the uterus, it is possible to
take advantage of the amniotic fluid filling the uterus and surround-
ing the fetus. Distinguishing the maternal and fetal tissues from the
amniotic fluid, a segmentation of both the fetus and uterus could be
performed.

Different approaches have been developed to detect structures
on ultrasound data [2]. Some methods are based on the statistical
properties of the tissues gray level intensity usually modeled with
Rayleigh distribution. After manually segmenting several datasets,
we computed the gray level intensity histograms of two different
pixel classes: the fetal and maternal tissues pixels on the one hand,
the amniotic fluid pixels on the other hand. The Rayleigh distribution
fits well the histogram of the pixels intensity in the fetal and maternal
tissues. However, this distribution model is not suitable when we
consider the amniotic fluid and the exponential distribution provides
a more appropriate representation of the pixels intensity distribution.

In this paper, we propose a deformable model formulation to
partition the image data based on the gray level statistical distribu-
tions of the structures to identify. The Rayleigh distribution is used
to represent the intensity of the pixels belonging to the fetal and ma-
ternal tissues while the exponential distribution is used for the the
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pixels belonging to the amniotic fluid. First, we present a frame-
work embedding this statistical prior. Then, an energy is defined and
derived to obtain the corresponding Euler-Lagrange equations. The
associated flow is determined using level-sets. Finally, we present
experimental results obtained on simulated and real data.

2. INTRODUCING STATISTICAL DISTRIBUTIONS OF
GRAY LEVEL INTO A LEVEL-SETS FRAMEWORK

Let Ω be a bounded and open subset of R
N and I : Ω → R an

image. A given closed curve C in Ω defines a partition of the im-
age domain in an inside region Ωi and an outside region Ωe. The
proposed segmentation method relies on a region-based approach,
embedding an a priori statistical knowledge of the distribution of the
pixels intensity within each region. Let Ωi (resp. Ωe) be the region
corresponding to the pixels belonging to the fetal and maternal tis-
sues (resp. the amniotic fluid). The intensity of the pixels belonging
to Ωi (resp. Ωe) is modeled with a random variable Ii (resp. Ie) fol-
lowing a Rayleigh distribution (resp. an exponential distribution).
We look for the curve C providing a maximum a posteriori seg-
mentation in a Bayesian framework with respect to the probability
distributions of the image pixels, P (C|I) = P (C)P (I|C).

We model P (C) using an exponential distribution with parame-
ter μ > 0. We have p(C = c) = μ exp(−μ|c|), with |c| the curve
length. p(C = c) is a decreasing function of |c|. Hence, smooth
curves are favored as |c| increases with local oscillations. Let ¯|C|
the mean of the curve length. We have ¯|C| = 1/μ. ¯|C| being a
decreasing function of μ, the value of μ defines the regularization
strength. The higher value of μ, the more regularized C.

Let f(I(x)) be the pixels intensity probability density function
(pdf). We have p(I = I(x)) = f(I(x)). As the pixel intensity
depends on the image partition defined by C, we get:

p(I = I(x)|C) =

8><
>:

p(Ii = I(x)|x ∈ Ωi) = fi(I(x), σi)
if x ∈ Ωi

p(Ie = I(x)|x ∈ Ωe) = fe(I(x), λe)
if x ∈ Ωe,

with,

(
fi(I(x), σi) = I(x)

σ2
i

exp (− I(x)2

2σ2
i

)

fe(I(x), λe) = λe exp(−λeI(x))

Pixels intensities are assumed to be uncorrelated and independently
distributed, conditionally to C. Let Pi =

Q
x∈Ωi

fi(I(x), σi) (resp.

Pe =
Q

x∈Ωe
fe(I(x), λe)) be the joint probability of the pixels

intensities inside (resp. outside) the curve. We have P (I|C) =
PiPe, and thus P (C|I) = P (C)PiPe. Our goal is to identify the
curve C maximizing this quantity. We use the logarithm to linearize
the product and set l(I, C, σi, λe) = log(P (C|I)). The maximum
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value of P (C|I) occurs at the same points as the maximum value of
l.

We have:

l(I, C, λe, σi) = lreg(C) + li(I, C, σi) + le(I, C, λe),

with

8<
:

lreg(C) = log μ− μ|C|
li(I, C, σi) =

R
x∈Ωi

log fi(I(x), σi)dx

le(I, C, λe) =
R

x∈Ωe
log fe(I(x), λe)dx

2.1. Energy definition

To obtain the maximum a posteriori segmentation, we define an en-
ergy E = −l to be minimized, with Ereg = −lreg , Ei = −li and
Ee = −le.

