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Abstract—Automated image segmentation is a crucial step to
characterize and quantify the morphometry of blood vessels.
Adaptive Optics Ophthalmoscopy (AOO) images of eye fundus
allow visualizing retinal vessels with a high resolution, espe-
cially arterial bifurcations, suitable to morphometric biomarkers
measurements. In this paper, we propose a fully automatic
hybrid approach based on a modified U-Net convolutional neu-
ral network and active contours for segmenting retinal vessel
branches and bifurcations with high precision. The obtained
segmentation results are within the range of intra-and inter-
user variability, and meet the performance of our previous semi-
automatic approach in terms of precision and reproducibility,
while being obtained in a completely automatic way.

Index Terms—Convolutional neural networks, segmentation,
retinal vessels, adaptive optics ophthalmoscopy images.

I. INTRODUCTION

This study is part of a project which aims at determining
the effect of some pathologies affecting blood flow in small
vessels, particularly within the brain [1]. Knowing that retinal
vessels are related to cerebral vessels and that they share
many structural, functional and pathological features, retinal
vessels may be considered in many ways as substitutes for the
cerebral vessels in clinical studies. Moreover, retinal vessels
are easily observable thanks to their planar arrangement and to
dedicated high resolution imaging systems, such as Adaptive
Optics Ophthalmoscopy (AOO) (Figure 1(a)). This recent and
non-invasive technique has a better resolution than classical
eye fundus imaging and enables us to observe microstructures
such as photoreceptors, capillaries and vascular walls.

The effect of diseases on the retinal vascular tree can be
determined by measuring morphometric biomarkers at the
bifurcations in AOO images, for both healthy and pathological
subjects. In fact, many biomarkers based on Murray’s law [2]
can describe relationships between the lumens (i.e. diameters)
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of bifurcating blood vessels and thus characterize blood circu-
lation. Deviations from Murray’s optimality have been related
to some pathologies such as stroke [3], diabetes [4] and high
blood pressure [5]. In some cases, these deviations can also
reflect the progress of the pathology. However, large clinical
studies performed on AOO images require automatic algo-
rithms for segmenting retinal vessels efficiently and calculating
biomarkers precisely.

Fig. 1: AOO image. (a) Retinal arterial bifurcation and arte-
riovenous crossing. (b) Segmentation of the arterial bifurca-
tion [6], [7].

This paper presents an extension of our previous work [6],
[7] in which we proposed automatic and semi-automatic
methods to segment vessels in AOO images acquired with a
RTX 1 system. In [6] we presented a fully automatic algorithm
to detect artery branches and delineate the arterial wall by
four curves approximately parallel to a common reference
line placed on the central reflection. The segmentation is
based on a parametric active contour model which imposes an
approximate parallelism between the curves to be more robust
to noise, blur and lack of contrast. The approach reaches a
high accuracy when the central reflection is well detected and
the active contour model correctly initialized. Then, building
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on this first segmentation, we proposed an additional step
to segment accurately the arterial bifurcations [7]. This step
takes as input the segmentation of the three branches involved
in the birfurcation and outputs the precise delineation of the
lumen at the bifurcation, thanks to another parametric active
contour model which adapts itself to the geometry of each
bifurcation (Figure 1(b)). Biomarkers characterizing vessels
and bifurcations can then be automatically calculated, and all
this framework, called AOV, has been already used to perform
several medical studies [8]. However, the main weakness of the
proposed method comes from the first steps related to the ves-
sel detection and then the initialization of the parallel snakes.
Both are not reliable enough, especially in some particular
cases with arteriovenous crossings (Figure 1(a)), pathological
vessels with large irregularities (Figure 2(b)) and vessels with
“trifurcations” (Figure 2(a)). For this reason, medical experts
use AOV in a semi-automatic way: they manually define the
vessel branches and bifurcations to be segmented by putting
points on the corresponding central reflections; they can also
correct the initialization of the parallel snakes. However, there
is a need for more automation.

Fig. 2: Some cases where segmentation is difficult. (a) Arterial
“trifurcation”. (b) Strong irregularity due to hypertension.

To this end, we present in this paper a hybrid method,
based on a modified U-Net deep convolutional neural network
architecture [9] and our active contour model under parallelism
constraint. The network enables us to get automatically a
binary mask of the vessel lumens, from which we detect
the vessel branches and initialize our active contour models.
This paper focuses on the proposed deep neural network and
presents a quantitative evaluation of the segmentation results
and biomarker estimates.

