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Abstract. Segmentation of anatomical structures via minimal surface
extraction using gradient-based metrics is a popular approach, but ex-
hibits some limits in the case of weak or missing contour information.
We propose a new framework to define metrics, robust to missing image
information. Given an object of interest we combine gray-level informa-
tion and knowledge about the spatial organization of cerebral structures,
into a fuzzy set which is guaranteed to include the object’s boundaries.
From this set we derive a metric which is used in a minimal surface
segmentation framework. We show how this metric leads to improved
segmentation of subcortical gray matter structures. Quantitative results
on the segmentation of the caudate nucleus in T1 MRI are reported on
18 normal subjects and 6 pathological cases.

Index terms: minimal surface segmentation, level sets, spatial relations,
fuzzy knowledge representation.

1 Introduction

Segmentation of structures expressed as a minimal surface extraction problem
has been widely discussed in the medical imaging literature. Different optimiza-
tion methods have been proposed in [1,2,3,4]. Minimal surface segmentation can
be performed using geodesic deformable models involving an image-based metric
computed from image gradients. An issue arises in the presence of noise and for
low contrast structures, such as subcortical gray nuclei in brain magnetic reso-
nance images (MRI), generating weak contour information. To overcome these
limitations, some prior information can be incorporated in these methods. For
instance, shape priors specific to the structures to segment were introduced in
[5] as a non-geodesic additional term in the energy functional constraining the
solution to correspond to an admissible shape. Another approach relies on the
combination of region and edge information, as for instance in the geodesic active
regions introduced in [6].
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In this paper, to preserve a strict geodesic formulation, we show how gray lev-
els and structural spatial information can also be efficiently exploited in a metric,
and we illustrate this idea on the segmentation of brain internal structures. In-
deed, the spatial organization of brain structures is quite stable, and available as
prior knowledge. Descriptions of this spatial organization through spatial rela-
tions between objects [7,8] were used in [9] to constrain a parametric deformable
model, acting as an external force, to segment internal brain structures on nor-
mal brains. In [10], this approach was extended to level-set deformable models,
in particular using a geodesic formulation. Although the combination of spa-
tial relations information and edge information succeeded in constraining the
segmentation to produce acceptable solutions, missing information in the image
edge map was not explicitly balanced by the introduction of spatial priors.

We propose a new method to introduce structural information during the
metric computation process, in order to obtain a map including complete object
boundaries. We first summarize our approach for representing structural infor-
mation as spatial fuzzy sets in Sect. 2. Our contribution for defining a metric
taking into account such information is then detailed in Sect. 3. The integra-
tion of this metric into a level-set deformable model formulation is presented in
Sect. 4 and applied to the segmentation of subcortical gray nuclei in normal and
pathological brain MRI.

2 Representation of Structural Information Using Fuzzy
Sets

Fuzzy sets constitute an appealing framework to represent spatial relations, mod-
eling different types of imprecision, related to the imperfections of the image,
and to the intrinsic vagueness of some relations [7]. The satisfaction of a given
relation is then a matter of degree rather than a “true-or-false” fact. The seman-
tics of spatial relations, which are imprecise but deterministic, is appropriately
encoded using fuzzy representations, which then constitute better models than
probabilistic ones. Given a relation with respect to a reference fuzzy object A,
two types of questions can be formulated:

(i) compute to which degree a target object B fulfills this relation;
(ii) define the points in space where this relation is satisfied.

Formulations of the first type of question have been proposed for a wide range of
relations including adjacency, distances, directions and symmetries. In this work,
as in [9], we consider the second formulation, based on spatial representations
of relations. We do not detail the definitions of the fuzzy sets representations of
spatial relations here (see [7] for a review). A spatial relation SR with respect
to some reference object is expressed as a fuzzy set in 3D space, with member-
ship function denoted by μSR (i.e. μSR(x) denotes the degree to which a point
x satisfies the relation). Most spatial relations can be computed using fuzzy
mathematical morphology operations. When several relations are associated to
describe the location of an object (as for the caudate nucleus as described below),
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the corresponding membership functions are combined using a fusion operator.
In the following, μSR will be used to denote either one relation, or the fusion of
several ones.