We use a level-set framework and introduce an implicit function
φ : Ω → R in order to compute the first variation of E. The values
of φ(x) are negative inside Ωi and positive inside Ωe, defining im-
plicitly the curve C as the zero level of the function [3]. E can be
rewritten as:

E(I, φ, σi, λe) = Ereg(φ) + Ei(I, φ, σi) + Ee(I, φ, λe).

We express |C| in Ereg(φ) using φ and H(φ), the heaviside
function [4], and rewrite the Ei and Ee energy terms as integrals
over the entire image using φ:

Ereg(φ) = − log μ + μ
R

x∈Ω
δ(φ(x))|∇φ(x)|dx,

Ei(I, φ, σi) = − R
x∈Ω

(1−H(φ(x))) log(fi(I(x), σi))dx,
Ee(I, φ, λe) = − R

x∈Ω
H(φ(x)) log(fe(I(x), λe))dx.

A similar energy was proposed by [5] where a maximum like-
lihood segmentation was achieved, using the sole Rayleigh distribu-
tion to model pixel intensities in both regions.

2.2. Energy minimization

In the following, we minimize the partial derivatives of E. The
global iterative minimization process consists in alternatively min-
imizing E in σi and λe (for fixed φ) and in φ (for fixed σi and
λe)[6].

Firstly, setting to zero ∂E
∂σi

(resp. ∂E
∂λe

) for fixed φ, we get the

value of σi (resp. λe) minimizing E :

8><
>:

σi =

„ R
x∈Ω(1−H(φ(x)))I(x)2dx

2
R
x∈Ω(1−H(φ(x)))dx

« 1
2

λe =
R
x∈Ω H(φ(x))dx

R
x∈Ω H(φ(x))I(x)dx

(1)

Secondly, in order to minimize the energy E with respect to φ,
we determine the Euler-Lagrange equation for φ using the Gâteaux
derivative of E, keeping σi and λe fixed.

E is differentiable in the Gâteaux sense with respect to φ ∈ X
if the application ψ �→ E′(φ, ψ) = limt→0

1
t
(E(φ + tψ)− E(φ))

is defined for any ψ and if it is linear and continuous.

We consider regularized versions Hε and δε of H and δ. After
some developments [7], we get:

E′(ψ, φ) =
R
Ω

δε(φ(x))(−μdiv( ∇φ(x)
|∇φ(x)| ) + log(fi(I(x), σi))

− log(fe(I(x), λe)))ψdx +
R

x∈∂Ω
μ δε(φ(x))

|∇φ(x)|
∂φ(x)

∂n
ψdx

This expression must vanish for all ψ in order to obtain the
Euler-Lagrange equation for φ. Therefore, we obtain the following
problem:

0 = δε(φ(x))(μdiv(
∇φ(x)

|∇φ(x)| )

− log(fi(I(x), σi)) + log(fe(I(x), λe))) (2)

with boundary condition:

δε(φ(x))

|∇φ(x)|
∂φ(x)

∂n
= 0, x ∈ ∂Ω.

Putting together (1) and the associated flow to (2), we obtain the
system to be solved:

8>>>>>>>>>>>><
>>>>>>>>>>>>:

σi =

„ R
x∈Ω(1−H(φ(x)))I(x)2dx

2
R
x∈Ω(1−H(φ(x)))dx

« 1
2

λe =
R
x∈Ω H(φ(x))dx

R
x∈Ω H(φ(x))I(x)dx

∂φ
∂t

= δε(φ(x))(Freg + Fdata) in Ω,

Freg = μdiv( ∇φ(x)
|∇φ(x)| ),

Fdata = − log(fi(I(x), σi) + log(fe(I(x), λe),
φ(x, 0) = φ0(x) in Ω,
δ(φ)
|∇φ|

∂φ
∂n

= 0 on ∂Ω.

(3)

This system is approximated with finite differences and solved
iteratively. In order to reduce the sensitivity of the method to initial
conditions, we use an implementation of the δε function allowing φ
to evolve over the entire image domain, even far from its zero level.
We use the divergence operator discretization scheme described in
[8]. When φ is updated at a given iteration, the regularization term
Freg and the data fidelity term Fdata are evaluated at every pixel of
the image domain. The method complexity is the same as in [8].

