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Abstract—In this paper we propose a new method for 

segmenting retinal vessels in adaptive optics images. This method 
is particularly dedicated for segmenting vessels with significant 
morphological alterations due to vasculitis, but it is also accurate 
for vessels with moderate or without alteration. It relies on a pre-
segmentation step which is crucial for the robustness and accuracy 
of the results. This step is based on a specific morphological 
processing of isolines of the original image: they constitute of good 
basis for the segmentation because they are disposed along the 
wall borders of the vessels. Regularization is then performed using 
active contour model embedding a parallelism constraint. This 
novel model allows precise segmenting inner and outer walls of the 
vessel. In particular it is more accurate in the case of vasculitis than 
the existing methods. This is the only method that allows 
quantification. The results and the runtime make it suitable for 
clinical use. 

Keywords— Parallel snakes, isolines, retinal vessels 
segmentation, vasculitis, adaptive optics imaging.  

I. INTRODUCTION 
In this paper, we address the problem of segmentation of retinal 

vessels in difficult pathological cases (namely vasculitis) from 
recently developed adaptive optics imaging [1]. Retinal vasculitis is 
an inflammation of retinal vessels that may occur in the course of 
various inflammatory diseases, either as an isolated or systemic 
disease. It affects veins more frequently than arteries. Clinically, 
retinal vasculitis appears as a vascular sheathing more or less visible 
on retinal photography. Until recently, there has not been any 
quantitative study of retinal vasculitis. As recently reported, flood 
illumination adaptive optics (FIAO) imaging allows for sensitive 
detection of retinal vasculitis [2]. FIAO is a recent technology that 
enables the visualization of retinal microstructures such as 
photoreceptors [3] and arterial walls [4], noninvasively [5]. The 
resolution of the Rtx1 camera [6] used in our study is about 
1.6µm/pixel. To be processed, the raw images are averaged as 
detailed in [7]. With FIAO, vascular sheathing appears as fusiform or 
linear opacities up to 50µm wide, on both sides of vessels, often co-
localized with focal vascular narrowing. The width of the 
perivascular opacification follows the clinical course of the disease, 
making an interesting biomarker. Such opacification most likely 
corresponds to the infiltration of the inflammation cells when 
comparing to previous histopathology findings of retinal vasculitis. 
Both vasculitis symptoms are illustrated in Fig. 1. The segmentation 
of artery walls is especially difficult, even in case of healthy patients, 
because of several factors: (i) high textured background, (ii) 
significant intensity variation along the lumens (Fig. 1) even if they 

are globally dark, (iii) local discontinuities or poor contrast of the 
axial reflection, (iv) low-contrast of the outer borders of the walls, 
(v) local blurring of the segments due to the geometry of the retina, 
(vi) local deformations along vessels in case of pathologies, (vii) high 
variability in the images.  

 
a) 766 × 667 pixels 

 
b) 383 × 333 pixels 

 
c) 333 × 200 pixels 

Fig. 1. a) Image of healthy retinal artery and vein acquired with the 
Rtx1 camera [6] [7]; b) Detailed view of a healthy artery; c) Image of 

artery with vasculitis symptoms. Image resolution: 1.6 µm/pixel. 
In our previous work, the segmentation of retinal vessels in 

Adaptive Optics images (FIAO) focused on the segmentation of 
arteries in healthy subjects and pathological subjects [8] [9] [10], and 
was based on two main steps: (i) a pre-segmentation step to initialize 
the four curves that delineate the parietal wall; (ii) the application of 
a new parametric snake algorithm integrating structural a priori 
information, such as the approximate parallelism of the interfaces 
and/or the approximate symmetry of the parietal wall with respect to 
the axial reflection. We proposed two models named respectively 
“parallel snakes” (PS) [8] [9] and “coupled parallel snakes” (CPS) 
[9]. Both are derived from the classical snakes of [11] but include 
additional terms in the energy functional in order to integrate 
structural information and thus gain in robustness and accuracy.  

The pathologies we have addressed up to now (named 
pathological cases of Type 1 in the following) show moderate 
alteration of vessel morphology and the performances evaluated on 
the database were good: the automatic segmentations were close to 
those made by medical experts and the derived measures were in the 
range of those obtained by the experts, given the intra- and inter-
expert variability [8] [9] [10]. However we observed that these 
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methods fail in case of diseases that alter strongly vessel morphology, 
as vasculitis. To the best of our knowledge, there are no other 
methods which address this problem in such images, due to their 
novelty. 