Spatial relations constitute an important part of the available knowledge
about the spatial organization of the brain structures, as evidenced by usual
anatomical descriptions, and they remain stable, even in the presence of tumors.
In this paper, we rely on the following knowledge:

• for any structure A of the brain, the set Adj(A) of adjacent structures Oi is
known, and is assumed to completely surround A;

• the caudate nucleus (CN) is exterior to the lateral ventricle (LV) and close
to it. We denote by μSRCN

the membership function of the spatial fuzzy set
representing the fusion of these relations;

• the accumbens nucleus (AN) is located below the lateral ventricle and ap-
proximately equidistant from the ventricle and the brain surface; the fuzzy
representation of these relations is denoted by μSRAN

.

Note that the computation of μSRCN
and μSRAN

is based on a previous seg-
mentation of the lateral ventricles and of the brain surface.

3 Metric Based on Gray-Levels and Spatial Information

Most approaches for minimal surface segmentation rely on low level features such
as image gradient. In this section, we illustrate some limits of these approaches
and propose to make use of structural knowledge. We derive a generic method-
ology to include both gray-level and spatial relations in the metric computation.

3.1 Fuzzy Map from Image Gradient

The simplest way to derive a fuzzy edge map μI from an image I is to apply an
increasing function g : R

+ → [0, 1] to the norm of the image gradient. To reduce
noise, a Gaussian filter Gσ can be applied, leading to: μI(x) = g(‖Gσ ∗∇I(x)‖).
Various functions g can be used. As an illustrative example, we use a sigmoid
function. This approach does not overcome classical problems related to weak
gradients, for instance between the thalamus (Th) and the white matter (WM),
as illustrated in Fig. 1 (b).

In [9] a method to enhance weak boundaries was proposed, using the radio-
metric mean and standard deviation of each type of tissue or structure:

μI(x) = g(‖∇(pA(I))(x)‖) = g(‖p′A(I(x))∇(I)(x)‖) (1)

where pA is a Gaussian function defined for each individual structure A. This
formula amounts to make g less sensitive to its parameters since it is applied to
a contrast-independent representation. Figures 1 (c) and (f) illustrate this fuzzy
gradient map for the caudate nucleus. The coronal view shows that there are
still parts of the contour missing (cf. red frame).
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3.2 Using Region Membership Functions

We propose an alternative method to reinforce the boundary map even in the
absence of significant gradients, by using membership functions of the target
object and all adjacent structures. Let A be a subset of the spatial domain Ω. The
boundary of A may be defined by its morphological gradient: ∂A = D(A, Bc) \
E(A, Bc) where D denotes the dilation operator, E the erosion operator, and
Bc an elementary structuring element. This definition extends to the fuzzy case:
let μA be a fuzzy subset of Ω representing object A. The fuzzy morphological
boundary of A is defined as [11]: μ∂A = �(D(μA, Bc), D(c(μA), Bc)), where � is
a t-norm (i.e. a fuzzy conjunction) and c a fuzzy complementation [12].

We can extend this definition to the boundary between two objects A and B,
with membership functions μA and μB:

μ∂(A,B) = �(D(μA, Bc), D(μB, Bc)).

Note that this definition may lead to an empty set. On the other hand it may
provide a large fuzzy subset if the objects intersect over a large area.

These definitions require the knowledge of the objects localization, i.e. prior
segmentation results defining μA and μB, which are not yet available. However,
from the available knowledge (gray levels, spatial relations...), we can easily
obtain fuzzy subsets defining an approximate region of interest for A, denoted
by μGlA in case of gray levels information, which is guaranteed to include A.

(a) (b) (c)

(d) (e) (f)

Fig. 1. (a) One axial slice of a brain MRI volume. (b) ‖∇I‖. (c) g(‖∇(pCN(I))‖) on
an axial view. (d-f) Coronal views.
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The fuzzy set μGlA is typically derived from a rough classification performed
on the histogram. It does not need to be very accurate and only has to provide
an overestimation so as to guarantee the inclusion property μA ⊆ μGlA . The
following inclusion property also holds: μ∂A ⊆ D(μGlA , Bc).