II. STATE OF THE ART

Most of the retinal vessel segmentation methods were
applied on conventional fundus images. However, to the best
of our knowledge, there is not yet a fully automatic and
reliable algorithm for retinal vessel segmentation in AOO
images. Convolutional neural networks (CNN) are widely used
for segmentation in medical imaging. Ronneberger et al. [9]
introduced the first CNN dedicated to such tasks, which is
known as U-Net. The concatenation of the high and low-
resolution features in U-Net allows the network to produce
a more precise output. Since then, this network has been used

to segment retinal vessels in classic fundus images. Lepetit-
Aimon et al. [10] have redesigned the central stage of the
U-Net network (the deepest stage, between the encoding and
decoding branches) by integrating a Fire-Squeeze structure
which was proposed originally by Iandola et al. [11] to
reduce the size of the Alex-Net model [12] without loss of
performance. This stage allows the characteristics to be broken
down into three convolutional layers. Each layer applies a
mask of different size (1× 1, 3× 3 and 5× 5). The obtained
features are then recombined by a 1 × 1 convolution. Li et
al. [13] proposed a U-Net architecture redesigned by residual
blocks called MResU-Net. This residual pre-activation block
which was recommended in [14] contains two convolutional
layers, and includes, before each of them, a batch normal-
ization layer (BN) and a ReLU function. The MResU-Net
architecture allows for the combination of local information
and global functionality, which is useful for improving the
detection of vessel contours. This is done by concatenating the
outputs of certain residual blocks in the encoding and decoding
branches. The proposed algorithm outperforms current state-
of-the-art methods on the publicly available DRIVE [15] and
STARE [16] datasets in terms of sensitivity, F1-score, G-mean
and AUC. Nevertheless, this architecture does not provide an
accurate segmentation in AOO images (see our experimental
results in Table I).

Limits of the proposed methods, when applied on AOO
images, come from the difference in resolution (about 10 to
20 µm/pixel in standard eye fundus images, and about 1 to
2 µm/pixel for RTX 1 AOO images). More importantly, retinal
vessels have an almost constant overall shape and section in
eye fundus images and a large field of view. By contrast,
AOO images have a smaller field of view, exploring a small
and random region of the eye fundus, in which we cannot
know the number of vessels nor their size and orientation,
which are highly variable. With these characteristics, AOO
images will generate coarser feature maps, impacting the
segmentation precision (e.g. unclear delineation of the vessels
at the pixel level, blob-like shapes); we have also a class
imbalance problem (vessels/background).

To account for the specificities of the AOO images, and to
achieve an accurate and automatic segmentation, we propose
a new fully automatic approach based on three steps: (1)
extracting the vessel mask using an adapted U-Net architecture
and an adequate learning strategy; (2) applying an active
contour approach to refine and regularize the segmentation;
(3) extracting vessel diameters and computing biomarkers.
These steps are described in Section III, which is the key
contribution of this paper. Results are illustrated and discussed
in Section IV.

III. CNN MODEL TO GENERATE A RETINAL VESSELS MASK

A. Model Architecture

In this work, we use the deep neural network U-Net
as a base model. The convolution blocks of the original
architecture are replaced by the feature extractor from the
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InceptionResNetV2 network [17] (without the last dense lay-
ers). The benefit of the InceptionResNetV2 network in our
case is that the blocks of this model integrate filters of
different sizes at every level. This is useful to better handle
the different sizes of vessels in the same AOO image, and
therefore we can expect a better robustness to this type of
variability. In addition, its variety of receptive fields and short-
cut connections showed remarkable results in both processing
time and performance [17]. Moreover, we have added a Fire-
squeeze block to the central stage of the U-Net (Bottleneck)
as suggested in [10]. This block replaces 3 × 3 filters with
1 × 1 filters (Squeeze layer), decreasing the number of input
channels to the next layer. Thus, we integrate a structure that
breaks up the characteristics into three convolutional layers
each applying a mask of different size (1×1, 3×3 and 5×5)
and then recombines them by a 1× 1 convolution. According
to [11] and due to the delayed downsampling, this will produce
larger activation maps which can lead to higher classification
accuracy. We will show that this structure indeed improves the
performance of our model (see Table I). The complete network
is shown in Figure 3.

Fig. 3: Proposed architecture, building on U-Net and Incep-
tionResNetV2, and including a Fire-squeeze structure at the
bottleneck.

B. Loss function

The loss function used to train the network is the Dice
similarity coefficient (DSC), which measures the agreement

between the model prediction (segmentation) P and the refer-
ence segmentation Q:

DSC =
2|P ∩Q|
|P |+ |Q|

(1)

Another usual loss function is the binary cross-entropy.
However, the results using this function were consistently
worse than those resulting from the DSC, and therefore only
the DSC is used in the results described next.

