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ABSTRACT
We propose a new Bayesian, stochastic tracking algorithm for the
segmentation of blood vessels from 3D medical image data. Inspired
by the recent developments in particle filtering, it relies on a con-
strained, medial-based geometric model and on an original sampling
scheme for the selection of tracking hypotheses. A key property of
this new sampling scheme is the ability to take into account a distri-
bution of hypotheses broader than similar methods such as classical
particle filters, while remaining computationally efficient. The pro-
posed method was applied to the challenging and medically critical
task of coronary artery segmentation from 3D cardiac computed to-
mography (CT) images. Prior knowledge, injected in the process,
was learned from a manually segmented database of 19 cases. Qual-
itative and quantitative evaluation is presented on clinical data, in-
cluding pathologies and local anomalies.

Index Terms— Bayesian tracking, Monte-Carlo method, Geo-
metric model, Vascular segmentation, Cardiac CTA

1. INTRODUCTION

In biomedical applications, vascular structures are often of critical
importance for diagnosis, treatment and surgery planning. Vessels
are thin, elongated and complex structures embedded in increasingly
large images. Manual delineation, although still heavily used in clin-
ical routines, has become a considerable burden and automatic or
semi-automatic segmentation remains challenging.

Vascular segmentation has received considerable attention in the
literature [1]. A popular approach is to consider the segmentation as
an iterative, tracking process. Classical region-growing techniques
can be seen as primitive representatives of this class of methods.
Front propagation techniques allow for refined analysis by imposing
a structurally coherent exploration process. The robustness of local
deterministic tracking is generally limited by the necessity of using
low-level, causal criteria. In some settings, the tracking problem
can be formulated as the extraction of globally minimal paths [2, 3].
Another approach, which is becoming increasingly popular, is the
use of stochastic Bayesian tracking algorithms such as particle fil-
ters [4, 5]. Such algorithms have demonstrated particular robustness
while allowing for high-level modeling.

In this paper, we propose a new Bayesian, stochastic tracking al-
gorithm, inspired by recent developments in particle filtering design.
It relies on a constrained, medial-based geometric model and on an
original sampling scheme for the selection of tracking hypotheses. It
was applied to coronary artery segmentation from 3D cardiac com-
puted tomography (CT) images, a particularly challenging task in
terms of anatomical variability and complexity. Prior knowledge
was learned from a manually segmented database. Qualitative and
quantitative validation is presented on clinical data.
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Fig. 1. Geometric model and successor candidates.

The gray area indicates the potential successors of x
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2. GEOMETRIC MODEL

For the representation of vascular structures, we advocate the use of
parametric geometric models for their conciseness and usability for
further analysis. Our model follows directly from Blum’s seminal
work on medial representations [6]. A binary object is represented
by a collection of maximally included hyper-spheres {Sk} of centers
{xk} and radiuses {rk}. As illustrated in Figure 1, sphere centers
form the medial axis of the object and associated radiuses allow for
the reconstruction of the object surface [6].

Our model considers a subset of Blum’s representation, defined
by a geometric constraint. In our tracking framework, our geometric
model is iteratively updated by adding new spheres centers which
lie on the surface of the preceding sphere. As depicted in Figure 1, a
new center xt is at distance rt−1 of xt−1. A non-branching structure
is then represented by a discrete chain of spheres {S0, ..., ST }.

Thanks to this connectivity constraint, our model is entirely de-
scribed with the collection of centers {xk}. The radius rt and axis
direction dt appear as linked variables:

�dt = xt+1 − xt and rt = |xt+1 − xt|
In the following, we reduce all the notations to the centers {xt},
keeping in mind that a center at time t sets radius and direction vari-
ables at time t− 1 through our geometric connectivity constraint.

Numerous tracking techniques for tubular structures rely on simi-
lar medial-based models. In the vascular segmentation field, one can
cite particular efforts for centerline tracking based on cross-section
detection [4, 5, 7, 8, 9]. Such techniques incorporate the direction
and scale in their state vectors, resulting in large search spaces, es-
pecially in 3D. In contrast, our search space is limited to the geomet-
ric location of the successive centers, but we are intrinsically limited
to tubular structures with circular cross-sections. This geometric
model directly applies to elongated structures in 2D and 3D images.
It can be extended to branching structures by using a tree or graph of
spheres instead of a simple chain.
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3. TRACKING SCHEME

The proposed tracking scheme is an iterative, population-based,
stochastic Bayesian filter, largely inspired by recent developments
in particle filtering for segmentation tasks. It aims at recovering a
single vascular branch, from its root to its distal end, as a chain of
spheres centers XT = {x0, ..., xT } following the geometric model
described previously and estimated given the observations, i.e., the
image, considered as stationary: Yt = Y, ∀t.