In this paper, we propose a new pre-segmentation method that is 
more robust and accurate. This new pre-segmentation step is 
followed by the application of the coupled parallel snakes (CPS), 
leading to good performances for heathy cases, as well as difficult 
pathological cases, including vasculitis. The runtime is dramatically 
reduced, which is very important when processing large databases for 
clinical studies. In Section II, we briefly remind the approach of [8] 
[9] [10], and we show its limitations in vasculitis cases. In Section III 
we present the new method for the pre-segmentation step. 
Experiments are presented in Section IV. We show that the obtained 
accuracy on our previous databases (heathy cases and pathological 
cases of Type 1) is maintained while the performances on the 
vasculitis database are much higher. 

II. SEGMENTATION OF VESSELS WALLS AND LIMITS  

The automatic pre-segmentation described in [8] [9] [10] is based 
on the detection of the axial reflection of the vessel branches 
followed by a tracking procedure to initialize the four curves that 
delineate approximatively the parietal wall, on both sides. Let us 
denote by V(s)=(x(s),y(s))T the curve representing the axial reflection 
(reference line), parameterized by s, and  sn

  the vector normal to 
this reference curve. In the pre-segmentation step, the four curves 
Vi(s), i=1,…,4 are defined in Equations (1) by their local distance, 
bint(s) or bext(s), to V(s): 

       
       
       
       

















snsbsVsV
snsbsVsV
snsbsVsV
snsbsVsV

s

ext

ext









4

3

int
2

int
1

,
    (1) 

with bext(s)- bint(s)>0, s . 

The formulation in (1) imposes a strict symmetry of the parietal 
structures with respect to V(s). The search for the starting point of the 
tracking procedure as well as the tracking itself are based on the 
optimization of a cost function including gradient information, 
regularity constraints and structural constraints (via the definition of 
the curves) (see [10] and [12] for more details).  

Then the CPS active contour model [9] is applied to more 
accurately position the curves found by the pre-segmentation. In this 
step, the symmetry imposed in (1) is relaxed and the four curves are 
defined, as illustrated, in Fig. 2, by: 
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Fig. 2. Parametric representation of the model proposed in [9] [10]. 

Thus, the inner (respectively outer) curves do not have to lie at 
the same distance to the reference line; additionally, the wall 
thickness has not to be constant and can be different from one side to 
the other. However, we keep some interdependence between the four 
curves in the CPS model, defined by the following energy functional: 
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where 
1. EIm(Vk) is a classical image energy term based on gradient 
information [11] [13], 

2. R(V,bk) imposes an approximate parallelism between each 
curve and the center line, by controlling the evolution of bk: 
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3. S(Vi,Vj,bi,bj) controls the variation of the wall thicknesses 
with respect to the initial estimate,  

4. T(V1,…V4,b1,…b4) controls the difference of wall thickness 
between both sides: 
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The interdependence expressed in R and T is useful to gain in 
robustness with respect to noise and lack of contrast. The importance 
of each term is weighted by a scalar (φ, ψ1,3, ψ2,4 and λ). Setting 
ψ1,3=ψ2,4=0 and λ=0 leads to the PS model, where the four curves 
evolve independently, the only implicit interdependence being their 
approximate parallelism with respect to V(s). 

As explained in [8] [9] [10], accurate results are obtained for 
healthy arteries or arteries suffering of pathologies that do not 
strongly affect their morphology. Otherwise, the symmetry 
constraints imposed in the tracking process are too strong to deal 
with sharp or asymmetric deformation of the inner or outer borders. 
Moreover, tracking procedures are applied locally and lack 
robustness when analyzing difficult images. Fig. 3 shows the pre-
segmentation and final segmentation obtained for a case of vasculitis. 
The pre-segmentation is rather far from the desired contour and the 
application of the coupled parallel snakes cannot correct this bad 
initialization. Considering the 20 images of our database of 
vasculitis, the algorithm completely fails for two cases, provides 
inexact segmentation of the lumen for 11 cases, and can never find 
perivascular opacifications. These results show that our pre-
segmentation algorithm has to be redesigned in order to deal with 
opacifications and focal vessel narrowings (i.e. sharp variation of 
lumen diameter), these two features being of high medical interest 
for the study of this new type of pathology. Note that the axial 
reflection is correctly detected. Hence this part of the method does 
not have to be modified. 