C. Training strategy
We trained the proposed model on our own dataset with

1440 × 1440 pixels images after normalizing pixel intensities.
The dataset was acquired at the Clinical Investigation Center,
Quinze-Vingts Hospital, with the RTX 1 adaptive optics cam-
era. To ensure the capability of our model to segment precisely
all types of vessels, we have imposed the following criteria to
build our learning dataset: (1) a balanced number of arteries
and veins; (2) a balanced number of sharp images and blurred
images; (3) presence of arteriovenous crossings; (4) presence
of arterial bifurcations and venous confluences; (5) presence
of healthy and pathological vessels (diabetic, hypertensive,
CADASIL). This way, our network will be able to cope with
the great variability of size and morphology of retinal vessels
in AOO images.

Among the total dataset of 65 images, 30 raw images which
met the criteria mentioned above were selected to train the
network (training set), 5 images were selected as the validation
set and 30 other images sharing the same characteristics were
selected for the testing set. Annotated data were obtained using
the manual mode of AOV software [6] and the delineation of
the lumens (i.e. internal contours of the vessels) was carried
out by experts. Afterwards we extracted the entire internal
section of the vessels to get the reference segmentations as
shown in Figure 4(b). To increase the amount of training
data and to solve the problem of the variability of vessel
directions, we implemented data augmentation methods. We
first extracted random patches from each image of the learning
set (input images and reference segmentations). A patch size
of 320 × 320 pixels has been chosen, which can cover a
considerable part of the vessels in AOO images. This technique
was performed at each epoch, which makes it possible to
increase the size of the training data set. In addition, we ap-
plied combinations of spatial transformations (horizontal flip,
vertical flip, transposition and 90 degree rotations to obtain the
original image and the corresponding reference segmentation
in all eight directions) and intensity transformations (additive
Gaussian noise and random contrast) to the training set. For
data augmentation, we used the “Albumentations” library [18].
This allows reducing overfitting during the training phase,
maximizing the invariance of the model and reducing the
detection of the vessel-like structures in the highly textured
background of AOO images.

For the training process, we used transfer learning, which
can effectively reduce training time and cope with the limited
number of training data. The network was pre-trained on
ImageNet [19], and fine-tuning was used.
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IV. EXPERIMENTS

The experiments described in this section are conducted
as follows: first, the segmentations obtained by the proposed
architecture (see Figure 3) and by other networks, Residual
U-Net and InceptionResU-Net, are compared. In order to
regularize and refine the output of the neural network, we
propose to apply our previously proposed active contour
method. On the final result, it is finally possible to measure
morphometric biomarkers automatically. These measures and
the segmentations are compared quantitatively with those
obtained from manual and semi-automatic methods [7].

A. Experimental set-up

We used stochastic gradient descent with an adaptive mo-
ment estimator (Adam) to train our model [20]. Both up-
sampling and down-sampling layers are followed by a dropout
of 0.2. The initial learning rate was set to 10−4 and was
exponentially decayed every 10 epochs. The batch size was
set to 24 and each model was trained for 150 epochs. The
experiments were implemented in Keras with a Tensorflow
backend and we trained our model on an Nvidia TITAN RTX
GPU.

B. Vessel mask evaluation

The performance of our model is evaluated by comparing
the predicted segmentation P with the corresponding reference
segmentation Q, using several indicators, such as the Dice
coefficient (DSC in Equation 1) and the boundary F1 metric
(BF1), which calculates the distance between the edges of the
vessels in the prediction and in the reference segmentation. Let
BP , BQ denote the boundaries of P and Q, respectively. Then
the precision (Pr) and the recall (R) are defined as follows:

Pr = 1
|BP |

∑
x∈BP

[[d(x,BQ) < θ]], R = 1
|BQ|

∑
x∈BQ

[[d(x,BP ) < θ]] (2)

where [[a]] = 1 is equal to 1 when statement a is true, and 0
otherwise, d(.) is the Euclidean distance measured in pixels, θ
is a predefined threshold on the distance; in all experiments we
set θ to 3, corresponding to the acceptable error for clinicians.
The distance from a point x to a set B is classically computed
as miny∈B d(x, y). The BF1-score is defined as:

BF1 =
2Pr.R

Pr +R
(3)

and represent the harmonic mean of the distance from BP to
BQ and the distance from BQ to BP .