The fuzzy subset D(μGlA , Bc) contains both the object A and its boundaries,
and therefore constitutes a poor representation of the object boundaries. To
refine this estimation we propose to use prior knowledge about objects adjacent
to A, i.e. in Adj(A). Indeed, the boundary of an object A can be expressed as
the union of its boundaries with adjacent objects. Since this set is exhaustive,
we can write:

μ∂A = ⊥
i

μ∂(A,Oi) , Oi ∈ Adj(A),

where ⊥ is a t-conorm (i.e. a fuzzy union operator). Since we also have (μA ⊆
μGlA and μB ⊆ μGlB ) ⇒ μ∂(A,B) ⊆ �(D(μGlA , Bc), D(μGlB , Bc)), we can derive
the following inclusion:

μ∂A ⊆ ⊥
i

�(D(μGlA , Bc), D(μGlOi
, Bc)), Oi ∈ Adj(A). (2)

This computational process is illustrated in Fig. 2. Our approach always pro-
vides a superset of the boundary, denoted by μ∗

∂A. From prior information on
gray levels, we compute the fuzzy subsets μGlCN (b), μGlLV (c) and μGlWM (d) for
other structures composed of white matter (WM), to guarantee μLV ⊆ μGlLV ,
μCN ⊆ μGlCN and μWM ⊆ μGlWM . From these fuzzy sets we compute a fuzzy
set μ∗

∂(CN,LV ) including the boundary μ∂(CN,LV ) between caudate nucleus and

(a) (b) (c) (d)

(e) (f) (g) (h)

Fig. 2. (a) Zoom on one axial slice. (b) μGlCN . (c) μGlLV . (d) μGlW M . (e)
μ∗

∂(CN,LV ). (f) μ∗
∂(CN,WM). On one coronal slice: (g) μGlCN = μGlAN . (h)

⊥(μ∗
∂(CN,LV ), μ

∗
∂(CN,WM)).
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lateral ventricle (e), and μ∗
∂(CN,WM) including the boundary μ∂(CN,WM) be-

tween caudate nucleus and white matter (f).
While gray-level priors are sufficient to compute an accurate fuzzy subset

including the boundary between the caudate nucleus and white matter or lat-
eral ventricle, this is not the case for the accumbens nucleus. Since the caudate
nucleus and the accumbens nucleus have similar biological compositions, they
cannot be distinguished based on gray levels only (see Fig. 2 (g)). On the other
hand considering only the boundary with white matter and lateral ventricle
leads to a partial boundary detection, hence having similar drawbacks as gra-
dient based methods (see ROI defined by the red frame in Fig. 2 (h)). Spatial
information will allow us to overcome this problem.

3.3 Fusion of Fuzzy Edge Maps with Spatial Information

Prior information on the spatial arrangement of structures, as given in a medical
knowledge database (see Sect. 2), is of great help to complete missing information
in MRI images. In [10], spatial relations represented as fuzzy sets μSR were
merged with boundary information computed by (1) in a conjunctive manner:
�(μI , μSR). However, as illustrated in Fig. 3, while this fusion operator removes
some undesired boundaries, it cannot fill in missing information.

As an alternative approach, we propose to introduce spatial relations, formu-
lated according to the methodology proposed above for fuzzy regions. Since the
spatial relations defined for an object A are modeled as regions of interest μSRA

including the object to be segmented, we always have μA ⊆ μSRA . A conjunc-
tive fusion with the fuzzy set representation of gray-level priors is performed so
that the property μA ⊆ �(μSRA , μGlA) is fulfilled. A fuzzy subset including the
object boundary is then computed using (2).

In our example this fusion defines a permitted region for the caudate nu-
cleus μ∗

CN = �(μGlCN , μSRCN ) (Fig. 4 (c)) and one for the accumbens nucleus
μ∗

AN = �(μGlAN , μSRAN ) (Fig. 4 (d)), which allows for a rough discrimination
between the two structures. The boundary between the two structures is then
computed (Fig. 4 (e)) and combined with the previous results to obtain a fuzzy
subset μ∗

∂CN (Fig. 4 (f)) including the whole boundaries of the caudate nucleus

(a) (b) (c) (d)

Fig. 3. (a) μI computed from (1). (b) μSRCN . Fusion �(μI , μSRCN ) on a axial view
(c) and a coronal view (d).
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(a) (b) (c)

(d) (e) (f)

Fig. 4. (a) Zoom on one coronal slice. (b) μSRCN . (c) �(μSRCN , μGlCN ). (d)
�(μSRAN , μGlAN ). (e) μ∂(CN,AN). (f) μ∂CN .

μ∂CN (μ∂CN ⊆ μ∗
∂CN ), according to the following equation:

μ∗
∂CN = ⊥(μ∗

∂(CN,WM), μ
∗
∂(CN,LV ), μ

∗
∂(CN,AN)), (3)

with μ∗
∂(CN,AN) = �(D(μ∗

CN , Bc), D(μ∗
AN , Bc)). The comparison between

Fig. 4 (f) and Fig. 3 (d) shows the improvement achieved by the proposed
approach. The boundary is now somewhat wide where contour information is
missing, but complete, and will be used to constrain the segmentation.

