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Abstract. The detection of aligned groups of objects is important for
satellite image interpretation. This task can be challenging when objects
have different sizes. In this paper, we propose a method for extracting
aligned objects from a labeled image. In this method we construct a
neighborhood graph of the objects of the image, and its dual graph where
we incorporate information about the relative direction of the objects,
evaluated using fuzzy measures of relative position. The groups of objects
satisfying the fuzzy criterion of being locally aligned are extracted from
the dual graph. These groups are the candidates for being (globally)
aligned. The method was tested on synthetic images, and on objects
extracted from real images demonstrating that the method extracts the
aligned groups of objects even if the objects have different sizes.

1 Alignment and Related Work

Alignment can be defined as the spatial property possessed by a group of objects
arranged in a straight line1. Determining the groups of aligned objects is crucial
for image interpretation. According to the Gestalt theory, the human perceptual
vision system groups objects together using certain rules. Among these rules
there is one called continuity of direction which groups together objects in the
same direction, and one particular case is the constancy of direction that refers
to alignments [5]. An aligned group of objects has the characteristic that it
should be seen as a whole, since if its elements are observed in an independent
manner then the alignment property is lost. Having to look it as a whole makes
alignment detection a difficult task.

Identifying the aligned groups of objects in satellite images is important for
several applications. Satellite images provide a huge amount of geographical in-
formation, and aligned groups of objects can be seen as a way to reduce this
information in a pertinent way. For example in cartography, it is necessary to
find groups of aligned buildings for map generalization [12]. Observing if a group
of buildings is aligned can give information about the structure of their arrange-
ment, and whether they belong to a urban, rural or residential area [6]. In ob-
ject detection, complex semantic classes such as parking areas (car parkings,
1 Definition taken from ThinkMap Visual Thesaurus
http://www.visualthesaurus.com/
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ports, truck parkings or airports) comprise aligned groups of transport vehicles.
Therefore, the identification of aligned groups of transport vehicles can be useful
for detecting instantiations of these complex classes, and is meaningful for the
description of this kind of scenes.

Alignment extraction has been studied in image processing as a low level
feature. For instance methods relying on the Hough transform [5] or the Radon
transform [7] are used to find groups of points in digital images which fall into
a line. Other examples are the identification of aligned segments which have the
same orientations as the alignment [5,10,11,8]. However, alignment extraction as
a high level feature has been less studied. One example is the work of [4], where
an algorithm to detect aligned groups of buildings in maps is presented. In this
algorithm buildings with aligned barycenters are extracted, and the quality of
the alignments is evaluated based on the criteria of proximity and similarity
laws of Gestalt theory. Nevertheless, when the groups are composed of objects
of different sizes, it is not possible to detect the alignment by observing just
their barycenters (see Fig. 1). Thus, when considering extended objects and not
only points the notion of “falling into a line” becomes imprecise. Therefore it is
necessary to consider a degree of satisfaction of the relation of alignment.

In this work we propose a novel method to detect alignments of objects that
can be applied to objects of different sizes, or to fuzzy objects. In our approach,
we use the direction orientation between any two elements of the group to deter-
mine their degree of alignment. To measure the orientation between two objects
we make use of what we call orientation histogram which is based on the angle
histogram introduced by Mijama and Ralescu in [9] (Sec. 2). Our strategy con-
sists in first determining the locally aligned groups which are the candidates to
form an aligned group of objects. Then we measure the degree of alignment of
each candidate group (Sec. 3) and solve conflicts. The results of the method are
shown on synthetic and real images in Sec. 5.

Fig. 1. Problems encountered when the group has objects of different sizes: an aligned
group of objects with not aligned barycenters

2 Angle and Orientation Histograms

Angle histograms have proved to be an adequate way for evaluating the direc-
tional spatial relation between two objects, since they take into account the
shape of the regions [9]. They can be interpreted as a function that captures
the directional position between two objects. Let a and b be two objects defined
by two regions in the image space I, that we denote by a and b. The angle
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histogram from a to b is obtained by computing for each pair of points pa ∈ a
and pb ∈ b the angle between the segment joining them and the horizontal axis,
denoted by ∠(pa, pb). Angles are organized in a histogram, normalized by the
largest frequency:

Ha(b)(θ) =

∑
pa∈a,pb∈b|∠(pa,pb)=θ 1

maxφ∈[0,2π)

∑
pa∈a,pb∈b|∠(pa,pb)=φ 1

. (1)

To determine if an object a is in a given direction with respect to an object b (for
example “right of”), we can compute the angle histogram Ha(b) and compare
it with a template for the relation “right of” by using for instance a conjunctive
operator or the compatibility between the computed histogram and the template
[9]. Angle histograms are easily extended to fuzzy objects. In addition, they are
invariant to simultaneous translation, scaling and rotation of both objects. They
are not symmetrical, but they satisfy: Ha(b)(θ) = Hb(a)(θ + π).