We applied our training strategy on three different archi-
tectures with the same loss function and hyperparameters. We
evaluate the performances by comparing our results with the
corresponding reference segmentations. Results are shown in
Table I.

According to Table I, our architecture (U-Net + Inception-
ResNetV2 + Fire-squeeze) has an overall high level of precision
and it obtains the highest results in terms of recall, DSC and
BF1-score. Thus, it will be used as the main architecture in the
sequel. Figure 4 shows two examples, with the input image (a),

TABLE I: Evaluation of the segmentation obtained with the
proposed strategy and Residual U-Net, InceptionResU-Net,
and the proposed InceptionRes U-Net with Fire-squeeze.

Precision Recall DSC BF1-score
Residual U-Net 0.96 0.83 0.89 0.89

InceptionResU-Net 0.98 0.88 0.93 0.92
InceptionResU-Net + Fire-squeeze 0.97 0.96 0.96 0.96

the reference mask (b) and the mask predicted by the proposed
model (c).

Fig. 4: Segmentation results of our model. (a) Original AOO
images. (b) Corresponding reference segmentations. (c) Vessel
masks predicted by our U-Net + InceptionResNetV2 + Fire-
squeeze architecture. The red arrows indicate where local
improvement is needed.

The results in Figure 4(c) show that our model is capable
of extracting the vessels in AOO images, including simple
arteries, simple veins, simple bifurcations and arteriovenous
crossings. However, the detection of arteriovenous crossings
is not always accurate (Figure 4(c)) and sometimes not con-
sistent. In addition, when the image presents a small vessel that
is not planar enough in the eye fundus, the black area between
the central reflection and the vessel lumens becomes gray.
Thus, the vessel will be classified partially as background.
This particular case is illustrated in Figure 5.

Fig. 5: Particular case of partial vessel detection.

In our testing set of 30 images, we obtained 28 masks with
a complete detection (93.3%) against 2 with a partial one as in
Figure 5. Visually speaking, the segmentation is good for these
28 images. However, the precision level is not always sufficient
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to calculate the biomarkers with high accuracy, particularly
at arterial bifurcations (see CNNMask results in Table III).
Therefore, we propose in the following subsection a post-
processing method to refine and regularize the contours of the
vessels, extract the diameters and calculate the morphometric
biomarkers.

C. Vessel contours refinement and regularization

The median lines of the segmentation mask are calculated
through morphological operations and the main branches are
extracted after the automatic analysis of the branch points.
So, the structure of the vascular tree is fully recovered, with
birfurcations and arteriovenous crossings, all branches being
labeled. The classical parametric active contour model [21] is
initialized with the center line of each branch and applied to
a Tophat image to match the central reflections, as in our pre-
vious work [6]. Then the inner borders of the vessel branches
are extracted from the segmentation mask, and the parallel
active contour model [22] is applied to refine and regularize the
segmentation. The two last steps, i.e. the segmentation of the
outer borders and the segmentation of the bifurcation, follow
the same methodology as the one described in [6] and [7]
respectively, as well as the computation of the biomarkers
(see next subsection). Figure 6 shows the final fully automatic
segmentation of arterial bifurcations on two images. The result
on the right is obtained on the same image as in Figure 4, and
illustrates the improvement achieved with the refinement and
regularization step.

Fig. 6: Final segmentation of an arterial bifurcation on two
examples. The green arrow indicates the improvement with
respect to the result in Figure 4.

D. Quantitative evaluation

We consider again the database of ten images used in our
previous work for the quantitative evaluation [7]. These im-
ages were selected by the medical experts to take into account
image quality and morphology variability encountered in clin-
ical routine. Three physicians (Physj) delineated manually
the lumen at the birfurcation and five images were processed
twice by each physician to study the intra-expert variability.
We will evaluate the accuracy of the final segmentation by
calculating mean squared errors (MSE) between the automatic
and manual delineations. We will also evaluate the quality of

biomarker estimates, by comparing measures obtained from
the manual segmentations and from the automated ones.

Arterial bifurcation morphometry can be evaluated by mea-
suring biomarkers derived from Murray’s law [2]. The most
known is the junction exponent x. Denoting by d0 the parent
diameter, and d1 and d2 the child diameters, this biomarker is
defined by:

dx0 = dx1 + dx2 (4)

Murray stated that x = 3 for an ideal bifurcation. However,
solving Equation 4 may lead to negative values of x. This
may happen in particular for pathological subjects [3], in
cases not considered here. Therefore, we have selected another
biomarker, that is derived from the asymmetry coefficient
λ = d2/d1 (d2 < d1) and the branching coefficient, defined
by:

βdev = βoptimal − βmeasured (5)

where βmeasured is given by:

βmeasured =
d21 + d22
d20

=
1 + λ2

(1 + λx)2/x
(6)

and the optimal branching coefficient βoptimal is given by the
right hand side of Equation 6 with x = 3. The biomarker βdev
is always calculable and provides information on the deviation
to Murray’s law optimum.