Similarly to classical particle filters, we use a first order hidden
Markov model and a Monte-Carlo approximation of the posterior
distribution p(Xt|Y ) by a weighted population of Nt discrete sam-

ples {x(i)
t , w

(i)
t }Nt

i=1 [10]. Instead of using classical update and pre-
diction steps, we introduce a new sampling scheme to recursively
evolve this population.

At time-step t, we consider all the potential successors {x(i,j)
t+1 } of

x
(i)
t as the discrete locations at distances r

(i,j)
t ∈ [0, rmax] of x

(i)
t

(gray area in Figure 1). Importantly, a candidate x
(i,j)
t+1 retrospec-

tively fixes radius r
(i,j)
t and direction �d

(i,j)
t according to our model.

Associated weights w
(i,j)
t+1 are evaluated as follows:

w
(i,j)
t+1 ∝ w

(i)
t p(Y |x(i,j)

t+1 )p(x
(i,j)
t+1 |x(i)

t )

where p(Y |x(i,j)
t+1 ) and p(x

(i,j)
t+1 |x(i)

t ) are the likelihood and dynamic

prior of the candidate x
(i,j)
t+1 , respectively. The extended population

{x(i,j)
t+1 , w

(i,j)
t+1 } forms a distribution from which the new population

of Nt+1 samples {x(i)
t+1, w

(i)
t+1}Nt+1

i=1 is obtained by importance sam-

pling [10]. When a candidate (x
(i,j)
t+1 , w

(i,j)
t+1 ) is selected, it enters the

new population as (x
(i)
t+1 = x

(i,j)
t+1 , w

(i)
t+1 = x

(i,j)
t+1 ). Weights are then

normalized before recursively proceeding to the next step.
This scheme can be seen as a systematic resampling step with de-

layed application of the dynamic prior. We emphasize that, in con-
trast with classical particle filters, our algorithm actually takes into
account a wider range of hypotheses by evaluating all the poten-

tial successors {x(i,j)
t+1 }. Instead of selecting a limited number Nt+1

of surviving samples through a prediction step, it rather considers a
much larger pool (Nt ×Nrmax , with Nrmax the number of discrete
locations in the maximal sphere considered). The dynamic prior is
applied retrospectively to these candidates. Another positive side ef-
fect of our geometric model and sampling scheme is the elimination
of the need for a geometric step parameter. Our filter progresses
adaptively, according to the sphere connectivity constraint.

3.1. Likelihood Estimation: p(Y |x(i,j)
t+1 )

Our likelihood function is a conjunctive combination of three terms:

p(Y |x(i,j)
t+1 ) = F (r

(i,j)
t )E(r

(i,j)
t )G(x

(i,j)
t+1 ) (1)

The term F (r
(i,j)
t ) measures the gradient flow through the surface

of the sphere S
(i,j)
t of radius r

(i,j)
t = |x(i,j)

t+1 −x
(i)
t | centered on x

(i)
t :

F (r
(i,j)
t ) =

∮
S

(i,j)
t

〈 �∇(I), �n〉dS
(i,j)
t

where �∇(I) is the image gradient and �n the unit normal to S
(i,j)
t . It

quantifies the alignment of the sphere surface with the image gradi-
ent vector field. Similar terms can be found in previous works dedi-
cated to the extraction or filtering of elongated structures [11, 12] or
in the minimization scheme of geodesic active contours [13].
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Fig. 2. Learned distributions of the dynamic priors.
Left: radius variations. Right: direction variations.

The term E(r
(i,j)
t ) corresponds to the response of the morpho-

logical erosion by the sphere S
(i,j)
t at point x

(i)
t :

E(r
(i,j)
t ) = min

z

{
I(z)

∣∣∣ |z − x
(i)
t | ≤ r

(i,j)
t

}

where I(z) is the image intensity at location z. This region-based
term favors bright spheres and becomes especially useful for small
vessels, when the computation of the gradient flow over small dis-
crete spheres becomes unreliable.