  

  
Fig. 3. Vasculitis case and details (top); pre-segmentation (bottom-
left) and segmentation (bottom-right) obtained by the method of [9]. 

The segmentation task must provide an accurate delineation of 
the vessel inner borders and an estimation of the outer side of the 
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opacification. The main difficulties are related to the irregularities of 
the inner wall and the very low contrast at the outer sides of the 
opacification.  

It is worth noting that the wall of veins is much thinner than the 
artery wall, and generally not visible in FIAO images, even in case of 
healthy patients. Also, the wall of arteries affected by vasculitis is 
generally not discernable either. So the outer border provided by our 
algorithm will be the outer side of the opacification in all cases of 
vasculitis presenting this feature, whether veins or arteries.  

III. NOVEL PRE-SEGMENTATION ALGORITHM 
The original grayscale image is first enhanced by contrast 

stretching. The intensity values I(x,y) are normalized in the range 
[0,1]. We assume that the axial reflection V of every vessel branch is 
known (Fig. 4a), and obtained with the method described in [8]. Our 
new approach is based on the isolines of I to pre-segment the four 
searched borders.  

A. Isoline extraction 
Isolines are contours of holes and connected components of the 

binary image obtained after thresholding the grayscale image I at the 
levels  1,0ith .  

 
a) Enhanced image I with the axial 

reflection V 

 
b) Bi, i=3 

 
c) Isolines 

 
 

d) Zoom on isolines 

Fig. 4. Isolines definition 
thi {0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9}. 

In our study, we assume that the overall image lighting is 
homogenous. We use 9 regularly spaced threshold values: thi=i/10, 
i {1,…9}. The thresholding is followed by a morphological opening 
and a closing with a binary disk of radius 10 pixels, in order to 
remove the smallest components. We denote by B i the binary image 
obtained for index i (Fig. 4b). Fig. 4c and Fig. 4d show the set of 
isolines found from the images B i for the 9 thresholds. We observe 
that some of these isolines are located along the vessel and very close 
to the walls we want to localize. Thus, the pre-segmentation step 
amounts to selecting the most suitable contour points from the 
isolines. For that, we propose a three-step processing: 

1. We pre-process each binary image B i in order to get a 
single connected component M i  including the axial reflection and 
whose contours are close to the vessel borders (Section B).  

2. We extract the relevant contour points from every mask 
M i , dealing with concavities and/or checking intensity properties. At 
the end, every point of the discretized central reflection line V has 
two correspondent contour points, one by side (Section C). 

3. We select the index i that leads to the best pre-
segmentation of the inner borders and the outer borders, by 
optimizing pixels intensity in regions or on curves defined by the 
selected relevant contour points (Section D and E). 

B. Getting the masks M i 
Step 1 is achieved by intersecting the binary image B i with a 

tubular region 
maxrT  centered on the axial reflection (Eq. 3) and 

whose radius 140max r  pixels corresponds to the maximal size of 
retinal vessels (see Fig. 5a for i=2):  

  rVPdIPTr  ,/ ,    (3) 
where d denotes the Euclidian distance. 

We also detect the internal region of the vessel thanks to a 
classical region-growing algorithm applied to the morphological 
opening of the image I with a disk of radius r0. The purpose of the 
opening is to remove the axial reflection (Fig. 5b). The radius r0 (Eq. 
4) of the structuring element corresponds to the radius of the tubular 
region centered on V which minimizes the mean intensity in I: 
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where |T| denotes the cardinality of the set T. 

The seed of the region growing algorithm is made of the points of 
V. The resulting binary image is denoted by M 0 (Fig. 5c). We select 
the relevant connected components of B i ∩ Trmax by performing a 
reconstruction of M 0  under the image B i ∩ Trmax. In this way, the 
retained connected components are the ones that intersect the vessel. 
We finally fusion the resulting image with M 0 , providing (Fig. 5d) 
the image M i . 

 
(a) B i ∩ Trmax 

 
(b) Image opening 

 
(c) M 0  

 
(d) M 2  

Fig. 5. Definition the mask M i  for i=2. 