In practice, we estimate the branch diameters in regions
derived from the largest circle inscribed in the bifurcation (i.e.
tangent to the segmentation), similarly to [23]. Let us denote
by Rb the radius of this circle. The measurement region starts
at a distance equal to one radius Rb from the intersection point
between the circle and the central reflection, up to 2Rb. We
calculate the median of the diameters measured in this region
(more robust to outliers than the mean value).

In our quantitative evaluation, we evaluate the accuracy
of the segmentation on the circular region of radius 4Rb

centered on the bifurcation. We consider the three curves
that delineate the lumen at this bifurcation, and we calculate
the mean squared error (MSE) between the manual and the
automatic curves. Branch diameters and biomarkers are also
calculated from both the manual and automatic segmentations,
and compared. We denote by δd0,1,2, δβdev and δx the
measured differences (averaged over the three branches for the
diameters). The results are then averaged over the test cases
to obtain mean and standard deviation values. Note that one
image has been excluded from the evaluation, compared to [7],
because it has an incomplete vessel mask due to a small and
poorly contrasted branch in the bifurcation (case presented in
Figure 5). So, for the sake of comparison, all numerical results
come from the 9 other images. Table II shows the intra-expert
variability measured from the five segmentations realized
twice by each expert. The physician Phys3, who obtained
the most stable results on the biomarkers, was chosen as
reference for the inter-experts and software/expert variability
study. Table III summarizes the results obtained with the semi-
automatic method [7] (software1), from the CNN binary
mask (without refinement and regularization of the boundaries
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by the active contour models, CNNMask) and with the fully
automatic method presented in this article (software2).

TABLE II: Intra-expert variability (MSE and diameters ex-
pressed in pixels).

MSE δd0,1,2 δβdev δx
Phys1 2.43± 0.90 +0.84± 2.22 0.00± 0.09 −0.10± 0.49
Phys2 2.80± 0.99 −0.62± 3.98 0.00± 0.11 +0.41± 1.24
Phys3 2.04± 0.96 −1.18± 2.09 +0.01± 0.02 +0.07± 0.11

TABLE III: Inter-expert variability and software/expert vari-
ability. Values are expressed in pixels for MSE and diameters.

Seg/Ref MSE δd0,1,2 δβdev δx
Phys1/Phys3 2.37± 0.96 +0.58± 3.16 +0.05± 0.06 +0.64± 1.33
Phys2/Phys3 3.26± 1.88 +0.82± 6.08 −0.02± 0.19 −0.67± 2.70

Software1/Phys3 3.14± 1.12 +3.20± 2.49 +0.03± 0.06 +0.18± 0.34
CNNMask/Phys3 5.22± 1.93 +7.41± 5.66 +0.08± 0.15 +1.14± 1.70
Software2/Phys3 3.16± 1.53 +2.54± 4.04 +0.02± 0.05 +0.13± 0.24

MSE values obtained with the proposed method
(software2) are similar to the ones achieved with the
previous method (software1) [7] but obtained this time fully
automatically thanks to the CNN. The significant gap between
the results of CNNMask and software2 demonstrates the
usefulness of applying the active contour models to refine
the vessel lumen delineation. Diameter estimates are slightly
better than the previous ones, errors are consistent with
the MSE, but there is still a bias revealing a small over-
segmentation. Nevertheless, our automatic method reaches
the best accuracy regarding the biomarkers, both in terms of
mean error and standard deviation. The proposed CNN model
enables us to properly initialize our active contour models,
so that we obtain accurate final segmentations and biomarker
estimates without the need for expert supervision.

V. CONCLUSION

In this paper, we proposed a cascade of a neural network,
based on a new architecture accounting for the size variability
of vessels, and active contours to achieve a completely auto-
matic segmentation of retinal blood vessels in adaptive optics
images. The benefit of the neural network is to provide a first
automatic segmentation (once the network is trained), which is
combined with the regularization and precision features of the
active contours. Results show that the method meets medical
requirements in terms of reproducibility and precision, and
allows deriving useful biomarkers for further medical analysis.
Future work aims at improving the extraction of masks for
arteriovenous crossings and poorly contrasted small vessels,
and at classifying arteries and veins.
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