3.4 New Metric Definition

The minimal surface segmentation problem can be expressed as a minimization
problem, of an integral formulation involving a metric fA that should take low
values on object boundaries and high values elsewhere. This approach is robust
to noise in the sense that high metric values can be compensated by low ones
in the integral. Therefore the result may include points corresponding to quite
high metric values.

The complementary of the fuzzy set μ∗
∂A defined by (3) takes low values on

object boundaries and therefore could define a suitable metric (fA = c(μ∗
∂A))

to our minimal surface segmentation problem. However, as discussed above, this
formulation may lead to solutions for object A whose boundaries contain low
values of μ∗

∂A and thus do not satisfy the key property 2: μ∂A ⊆ μ∗
∂A, which

ensures that μ∗
∂A takes high values on all points of ∂A. In order to discard low
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values of μ∗
∂A from the resulting surface, we propose to define the metric as:

fA = − log(μ∗
∂A), which will strongly disfavor surfaces including points with

low values of μ∗
∂A. For numerical purpose, we add an offset to μ∗

∂A, and we
define the metric that will be used in the following as:

fA = − log((1 − ε)μ∗
∂A + ε).

4 Level-Set Based Segmentation of Internal Structures of
Normal and Pathological Brains

We now describe how the proposed metric can be incorporated in a minimal
surface segmentation framework, using a level-set formulation.

4.1 Level-Set Formulation

From the superset of the boundary fuzzy set μ∗
∂A described above, the mini-

mal surface extraction problem is formulated in the level-set framework as the
minimization of the following functional [13]:

E(φ) =
∫

Ω

fA(x)δ(φ(x))|∇φ(x)|dx, (4)

where φ implicitly represents the surface as its zero level and is classically ini-
tialized using a signed distance function from an initial shape. The associated
Euler-Lagrange equation given by:

∂φ

∂t
= δ(φ)

(
fAdiv

(
∇φ

‖∇φ‖

)
+ < ∇fA, ∇φ >

)
(5)

is used to find a local minimum of E(φ) from an initial surface. The result will
thus be strongly dependent on the initial surface. To avoid a convergence towards
the empty solution or a weak local minimum, a balloon force can be added.

4.2 Segmentation Protocol

We apply this segmentation method to subcortical gray matter nuclei on MRI
brain data. We first extract the brain surface, the lateral ventricles and in patho-
logical cases the tumor [14]. The used methods are robust enough to make the
assumption that the resulting segmentations are correct. A Gaussian mixture
estimation is performed to obtain gray level fuzzy subsets. Spatial relations are
then computed and a boundary map is obtained using (3). This computational
framework completely defines E(φ). The level-set based deformable surface evo-
lution is driven by (5), from an initial shape. This initial shape is obtained
automatically by combining spatial relation maps with gray level information.
Due to lack of space we do not detail the procedure here but for instance the
initialization of the segmentation of the caudate nucleus is based on the following
relations: closed to the body of lateral ventricle, strictly to its right.
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4.3 Data

Segmentation results are evaluated on the caudate nucleus for 18 healty subjects
and 6 pathological cases.

The normal database is provided on the Internet Brain Segmentation Repos-
itory (IBSR) (http://www.cma.mgh.harvard.edu/ibsr). It contains 18 T1-wei-
ghted MR scans (256 × 256 × 128 volumes, with 1 × 1 × 1.5 mm3 resolution). A
manual segmentation of 43 structures performed by an expert is also provided
and is considered as the ground truth to evaluate our results.

The pathological database is composed of 6 cases illustrated in Fig. 6 af-
fected by brain tumors. The tumors induce various degrees of deformation on
the internal nuclei from weak to very large in case of subcortical tumors. The
MR scans are 256 × 256 × 128 axial volumes obtained by a SPGR sequence
with 0.93 × 0.93 × 1.5 mm3 voxel size. Manual segmentation of 8 structures is
considered as the ground truth.

4.4 Results

Some results are illustrated in Fig. 5 and 6. The influence of the spatial priors
on the segmentation of the lower part of the caudate nucleus is clearly visible
on these results. Segmentation accuracy is assessed through comparison with
manual segmentations using the following measures:

(i) kappa coefficient: 2∗|A∩B|
|A|+|B| , which measures agreement between A and B,

(ii) average distance between the surfaces of A (reference) and B (our result),
(iii) Hausdorff distance between A and B.