C. Selection of contour points from M i 
Step 2 deals with potential concavities to select relevant points. 

Let us denote by V(s) the sampled reference line, where s=hk and h 
is the sampling interval, and  sn

  the vector normal to V at V(s). For 
every point V(s), we want now to define two corresponding points 
Vj

i(s) on either side of the central reflection (j=1,2), as close as 
possible to the inner vessel borders. As the contour of the mask M i  
may exhibit irregularities and concavities, one has to select the 
suitable candidates. 
Let us consider a specific point V(s) of the axial reflection. Candidate 
border points C are the contour points of M i  that are close to the 
straight line passing through V(s) and normal to V at V(s). They can 
be easily selected on both sides of V by calculating the determinant 

    snsCV ,det  (almost 0) and the sign of the inner product 

   snsCV . . For each side j, we select as Vj
i(s) the candidate point 

which is the closest to V(s). We finally check the orientation of the 
image gradient vector at this point, knowing that the internal part of 
the vessel is darker that the external part. In case of inconsistency, 
Vj

i(s) is corrected and placed at the mean distance between V and Vj
i. 



Thus we get a unique pair (V1
i(s), V2

i(s)) of border points for each 
V(s), and this for every mask M i . 

D. Pre-segmentation of the inner borders of the walls  
As the overall image illumination is homogenous, we can 

suppose that the intensity is rather stable along the two inner borders 
of the vessels. This is why we search for two sets of candidates Vj

i, 
j=1,2, coming from the same level thi. We select the index i0 that 
minimizes the mean intensity level of the pixels inside the region 
delimited by V1

i and V2
i. Fig. 6 illustrates the result found in the 

example of Fig. 4a. In this case, i0 = 2. Most of the points are 
actually on the inner borders, and the other ones will be easily 
corrected thanks to the image and regularization forces of the CPS 
active contour model, providing the inner borders 0i

jV , j=1,2.  

  
Fig. 6. Pre-segmentation of inner walls and zoom. 

 
E. Pre-segmentation of the outer borders of the artery 
walls or of the inflammation 

The ultimate step is the pre-segmentation of the outer borders of 
the parietal wall (Type 1) or of the outer border of the inflammation 
(Type 2). To simplify, we will call them the outer borders of the wall 
in both cases in what follows. They are sought from the candidate 
contours Vj

i with i > i0 but not necessary at the same level for the two 
sides j of V. The proposed method is the same for both types of 
images, with only a different parameter setting: indeed, the wall 
thickness range (distance between the inner and the outer borders) is 
TR1=[2µm; 20µm] for the first type, while it is TR2=[2µm; 60µm] for 
the second one. These values come from physicians’ expertise.  

The segmentation of the outer borders is a real challenge, 
especially because of the high variability in the images. We observe 
that the outer borders of Type 1 are mainly characterized by their 
gradient while the outer borders of Type 2 correspond to the border 
of a textured region along the vessel, with very low contrast with the 
background. In addition, the appearance of the opacification is highly 
variable from one inflammatory vessel to another one. Finally, there 
are vessels which present the two types of outer borders. 

The proposed method deals with the simultaneous search of the two 
types of outer borders. Because of the difficulties mentioned above, 
three pairs of outer borders are proposed to the physicians at the end 
of the process: one in TR1 and two in TR2. The physician has just to 
select the best pair according to his own interpretation and expertise. 
This approach allows for a complete automatization of the 
segmentation process until the final decision and takes into account 
the difficulty of the image interpretation, even by experts (see the 
analysis of the intra and inter-experts variability in Section IV). 

The original image I is first pre-processed to highlight the different 
textured regions and their contours (for the search of outer borders of 
Type 2), while keeping the main contours in the image (for Type 1). 
The processing consists in: 

1. denoising the textured regions in the image I,  
2. highlighting the regions contours, 
3. selecting the contours. 

For Step 1, the image I is filtered by three alternate sequential 
filters (ASF), with a binary disk of maximal size respectively equal 

to 10, 20 and 30 pixels, providing three images ASFk, k  {10, 20, 
30}. These filters remove gradually the positive and negative noise 
and make the regions more homogeneous (Fig. 7b). 

The contours of each image ASFk, k  {10, 20, 30} are then 
enhanced (Step 2) by computing the standard deviation in a 3-by-3 
neighborhood around each pixel. The grey levels of the resulting 
images Pk , k {10; 20;30} are normalized in [0,1] (Fig. 7c). 

 
a) Original image 

 
b) ASF10 

 
c) P10 in [0,1] 

Fig. 7. Image processing for outer borders analysis. 