Since we are interested in the orientation of two objects with respect to the
horizontal axis, we introduce the notion of orientation histogram, which is simply
an angle histogram where the angles are computed modulus π and its support
has a length equal to π. For the case where a and b are fuzzy objects with mem-
bership function μa : I → [0, 1] and μb : I → [0, 1], respectively, the orientation
histogram is given by:

O(a, b)(θ) =

∑
pa,pb∈I|mod(∠(pa,pb),π)=θ μa(pa) ∧ μb(pb)

maxφ∈[0,π)

∑
pa,pb∈I|mod(∠(pa,pb),π)=φ μa(pa) ∧ μb(pb)

, (2)

where ∧ is a t-norm. The orientation histogram is a fuzzy subset of [0, π[ that
represents the orientation between two objects with respect to the horizontal
axis, it preserves the same properties as the angle histogram, and in addition it
is symmetrical.

To compare if two orientation histograms are similar, it is important to con-
sider the imprecision that is linked to the comparison of two angles that are
approximately the same. When a fuzzy morphological dilation [3] is performed
on an orientation histogram using a structuring element ν0, then the high values
of the histogram will be propagated to the similar angle values according to ν0.
The structuring element ν0 is designed such that ν0(θ− θ̃) represents the degree
to which θ̃ and θ are “approximately” equal (modeled by a trapezoid function
in our experiments). Then the similarity degree between two orientation his-
tograms can be given by the maximum height of the intersection of the dilated
histograms:

sim(O(a, b), O(c, d)) = max
θ∈[0,π)

[Dν0(O(a, b)) ∧ Dν0(O(c, d))] (θ), (3)

where ∧ is a t norm, and the fuzzy morphological dilation is given by Dν0(μ)(θ) =
supθ̃∈[0,π[ min(μ(θ̃), ν0(θ − θ̃)) [3].
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This degree of similarity can be extended to evaluate the similarity degree
between several orientation histograms. Let {O(ai, bi)}N

i=0 be a set of orientation
histograms. Then the degree of similarity between them is given by:

sim (O(a0, b0), . . . , O(aN , bN)) = max
θ∈[0,π[

N∧

i=0

Dν0(O(ai, bi))(θ). (4)

3 Alignment Detection

In this section we propose the definitions of globally aligned and locally aligned,
both relations depend on a neighborhood relation. Let a, b be two objects. We
define Nd(a) as the Voronoi neighborhood of a constrained by a distance d, and
the binary relation Neigh(a, b) is satisfied if b ∩ Nd(a) �= ∅.

A group S is said to be globally aligned if all its members are connected by
the Neigh relation, and if there exists an angle θ such that every member of the
group is able to see the other members of the group in a direction θ or θ + π
with respect to the horizontal axis. Thus, it is possible to define the degree of
global alignment as follows:

Definition 1. Let S = {a0, . . . , aN}, with N ≥ 3, be a group of objects in I,
connected by the Neigh relation. The degree of global alignment of S is given by:

μALIG(S) = sim (O(a0, S \ {a0}), . . . , O(aN , S \ {aN})) . (5)

A group S with μALIG(S) = β is called a globally aligned group to a degree β.A
group S = {a0, . . . , aN} is said to be locally aligned to a degree β, if for every
two pairs of neighboring objects, having one object in common, the orientations
between the objects of each pair are similar to a degree β , and also if the group
is connected by the neighbor relation. The latter can be summarized by saying
that a group S with |S| ≥ 3 is locally aligned to a degree β if it satisfies the
following relations:

R1 : ∀x, y, z (Neigh(x, y) ∧ Neigh(y, z)) ⇒ (sim(O(x, y), O(y, z)) ≥ β)

R2 : ∀a, b ∃x0, . . . , xm for m > 1 such that x0 = a, xm = b and

m−1∧

i=0

Neigh(xi, xi+1)