(a) (b) (c) (d)

(e) (f) (g) (h)

Fig. 5. Segmentation of the caudate nuclei on a normal case. (a) Initialization. (b)
Segmentation result without spatial priors. (c, d) Segmentation with spatial priors on
a coronal slice and on an axial slice. (e) Coronal slice of a pathological case. (f) μ∗

∂CN .
(g) Initialization. (h) Segmentation with spatial priors.
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1 2 3

4 5 6

Fig. 6. Axial views of 6 pathological cases. Segmentation results are overlayed in red.

Table 1. Evaluation of the segmentation of the caudate nuclei on IBSR database

Case Kappa Average Hausdorff Case Kappa Average Hausdorff
(mm) (mm) (mm) (mm)

left right left right left right left right left right left right
1 0.86 0.82 0.68 0.63 6.78 5.74 10 0.82 0.82 0.66 0.57 5.83 5.10
2 0.81 0.85 0.62 0.43 4.90 3.46 11 0.78 0.86 0.61 0.42 5.74 3.46
3 0.80 0.74 0.75 0.81 9.89 4.24 12 0.83 0.84 0.59 0.52 4.90 4.12
4 0.78 0.78 0.77 0.67 5.48 5.48 13 0.82 0.84 0.78 0.59 9.43 5.48
5 0.85 0.85 0.47 0.47 3.00 3.16 14 0.84 0.85 0.50 0.54 3.74 3.74
6 0.83 0.78 0.63 0.96 5.10 7.07 15 0.85 0.85 0.43 0.57 3.00 6.16
7 0.81 0.79 0.50 0.52 4.58 3.61 16 0.83 0.84 0.57 0.69 3.74 5.66
8 0.74 0.74 0.77 0.65 8.54 8.54 17 0.83 0.86 0.77 0.59 6.40 5.74
9 0.82 0.83 0.57 0.52 5.39 6.56 18 0.75 0.75 0.99 1.23 5.48 8.60

Mean 0.81 0.64 5.50

Results on normal cases are summarized in Table 1. As an example, results
can be compared to those reported in [15] for the same database (where a mean
kappa of 0.65 and average distance of 1.71mm are reported), or in [16] and [17]



Combining Radiometric and Spatial Structural Information 293

Table 2. Evaluation of the segmentation of the caudate nuclei on pathological cases

Case Kappa Average Hausdorff Case Kappa Average Hausdorff
(mm) (mm) (mm) (mm)

left right left right left right left right left right left right
1 0.84 0.83 0.67 0.55 10.95 5.83 4 0.75 0.75 0.67 0.72 5.20 9.00
2 0.78 0.85 0.77 0.55 8.06 6.32 5 0.72 0.82 1.58 0.70 19.41 9.11
3 0.80 0.82 0.69 0.55 6.78 5.00 6 0.82 0.85 0.66 0.93 6.17 7.68

Mean 0.80 0.75 8.29

for other databases (respectively average distances of 1.60mm and 0.60mm).
We can note that the average distance is less than the voxel size (generally
1×1×1.5 mm3), and kappa coefficients over 0.7 indicate high agreements between
the segmentations [18]. The Hausdorff distance, which corresponds to the worst
point, is much more variable, due to imprecise delineation between CN and AN,
leading to an arbitrary cut in both manual and automatic segmentations, and
thinness of the tail (and also the end of the body) for which minimal surface
segmentation is not suited. Results for pathological cases are summarized in
Table 2. Among the 12 segmentations, 11 show similar accuracy as in the normal
cases. Despite the deformations, spatial knowledge and thus our segmentation
framework remain stable. Concerning subject 5, the tumor is adjacent to the
left caudate nucleus and induces very large deformations. Improving the results
in such cases could rely on an adaptation of the spatial relations, as proposed
in [19].

5 Conclusion

The main contribution of this paper is to define a new metric for minimal surface
segmentation, incorporating, in a original way, radiometric and structural infor-
mation. We have shown that missing contour information can be compensated
for by exploiting spatial information, based on region gray levels and spatial
relations, and how to integrate all these pieces of information in a fuzzy set
framework to define metrics for minimal surface extraction. Our approach has
been applied, in a geodesic level-set framework, to the segmentation of the cau-
date nuclei in normal and pathological brain MRI with promising results. Future
work aims at extending this approach to other brain structures: while the ap-
proach is general, including fuzzy sets have to be specified according to spatial
relations specific to each structure.
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11. Bloch, I., Mâıtre, H., Anvari, M.: Fuzzy Adjacency between Image Objects. In-
ternational Journal of Uncertainty, Fuzziness and Knowledge-Based Systems 5(6),
615–653 (1997)