The last step aims at selecting among the contours Vj
i (j=1, 2), 

the candidates liV ,1
1 and liV ,2

2 that maximize their mean intensity in 
the images Pk, considering the thickness ranges TRl defined by the 
experts (l=1, 2). In this optimization, we only consider the candidates 
coming from a level thi, with 0ii  . Moreover, only the pixels 
included in the region of interest are in the maximization. So, for the 
border j and the interval TRl, the chosen candidate lji

jV , is selected 

by:   
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If the selected contours lji
jV , (j=1,2 and l=1,2) contain points whose 

distance to the central curve is not in TRl, these points are relocated 
one by one at the mean thickness of TRl.  

  

  
Fig. 8. Images with regularized inner borders and with selected outer 

borders (images on the left); details (images on the right). 

Among the three segmentation of the outer border of the walls (one 
pair of contours in TR1 and two in TR2), the user selects the contours 
he wants to analyze on each side of the central reflection (Fig. 8). 
This approach enables us to deal with the great difficulty of image 
interpretation (Section IV) while minimizing the expert intervention. 

IV. EVALUATION AND DISCUSSION 
A database of 15, 17 and 20 images from, respectively, healthy, 

pathological and vasculitis subjects was gathered, so as to ensure the 
representativeness of the cases encountered in clinical routine. 
Images were manually delineated by three physicians, experimented 
in the field of AO image interpretation. The two first sets of images 
(healthy, pathological of Type 1), used in [10], is denoted by DB1 in 
the following, while the set of vasculitis images is denoted by DB2. 
We evaluate quantitatively the accuracy of a local measure r(s) 



obtained automatically (A) by the proposed approach by computing 
the relative difference in % with the measure derived from a manual 
segmentation (M): 
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The three evaluated measures are the inner radius (denoted IR; b1 
and b2 in Eq. 2), the outer radius (denoted OR; b3 and b4 in Eq. 2), 
and the wall thickness (denoted WT; b3-b1 and b4-b2 in Eq. 2). For 
the images of the database DB2, the wall thickness actually 
represents the thickness of the perivascular inflammation. These 
measures are made on every image and on each vessel side. The 
mean and standard deviation of δr

(M,A)(s) are then calculated, and the 
results are finally averaged over images and vessels (Tables 1, 2, 3). 

We chose the manual segmentation of the most experienced 
physician Phyref as a reference (rM(s) in Eq.6). The same statistics are 
computed to evaluate the manual segmentations of the two other 
physicians with respect to the reference ones, and also the variation 
between two segmentations of the same physician (inter and intra-
physician variability). Since the arterial wall and the perivascular 
inflammations are very difficult to delineate with a one pixel 
precision, we also provide the above statics (mean and standard 
deviation) for a one pixel displacement along the curves. In this case, 
the numerator in Eq. 6 becomes equal to one. These values are in 
parentheses in Tables 2 and 3. 

The aim of this experimental study is to evaluate the pre-
segmentation method proposed in this paper and to compare it with 
the previous one [10]. The comparison is made on the databases DB1 
and DB2 separately. Moreover, the evaluation is performed on the 
final segmentations, so after application of the CPS active contour 
model (Section II). The parameters of the CPS model were optimized 
so as to lead to the most accurate segmentation, on one third of the 
images of the databases DB1 and DB2, representative of the 
variability. We found that (ψ=0.02, λ=0.05, φ=100) is the best set of 
parameters for both kinds of pre-segmentations. The same 
parameters were used for all the other images. 

Table 1 shows the results obtained on DB1 with the previous pre-
segmentation method (TRACK+CPS) [9] and the new one 
(ISO+CPS). For the database DB1, the process of ISO+CPS is fully 
automatic, as for the method TRACK+CPS, since we only consider 
one pair of external borders in TR1. In Table 1, we observe that the 
ISO+CPS algorithm leads to slightly less accurate measures than 
TRACK+CPS. The difference is inferior to 1% for the inner and 
outer radii and inferior to 2% for the wall thickness, which is a very 
sensitive measurement. The unit displacement along curves indicates 
that the difference between the two models is inferior to 1 pixel, i.e. 
1.6 µm. The p-values (Table 1) calculated to compare the means 
values of )(),( sAM

r obtained by TRACK+CPS vs. ISO+CPS, are 
superior to 5% (Wilcoxon test [14]), so the difference between the 
two methods on DB1is negligible. Finally, the inter-physician error is 
about two pixels, so we can conclude that the two models lead to a 
very good accuracy. 
Table 1 Auto vs. Phyref for TRACK+ CPS and ISO+CPS models, p-

values, and inter-physician relative error for the inner radius, the 
outer radius and the wall thickness, evaluated on DB1, values in %. 