As illustrated in Figure 2, when the intensity of a pixel belongs
more likely to the Rayleigh (resp. exponential) distribution, the
value of Fdata is negative (resp. positive). Considering only Fdata,
∂φ
∂t

is consequently negative (resp. positive), and φ decreases (resp.
increases) at this pixel.

3. EXPERIMENTAL RESULTS

3.1. Results on simulated data

A study was performed on simulated data, to evaluate the segmen-
tation framework. A manually segmentated clinical 3D volume was
used to take into account the fetus complex geometry. Two classes
of tissues were simulated: the fetal and maternal tissues on the one
hand, the amniotic fluid on the other hand. Intensity of the pixels
belonging to the former were randomly generated from a Rayleigh
distribution of parameter σ, while the intensity of the pixels of the
latter were randomly generated from an exponential distribution of
parameter λ. Different datasets were tested. We present here re-
sults obtained on two meaningful samples. In the first case, we used
σ = 70 which, together with λ = 1/30, corresponds to the parame-
ter evaluated experimentally on real data. In the second case, using
λ = 1/130, we studied a different situation where the mean inten-
sity of the pixels following the exponential distribution is superior to
the mean intensity of the pixels following the Rayleigh distribution.
Figure 1 shows the pdfs of the Rayleigh distribution with σ = 70 and
of the exponential distributions with λ = {1/30, 1/130}, a slice of
the segmented 3D volume and the corresponding slices in the simu-
lated data. With λ = 1/30, the distributions are well differentiated.
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Low (resp. high) intensity pixels follow more likely the exponential
(resp. Rayleigh) distribution. We create a more complex case with
λ = 1/130 where pixels with low and high intensities follow more
likely the exponential distribution, while intermediate intensities fol-
low more likely the Rayleigh distribution.

Fig. 1. Top: pdfs of the distributions: fi(I(x), 70) (blue, thick line),
fe(I(x), 1/30) (red, dotted line) and fe(I(x), 1/130) (red, plain
line). Bottom: one slice manually segmentated on a 3D ultrasound
volume. White pixels belong to the amniotic fluid and black pix-
els to the fetal and maternal tissues (left). Corresponding slice in
two simulated datasets: fetal and maternal tissues generated using
a Rayleigh distribution with σ = 70 and the amniotic fluid gener-
ated using an exponential distribution with λ = 1/30 (center) and
λ = 1/130 (right).

The value of μ was set to 1.2 in all experiments. This value
provides a good trade off between the geometry of the object to seg-
ment and the smoothness of the segmented contours. The φ func-
tion was initialized using cylinders regularly placed in the image.
From 1 to 100 cylinders were used for testing purposes and good
results were obtained using the different initializations. Figure 2
shows Fdata as a function of the intensity I(x) of a pixel x when
σ = 70 and λ = 1/130. Note that as expected, the zero crossings
of Fdata(I(x), 70, 1/130) correspond to the crossings of the distri-
bution pdfs fi(I(x), 70) and fe(I(x), 1/130) shown in Figure 1.

Combining two different pdf in Fdata raised some numerical
difficulties, when evolving the level set function φ. Indeed Figure 2
shows that the maximum value of |Fdata| for Fdata < 0 is five times
smaller than the maximum value of |Fdata| for Fdata > 0. Conse-
quently, magnitudes of φ decreasing variations are lower than mag-
nitudes of φ increasing variations. Therefore, the φ function needs
to be reinitialized to prevent inappropriate behavior of the numerical
approximation of the regularization term. A reinitialization step was
performed every 100 iterations. This value has been set experimen-
tally to achieve a good trade off between computation burden and
numerical stability.

When the model achieves a good segmentation of the image, it
enters an oscillatory state. Firstly, as φ presents strong variations

Fig. 2. Fdata(I(x), 70, 1/130) evaluation. The blue thick
line corresponds to − log(fi(I(x), 70), the red plain line to
− log(fe(I(x), 1/130)) and the green dotted line to Fdata =
− log(fi(I(x), 70) + log(fe(I(x), 1/130)).

around the zero level, an artificial curvature-driven evolution moves
the model away from the correct boundaries. After reinitialization,
the model goes back to the correct boundaries. Values of the esti-
mated distribution parameters present the same oscillatory behavior
which is detected to stop the model. The number of iterations needed
to reach this state depends on the data. When the distributions are
well differentiated (λ = 1/30 and σ = 70), about 100 iterations
were needed, while about 1000 iterations were necessary in the more
difficult case (λ = 1/130 and σ = 70). Correct classification rates
were evaluated for the two simulated datasets, corresponding to the
average of the correct classification rate obtained over the different
initializations mentioned above. This rate is 99.4% when λ = 1/30
and 94.7% when λ = 1/130. As expected, correct classification rate
was higher when the distributions differentiation is clearer.