The term G(x
(i,j)
t+1 ) is defined as:

G(x
(i,j)
t+1 ) = I(x

(i,j)
t+1 )− E(r

(i,j)
t )

This difference term counter-balances the shrinkage effect intro-

duced by E(r
(i,j)
t ) by favoring points with high intensity and low

erosion response, i.e., intuitively, locations far from x
(i)
t . We stress

that this term depends on the individual location of x
(i,j)
t+1 , not just

on the sphere it lies on. It discriminates against locations along the
border of the vessel and favors hyper-intense locations toward the
centerline. The effects of each term are illustrated in Figure 3.

In addition, we constrained and normalized image intensities
within a range of 0 to 300 Hounsfield units (typical intensities of
contrast-enhanced blood pool in CT acquisitions), in order to reduce
the influence of hyper-intense structures such as calcifications.

3.2. Dynamic Prior: p(x
(i,j)
t+1 |x(i)

t )

Vessel dynamics are described in terms of radius and direction vari-
ations, considered as independent variables:

p(x
(i,j)
t+1 |x(i)

t ) = p(r
(i,j)
t |r(i)

t−1)p(�d
(i,j)
t |�d(i)

t−1)

Both distributions were learned from a pool of 19 manually
segmented cardiac CT datasets. Radius variation was eval-
uated as the ratio

rt+1
rt

and direction variation as the angle

arccos(〈 �dt+1

|�dt+1| ,
�dt

|�dt| 〉). Samples from the manually segmented

database allowed us to build detailed histograms of these distribu-
tions (see Figure 2). These non-parametric forms are used directly

to valuate p(r
(i,j)
t |r(i)

t−1) and p(�d
(i,j)
t |�d(i)

t−1). ‘

4. EVALUATION AND RESULTS

Our method was evaluated on 19 cardiac CT datasets, for both left
and right main coronary branches. Ground-truth segmentations were
obtained by detailed manual delineation of the centerlines and asso-
ciated cross-sections. For each dataset to be tested, dynamic priors
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(a) (b) (c) (d) (e)

Fig. 3. Illustration of the likelihood terms.

(a) original image and sample position x
(i)
t ; (b) gradient flow term F (r

(i,j)
t ) for all potential successors of x

(i)
t overlayed in red; (c) erosion

term E(r
(i,j)
t ); (d) “growing” term G(x

(i,j)
t+1 ); (e) likelihood image, conjunctive combination of the terms (b), (c) and (d).

were learned on the remaining 18 cases (Leave-One-Out rule) and
quantitative results were averaged on 10 runs.

A result example is given in Figure 4. Besides the sample popula-

tions {{x(i)
t , w

(i)
t }Nt

i=1}T
t=0, a key output of the algorithm is the max-

imum a posteriori (MAP) chain {x∗0, ..., x∗T }. It is directly extracted
by selecting x∗T as the sample with highest weight at time-step T
and by backtracking its ancestors. From this chain, an approximate
centerline can be derived by interpolating a curve linking the spheres
centers. Similarly, a volumic representation can be obtained thanks
to the associated radius information. We emphasize the conciseness
and usability of this MAP result, allowing, for instance, the genera-
tion of curved planar reformation views (see Figure 5(b)).

The algorithm is controlled by a threshold on the length of the
extracted branch (9cm for coronaries) and a low threshold on the
gradient flow. These constraints were sufficient to prevent “leaking”
problems in all our experiments. Remaining parameters are the ini-
tial conditions (original seed point at the aortic root), the maximum
vessel radius rmax (fixed to 6mm for coronaries) and the number of
samples selected at each iteration (we used Nt = 100, ∀t).

Table 1 summarizes quantitative results for the 19 datasets. To
evaluate the overall robustness of the algorithm, we compared the
MAP results to the manual segmentations through the similarity in-
dex proposed in [14]: SI = 2TP

2TP+FN+FP
, where TP corresponds

to true positive portions (matching segments), FP to false positives
and FN to false negatives. We obtained a very high mean similarity
factor of 94.8% ± 6.2%. Early stop was observed in one stenotic
case. False positive segments were encountered at the distal end of
some branches and directly depend on the stopping criterion.