12. Dubois, D., Prade, H.: Fuzzy Sets and Systems: Theory and Applications. Acad-
emic Press, New-York (1980)

13. Gout, C., Le Guyader, C., Vese, L.: Segmentation under geometrical conditions
using geodesic active contours and interpolation using level set methods. Numerical
Algorithms 39(1), 155–173 (2005)

14. Khotanlou, H., Colliot, O., Bloch, I.: Automatic Brain Tumor Segmentation us-
ing Symmetry Analysis and Deformable Models. In: International Conference on
Advances in Pattern Recognition, ICAPR 2007, pp. 198–202 (2007)

15. Ciofolo, C., Barillot, C.: Brain Segmentation with Competitive Level Sets and
Fuzzy Control. In: Christensen, G.E., Sonka, M. (eds.) IPMI 2005. LNCS, vol. 3565,
pp. 333–344. Springer, Heidelberg (2005)

16. Pitiot, A., Delingette, H., Thompson, P., Ayache, N.: Expert knowledge-guided
segmentation system for brain MRI. Neuroimage 23(1), 85–96 (2004)

17. Xue, J., Ruan, S., Moretti, B., Revenu, M., Bloyet, D.: Knowledge-based segmen-
tation and labeling of brain structures from MRI images. Pattern Recognition
Letters 22(3), 395–405 (2001)



Combining Radiometric and Spatial Structural Information 295

18. Zijdenbos, A., Dawant, B., Margolin, R.: Morphometric analysis of white mat-
ter lesions in MR images: method and validation. IEEE Transactions on Medical
Imaging 13(4), 716–724 (1994)

19. Atif, J., Hudelot, C., Fouquier, G., Bloch, I., Angelini, E.: From Generic Knowl-
edge to Specific Reasoning for Medical Image Interpretation using Graph-based
Representations. In: International Joint Conference on Artificial Intelligence, IJ-
CAI 2007, pp. 224–229 (2007)


	Introduction
	Representation of Structural Information Using Fuzzy Sets
	Metric Based on Gray-Levels and Spatial Information
	 Fuzzy Map from Image Gradient
	Using Region Membership Functions
	Fusion of Fuzzy Edge Maps with Spatial Information
	New Metric Definition

	Level-Set Based Segmentation of Internal Structures of Normal and Pathological Brains
	Level-Set Formulation
	Segmentation Protocol
	Data
	Results

	Conclusion


<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (Gray Gamma 2.2)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (ISO Coated)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Error
  /CompatibilityLevel 1.3
  /CompressObjects /Off
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJDFFile false
  /CreateJobTicket false
  /DefaultRenderingIntent /Default
  /DetectBlends true
  /DetectCurves 0.1000
  /ColorConversionStrategy /sRGB
  /DoThumbnails true
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 524288
  /LockDistillerParams true
  /MaxSubsetPct 100
  /Optimize true
  /OPM 1
  /ParseDSCComments true
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo true
  /PreserveFlatness true
  /PreserveHalftoneInfo false
  /PreserveOPIComments false
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts false
  /TransferFunctionInfo /Remove
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages true
  /ColorImageMinResolution 150
  /ColorImageMinResolutionPolicy /OK
  /DownsampleColorImages true
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 600
  /ColorImageDepth 8
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.01667
  /EncodeColorImages true
  /ColorImageFilter /FlateEncode
  /AutoFilterColorImages false
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /ColorImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasGrayImages false
  /CropGrayImages true
  /GrayImageMinResolution 150
  /GrayImageMinResolutionPolicy /OK
  /DownsampleGrayImages true
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 600
  /GrayImageDepth 8
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.01667
  /EncodeGrayImages true
  /GrayImageFilter /FlateEncode
  /AutoFilterGrayImages false
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /GrayImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasMonoImages false
  /CropMonoImages true
  /MonoImageMinResolution 1200
  /MonoImageMinResolutionPolicy /OK
  /DownsampleMonoImages true
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 1200
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 2.00000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (None)
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName (http://www.color.org)
  /PDFXTrapped /False

  /SyntheticBoldness 1.000000
  /Description <<
    /DEU ()
  >>
>> setdistillerparams
<<
  /HWResolution [2400 2400]
  /PageSize [595.000 842.000]
>> setpagedevice