3.2. Results on clinical data

The segmentation method was tested on four 3D ultrasound datasets
acquired with a iU22 (Philips, Eindhoven, Netherlands) and good
qualitative results were obtained. Quantitative results are presented
for one 3D dataset, using the manual segmentation result previ-
ously used for the simulated data generation. The dataset size was
256x256x128 voxels. Segmentation parameters were set to the
same values, and 1500 iterations were needed to reach the oscilla-
tory state. Considering the whole dataset 72% of the pixels were
correctly classified.

Figure 3 presents results on a central slice of this dataset and a
3D view of the result (a part of the uterus was cropped for visual-
ization purpose). On the classification error image, light gray pixels
correspond to amniotic fluid classified as fetal and maternal tissues,
and dark gray pixels correspond to the opposite situation.

Image properties can explain the different phenomena leading
to a wrong classification. Firstly, the interface between the am-
niotic fluid and the tissues is blurred, and manual segmentation is
not precise at the pixel level, leading to local differences between
the two results. Secondly, the interpolation process involved in the
volume reconstruction from the acquisition geometry to a Cartesian
grid introduces artificial values, generating spatially coherent pix-
els clusters with high intensity. This explains why pixels between
the fetus legs are misclassified. Thirdly, when a structure is highly
echogeneous the response of the tissues located behind this struc-
ture dramatically falls. This is why brain pixels, located behind the
skull, have a very low intensity and are classified as belonging to
the amniotic fluid. Fourthly, the regularization term used to obtain
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a smooth result prevents the model to penetrate concavities. Classi-
fication errors are consequently present in the contact zone between
the fetus arm and the fetus head. Fifthly, pixel intensity of tissues far
from the transducer is low because the residual signal is not totally
compensated by total gain compensation. Corresponding pixels, be-
longing to the maternal tissues, are in the same way misclassified as
belonging to the amniotic fluid.

(a) (b)

(c) (d)

(e)

Fig. 3. (a) Central axial slice of the original dataset. (b-c) Classifi-
cation results obtained respectively by manual tracing and with the
statistical deformable model. White (resp. light gray) pixels corre-
spond to the amniotic fluid (resp. fetal and maternal tissues). (d)
Difference between the two classifications (see text). (e) 3D view of
the result.

The first three phenomena are inherent to ultrasound acquisi-
tions. For the moment, we have not led further experiments or tested
postprocessing methods, which could improve the image quality.
Considering the fourth issue, smaller values of μ were tested. How-
ever, as μ decreases, results become noisy and isolated components
appear. The value μ = 1.2 seemed to be a good compromise. Seg-
mentation of concavities remains a challenging problem. Consider-
ing the fifth issue, we evaluated the correct classification rate in a
restricted region. This region corresponds to a dilation of the uterus
segmentation, so that structures of interest (the amniotic fluid, the
fetus and the uterus border) are included in the region, while pixels

located far from the transducer are excluded. In these conditions, the
correct classification rate raised to 89%.

Tests were performed, modeling the amniotic fluid response
with a Rayleigh distribution. Considering the entire volume and the
restricted region, the correct classification rates were respectively
61% and 67%, inferior to those we have obtained using an exponen-
tial distribution to model the response of the amniotic fluid, showing
that this distribution is more suitable for this purpose.

4. CONCLUSION

We have presented in this paper a methodological framework to
embed statistical priors on intensity distributions into a variational
minimal partitioning approach. This framework was used to sepa-
rate the amniotic fluid from the fetal and maternal tissues in 3D fetal
ultrasound data. An original modeling of the amniotic fluid response
in fetal ultrasound acquisitions was proposed using an exponential
distribution, while the fetal and maternal tissues were modeled us-
ing the classical Rayleigh distribution. Experiments were led on
simulated data, in order to validate the segmentation framework in
ideal conditions, with simple parameter and initialization tuning.
Due to the particular nature of the data fidelity term combining dif-
ferent probability density function, reinitialization of the φ function
was needed to prevent inappropriate behavior of the curvature term.
Good results were obtained on two different simulated datasets.
Considering real data, several tests were performed, but only one
dataset was analyzed quantitatively, which does not allow us to draw
any general conclusion. However, promising results were obtained,
especially when considering a region including only the structures
of interest.
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