Extracting Locally Aligned Groups of Objects: To extract the locally
aligned groups, first we construct a neighborhood graph GN to obtain the infor-
mation of which objects are connected via the Neigh relation. In a neighborhood
graph GN = (V, E) the vertices represent the objects of the group, and there is
an edge between two vertices if and only if the corresponding objects are neigh-
bors. Notice that only the connected subsets of three vertices x, y and z in GN

which share a common vertex, for example y, satisfy Neigh(x, y)∧Neigh(y, z).
These connected subsets are called triplets. According to R1, only the triplets
{x, y, z} for which sim(O(x, y), O(y, z)) ≥ β can belong to a locally aligned
group. Triplets can be easily identified as the edges of the dual graph, when the
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dual graph is constructed in the following manner. The dual graph is denoted by
G̃N = {Ṽ , Ẽ} where each vertex ṽi represents an edge in the graph GN . An edge
exists between two vertices ṽi and ṽj of G̃N if the two corresponding edges of
the graph GN have a common vertex. If, additionally, we attribute to each edge
(i, j) the similarity degree between the orientation histograms of ṽi and ṽj that
we denote by s̃ij , then it will be possible to verify whether the relation R1 holds
for its corresponding triplet. Figure 2 shows an example of neighborhood graph
and its dual graph. Notice that the edges of G̃N with a high value represent the
triplets of objects with a similar orientation histogram. For instance, in the dual
graph the edge between the nodes (1 - 2) and (2 - 3) has a similarity value of
1, this edge corresponding to the objects labeled 1, 2 and 3 of Fig. 2(a). In a
similar way, edges with a low value represent objects which are not aligned, for
example in the dual graph the edge between the nodes (1 - 2) and (6 - 2) has a
similarity value of 0.11 and corresponds to the objects labeled 1, 2 and 6, which
do not form a globally aligned triplet.
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Fig. 2. (a) Labeled image (b) Neighborhood graph (c) Dual graph of (b)

Returning to the conditions expressed by the relations R1 and R2 of locally
alignment, the first one states that triplets should be globally aligned, and the
second one that the group should be formed by connected objects according to
the Neigh relation. Then a group S satisfies these relations if and only if the
subset S̃ ⊆ Ṽ which represents the dual of S satisfies the following relations:

R̃1 : ∀ṽi, ṽj Conn(ṽi, ṽj) ⇒ (s̃ij ≥ β)

R̃2 : ∀ṽi, ṽj ∃ũ0, . . . ũK for K > 1 such that ũ0 = ṽi, ũN = ṽj and

K−1∧

k=0

Conn(ũ0, ũk),

where Conn(ũ, ṽ) is true if there exists an edge between ũ and ṽ. Condition
R̃2 expresses that S̃ should be connected, since if S̃ is not connected then S is
not connected. Therefore, a locally aligned group is a subset S ⊆ V for which
its dual set S̃ ⊆ Ṽ is connected in G̃ and the value of all the edges joining the
vertices within S̃ is greater than or equal to β.
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To extract the S̃i ⊆ Ṽ corresponding to the dual sets of the locally aligned
sets Si ⊆ V , first we extract the connected components {Ck} of Ṽ which are
connected by an edge value greater that β. Then for each Ck we obtain the
minimum value of its edges denoted by cons(Ck):

cons(Ck) = min{s̃ij |ṽi, ṽj ∈ Ck}
If cons(Ck) < β then Ck does not satisfy R̃1, thus vertices are removed until
cons(Ck) ≥ β. The vertices which are removed are the ones having more conflict
with their neighbors in Ck. We say that two connected vertices ũi and ṽj are in
conflict if s̃ij is close to zero, that is if the corresponding orientation histograms
of both vertices are not similar. We measure the conflict of a vertex ṽt with its
neighbors in Ck by using what we call the degree of the vertex in Ck given by:

deg(ṽt) =

∑
ṽj∈Ck

s̃tj

|{(i, j)|ṽj ∈ Ck}| . (6)

It is clear that if ṽt is in conflict with several of its connected vertices in Ck then
deg(ṽt) will be close to 0, and it will be close to 1 if there is no conflict. Then
the conflict of a vertex will be given by 1 − deg(ṽt).

Candidates Evaluation: The locally aligned groups S to a degree β are the
possible candidates for being a globally aligned group with a degree of satisfaction
β. The evaluation is performed by measuring the degree of global alignment using
Equation (5). Usually the locally aligned groups to a degree β are globally aligned
to a degree β. If the degree of global alignment is inferior to β in a group S,
then we divide the group by eliminating the vertices in S̃ with the minimum
vertex degree (Eq. 6) in S̃, and we repeat this step until there is no conflict in
the vertices.