 TRACK + 
CPS 

ISO + CPS Inter-ph. error p-value Unit displac. 
along curves 

 IR 4.99 ± 5.58 5.86 ± 8.06 5.18 ± 4.32 42 2.04 ± 0.69 
OR 3.71 ± 3.54 4.13 ± 4.39 4.52 ± 3.76 18 1.5 ± 0.46 
WT 17.63 ± 15.39 19.02 ± 16.28 21.67 ± 19.59 14 6.16 ± 2.47 

Let us now detail the results on the vasculitis database DB2 
(Table 2, Table 3). For the database DB2, the process ISO+CPS is 
not fully automatic, since the method outputs three pairs of external 

borders. We keep the pair which is the closest to the reference 
segmentation. For the three measures, WT, IR and OR, the error on 
DB2 (Table 2) is higher than on DB1 (Table 1), especially for WT. 
Indeed the automatic segmentation of the vasculitis walls is 
particularly difficult, especially in the region of the perivascular 
inflammation which is very little contrasted. As a consequence, the 
standard deviation values are close to or even higher than the mean 
values in Tables 1 and Table 2, showing that the stability of the 
method is difficult to reach. It is corroborated by the high values of 
inter-physician (Table 2, Fig. 9) and intra-physician (Table 3, Fig. 9) 
variabilities, indicating that there is no real consensus among 
physicians about the accurate location of the outer border of the 
walls. Table 2 shows that the two automatic methods are equivalent 
for the inner border, with quite high errors. Indeed the contrast in 
these images is generally low and the vessel lumen presents often 
focal narrowing. However the ISO + CPS model is significantly more 
accurate for the outer borders and wall thickness, and the measures 
match those of experts.  

Table 2 Auto vs. Phyref for TRACK+PCS and ISO+CPS models, and 
inter-physician relative error for inner radius, outer radius and 

perivascular inflammation thickness, evaluated on DB2, values in %. 
 TRACK + CPS ISO + CPS Inter-ph. error 
IR 12.87 ± 16.91 

 (3.16 ± 1.04) 
12.78 ± 16.24  
(3.16±1.04) 

9.39 ± 8.50 
( 2.96±0.95) 

OR 21.27 ± 17.26  
(2.00 ± 0.67) 

10.38 ± 9.60  
(2.00 ± 0.67) 

11.42 ± 11.92  
(1.96±0.58) 

WT 58.89 ± 44.01 
(3.91 ± 5.22) 

34.60± 38.37 (6.91± 
5.22) 

46.22±80.18 
(7.29±5.70) 

 

Table 3 Intra-physician variability for the inner radius (IR), the outer 
radius (OR), and the perivascular inflammation thickness (WT), 

evaluated on DB2, values in %. 
 Phys1/ Phys1 Phys2/ Phys2 Phys3/ Phys3 
IR 7.32 ± 10.66 

(3.11 ± 1.03) 
7.18 ± 9.22 
(3.06 ± 1.03) 

10.32 ± 10.05 
(2.96 ± 0.95) 

OR 8.97 ± 10.85 
(1.99 ± 0.63) 

8.97 ± 8.28 
(2.02 ± 0.67) 

8.44 ± 7.63 
(1.96 ± 0.58) 

WT 53.55 ± 2225.25 
(16.99 ± 352.20) 

35.87 ± 47.57 
(15.36 ± 10.17) 

40.18 ± 64.07 
14.58 ± 11.41 

We also computed the root mean square error (Eq. 7) in order to 
get absolute values expressed in pixel unit. The values are then 
averaged on vessel borders and images to provide the statistics given 
in Table 4). These statistics follow the same tendency and confirm 
the previously analysis. 
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Table 4 Statistics on DB1 and DB2 with the quadratic error, in %. 
 DB1 DB2 
 TRACK + 

CPS 
ISO + CPS Inter-Ph. 