In terms of accuracy, results for centerline positioning (see also
Figure 4(c)) and radius estimation were satisfactorily in the order of
the data resolution (intra-slice resolution of 0.33 × 0.33mm, inter-
slice resolution from 0.33 to 0.6 mm). We stress that we focus more
on robust tracking than accurate surface segmentation. Our algo-
rithm output can serve as a close initialization for subsequent refine-
ments, simplifying such tasks through the availability of the center-
line and radius information.

Additionally, we observed that nearly optimal tracking perfor-
mance could be obtained with a very limited number of samples
(Nt 	 20). Increasing the number of samples improves the accu-
racy of the centerline and radius estimations. Nearly maximal ac-
curacy is reached for Nt = 100 samples in all cases. Our origi-
nal approach, which builds the entire distribution of potential suc-
cessors prior to sampling, potentially explains the very low number
of samples needed to attain acceptable tracking performance. This
compares very favorably with similar particle-based works such as
[4] and [5], which report the use of 1000 and 500 samples, respec-
tively. Results also appeared to be satisfactorily stable to additive
Gaussian noise. Until a noise standard of ∼ 100 Hounsfield units

(a) (b) (c)

Fig. 4. Result sample.
(a) 3D rendering of the heart with the extracted coronary branch; (b)
detail of the samples used by the filter, with the maximum a posteri-
ori (MAP) chain (dark blue curve); (c) detail of the MAP centerline
with the external envelope of the associated spheres, overlayed with
the manually segmented centerlines (dark blue curves).

Measure Mean Standard Deviation

similarity index 0.948 0.062
centerline position error 0.4mm 0.33mm
radius estimation error 0.33mm 0.21mm

Table 1. Quantitative evaluation results (see text).

(H.U.), which can be considered as a reasonably high noise level by
cardiac CT standards, similarity and accuracy measures are nearly
unaffected. Then, increasing noise first impacts centerline and ra-
dius estimation accuracy. With a noise standard deviation superior
to 200 H.U., the geometric information of the image is significantly
altered and similarity performance deteriorates as the algorithm fails
to track thin vessels disconnected by such a high noise level.

Overall, our Bayesian, multi-hypotheses framework ensures ro-
bustness by balancing prior knowledge and information extracted
from the image. It proved to be robust to local anatomical anomalies
such as aneurysms, stenoses and stents, as illustrated in Figure 5.

Computational efficiency is promising, especially given the high
number of hypotheses evaluated by our sampling scheme. On aver-
age, the extraction of a main coronary branch is performed in less
than 2 minutes on a Pentium 4 3Ghz computer. The computational
time is directly proportional to the number of samples, providing
the user with some degree of scalability between computational effi-
ciency and centerline and radius accuracy.
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(a) (b) (c) (d) (e) (f) (g)

Fig. 5. Result samples on data with local anomalies (indicated by arrows).
(a) result in presence of a stenosis, an aneurysm and a stent; (b) associated curved planar reformation (CPR) view; (c) result with a stent,
high curvature and thin distal end; (d) result with neighboring calcified branch and a stent; (e), (f) and (g) multi-planar reformation views of
different results in presence of stents and calcifications.

Fig. 6. Preliminary result on peripheral CT data.
Segmentation of the descending aorta and right iliac artery.

5. CONCLUSION AND PERSPECTIVES

In this paper, we presented a new tracking algorithm for the segmen-
tation of vascular structures from medical images. Our Bayesian
stochastic filter is inspired by recent developments in particle filter-
ing for image segmentation. Novel aspects of our method include
a constrained, medial-based geometric model, the use of prior dy-
namic knowledge learned from a ground-truth database and a new
sampling scheme able to cover hypothesis distributions broader than
classical particle filters while remaining computationally efficient.
Validation of the method for 3D CT coronary artery extraction ex-
hibits very promising results in terms of robustness and accuracy.

We are currently working on a multi-branch version of the algo-
rithm, exploring original solutions to cope with classical problems of
loss of diversity linked to importance sampling [10]. Other refine-
ments include more elaborate dynamics and better stopping crite-
ria. Last but not least, we emphasize the generality of our approach.
By simply changing the maximum vessel radius rmax, we obtained
promising preliminary results on peripheral CT data, as illustrated in
Figure 6. More generally, our method can be directly applied in 2D
and the geometric model is not specific to vascular structures. One
could imagine, for instance, to adapt our algorithm for road extrac-
tion from 2D satellite images.
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