Adding More Elements to the Group: Once the globally aligned groups of
objects are identified, it is possible to add new objects to the group or fusion two
globally aligned groups to obtain a larger globally aligned group. For each group Si

we perform two morphological directional dilations of the group in the directions θ
and θ +π, where θ is the orientation of the alignment (the angle which maximizes
the conjunction of the orientation histograms O(ai, S \ {ai})). These dilations
will be denoted by Dνθ

(Si) and Dνθ+π
(Si). An object a which satisfies the Neigh

relation with one of the members of Si and which is seen by Si to a degree greater
than or equal to β (that is μinclude(a, Dνθ

(Si) ∪ Dνθ+π
(Si)) ≥ β, where μinclude

denotes a degree of inclusion [2]) is added to Si. If a whole group Sj is seen by
Si and one of the elements of Si is connected to one of the members Sj and both
groups have similar orientation, then both groups are fusioned into one.

4 Complexity Analysis

In this section we deal with the cost of the basic operations of the algorithm for
extracting locally aligned groups and globally aligned groups.
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First, we consider the complexity of extracting locally aligned groups. Consider
we have N objects each with at most no points. The complexity of the algorithm
is O(N2) since most of steps of the algorithm deal with operations over the
graph or its dual. It should be noticed that the step which corresponds to the
construction of the orientation histograms has a complexity of O(N2n2

o), since at
maximum there are N(N−1) edges on the graph and for each edge an orientation
histogram is constructed and the construction of an orientation histogram has a
complexity of O(n2

o).
The complexity of finding a globally aligned group from a locally aligned group

with NA elements each having at most no points lies on the following steps. The
first step consists in evaluating the degree of global alignment and division of
the group in the case where it is not aligned, and this step has a complexity of
O(N2

An2
o). The second step consists in performing the morphological directional

dilations of the group in the directions of alignment θ and θ + π, and has a
complexity of O(NI) [1], where NI is the number of points in the image (see [1] for
the implementation of the directional morphological dilation using a propagation
method). And finally, the complexity of the step of evaluating the degree of
inclusion of each object not belonging to the group into the directional dilations
of the group is O((N −NA)n2

o), where N is the total number of objects. Hence,
summing the three steps we obtain that the total complexity is O(N2

An2
o + NI).

5 Results

We applied the method to the objects of the synthetic image of Fig. 3. The
method obtains the locally aligned group shown in Fig. 3(b) with degree 0.9, and
this group is also globally aligned with degree 0.85. The group is then extended to
add new objects: Fig. 3(c) shows the degree to which each pixel is observed by the
group, and finally Fig. 3(d) shows the aligned group after adding the elements.
The degree of global alignment of the whole group is 0.8. In this example we
used objects of different sizes and the method was able to extract the globally
aligned group. This example highlights the flexibility of the method, since the
green and orange objects fall into the line but the orientation between them is
different from the one of the global alignment.

(a) (b) (c) (d)

Fig. 3. (a) Labeled image (b) Locally aligned group (c) The region seen by the group
of (b) in the direction of the alignment (white = high value of visibility) (d) Group
obtained after adding new elements
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We also applied the method to the houses extracted from the satellite image
of urban area objects in Fig. 4(b). Figure 4(c) shows some of the globally aligned
subsets of houses obtained. It is not possible to show all the globally aligned
groups found by the algorithm since there are objects which belong to more
than one group. We can observe that the algorithm obtains the most distinctive
groups of the image (pink, orange, white, red and blue sets). However, not all
the obtained groups are meaningful for the description of the scene (purple and
light green sets), since these are subsets which are globally aligned but do not
give any information about the arrangement of the houses. Finally, note that all
the obtained groups satisfy the notion of global alignment discussed in Sec. 3.

(a) Original Image (b) Segmented buildings (c) Subsets of aligned
buildings

Fig. 4. Some of the globally aligned subsets found by the algorithm with a degree
greater than 0.9

6 Conclusions

In this work we have introduced the definitions of globally and locally aligned
groups as fuzzy relations, and gave a method to extract them from an image
of labeled objects. Both definitions are appropriate to determine alignments
of objects of different sizes. The methods and the definitions were tested on
objects extracted from real images, giving satisfactory results. In the obtained
results, it is possible to notice that not all the obtained groups are meaningful
for the interpretation of a scene. Hence it is necessary to combine the obtained
alignments with other relations to put the globally aligned groups into context,
for example find if the global or local alignments are parallel between them or
parallel to a linear structure.
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