error 
TRACK + 
CPS 

ISO + CPS Inter-ph. 
error 

IR 2.84±1.64 3.45± 2.55 2.98±1.3 4.94 ± 4.68 4.16±2.45 3.85±1.74 
OR 2.99±1.68 3.48± 2.04 3.62±1.89 14.88±11.59 6.32±3.7 7.47 ±5.5 
WT 3.45± 1.6 3.91±1.80 4.3± 1.92 14.56±10.77 6.79±3.46 7.99 ±5.46 

 
17.08± 19.42 (IR), 6.97± 5.26 (OR), 

25.30± 40.04 (WT) 

 
15.78± 14.01 (IR), 9.64± 7.28 (OR), 

25.0± 36.75 (WT) 
Fig. 9 Illustration of intra- (left) and inter-physician (right) 

variability, with relative error values in %. 



To detail the statistics, the images were classified by the medical 
experts into three categories according to their quality, considering 
the contrast of the outer edge of the wall (Table 5): high, medium and 
low quality (Fig. 10). Of note, this quality evaluation is highly 
correlated to the inter-physician error for OR. The table confirms the 
higher quality of the segmentation with the ISO+CPS model than 
with TRACK+CPS, except for IR in category B. This is due to two 
images that are particularly difficult to segment (Fig. 11).  

Table 5. Statistics on errors with respect to the images category, with 
relative error values in %. 

Cat 
 

 TRACK+CPS ISO+CPS Inter-phys.  
error 

Unit displac. 
along curves 

hi
gh

  IR 15.78± 10.31 6.1±4.43 7.13±5.23  2.46± 0.29 
OR 19.84±7.65 7.65±4.84 7.68±6.56 1.66±0.15 
WT 47.13±36.31 28.42±27.19 32.13±35.53 6.05±2.91 

m
ed

i
um

 IR 14.18±12.80 18.20±15.39 10.47±8.09 3.7±0.55 
OR 22.40±10.18 11.02±8.89 9.95±7.59 2.39±0.27 
WT 60.81±24.38 33.56±28.92 34.52±40.76 8.28±3.77 

lo
w

 IR 10.14±8.29 9.51±7.46 11.18±8.46 2.90±0.52 
OR 32.81±11.27 12.08±9.94 14.16±15.64 1.69±0.28 
WT 81.55±15.51 34.74±36.22 56.63±78.31 5.11±2.91 

 

  

6.77+/-4.31 (IR),  
5.57+/-2.88 (OR),  
19.92+/-8.81 (WT) 

 

10.61+/-9.09 (IR), 
 7.85+/-5.22 (OR),  

26.30+/-25.60 (WT) 

 
6.85+/-5.54 (IR),  

12.44+/-8.01 (OR),  
42.80+/-45.29 (WT) 

Fig. 10 Automatic segmentation of images of category A (left), B 
(center), C (right), with relative error values in %. 

  

 
11.72±10.42 (IR), 8.77±7.52 

(OR), 24.21±28.98 (WT) 

 
33.10±27.34 (IR), 14.16±17.21 

(OR), 33.55+/-23.88 (WT) 
Fig. 11 Accurate (left) and not accurate (right) automatic (magenta) 

vs. manual segmentation (cyan); relative error values in %. 

Finally, the method using the TRACK+CPS model is 15 times 
faster than when using the ISO+CPS model: with an on an Intel® 
CoreTM i7, on DB2 whose images size is about 740-by-740 pixels, 
ISO+CPS model takes on average 1 minute vs. 15 minutes for the 
TRACK+CPS model. This gain is particularly interesting for the use 
our software for medical studies in routine practice. Note that the 
software includes the possibility of local manual correction of the 
pre-segmentation if the final automatic segmentation is not 
completely satisfactory. 

 

V. CONCLUSION 
The ISO+CPS model presented in this paper is accurate for 

healthy and pathological images of type 1. It is more adapted to the 
retinal vasculitis segmentation than the previous TRACK+CPS 
model and much faster. Moreover, the new model reduces 
substantially the run time, making it suitable for clinical use. Note 
that the proposed automatic method is by essence reproducible, while 
the manual segmentations are not. It is suitable for relative 
measurements, for instance in follow –up studies, where differences 
to be assessed can be of the same order of magnitude than the 
observer variability. 

In our future work, we aim at adding an interactive selection of 
landmarks, thus moving towards a semi-automatic method (instead as 
a completely automatic one), from which we expect more robustness. 
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