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ABSTRACT

In this article we present a method for extracting groups
of aligned objects from a labeled image. Our method is based
on fuzzy measures of relative direction between the objects,
leading to a fuzzy approach for defining alignment as a spa-
tial relation. The method is able to capture the ambiguities
presented when defining alignment between objects of differ-
ent sizes. Two definitions of alignment are presented; local
and global. The local alignments are first extracted and are
used as candidates for the global alignments. Applications of
the alignment relation on real images illustrates its interest for
high level image interpretation.

Index Terms— alignments, fuzzy spatial relations, high
resolution remote sensing images.

1. INTRODUCTION

Satellite images provide a huge amount of geographical in-
formation. The extraction of structural information, such as
groups of aligned objects, may help in the interpretation and
object recognition tasks for such images. For instance in car-
tography, it is necessary to find groups of aligned buildings
for map generalization [1]. This provides information about
the structure of buildings arrangement, and can contribute to
determining whether they belong to a urban, rural or residen-
tial area. As another example, in object detection, complex
semantic classes such as parking lots (car parkings, ports,
truck parkings or airports) comprise aligned groups of trans-
port vehicles. Therefore, the identification of aligned groups
of transport vehicles can be useful for the recognition of such
classes.

The detection of groups of aligned points in digital images
has been widely studied as low level processing in computer
vision [2, 3]. These methods can be extended to the groups
of objects with aligned barycenters [2]. However, when the
groups are composed of objects of different sizes, it is not pos-
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sible to detect the alignment by observing just their barycen-
ters (see Fig. 1). In this work we present a novel method to
detect alignments of objects of different sizes.

2. ALIGNMENT DETECTION

To determine whether a group of points is aligned, there are
two possible strategies. The first one, used in [2], is to search
a thin strip where all the points fall into. The second one
deals with searching an angle θ such that every point of the
group is approximately located at a direction θ or θ + π from
the other points of the group. If we try to extend the first
strategy to groups of objects, we face the problem of defining
the width of the strip when objects have different sizes. The
difficulty of extending the second strategy relies in measuring
the angle between the objects. We propose in this work to
use measures of relative direction used in spatial reasoning to
determine the orientation (or angle) between two objects with
respect to the horizontal axis.

Because of the ambiguity related to determining when an
object is located approximately at a direction θ from another
object, the alignment relation is also ambiguous. Therefore
we use fuzzy set theory to model it. Before going into the
definition of alignment we introduce a measure of the orien-
tation between two objects.

Throughout this paper we use the following notation.
Points in the image are denoted by px, py , objects represented
by regions in the image are denoted by lower case letters
a, b, c, . . ., groups of objects by upper case letters A,B, . . .,
and ∧ denotes a t-norm (fuzzy conjunction) and ∨ a t-conorm
(fuzzy disjunction) [4].

2.1. Measuring the orientation between two objects

The relative orientation between two objects a and b is rep-
resented through an orientation histogram O(a, b) : [0, π) →
[0, 1] which can be seen as a fuzzy number with membership
function:

O(a, b)(θ) =
|h(a, b, θ)|

maxφ∈[0,π) |h(a, b, φ)|
, (1)
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a) Segmented objects b) Barycenters of objects

Fig. 1. Example of an aligned group of objects with non-aligned
barycenters

where

h(a, b, θ) = {(pa, pb) : pa ∈ a, pb ∈ b, mod (∠ (pa, pb) , π) = θ}

and ∠ (pa, pb) denotes the angle between the segment joining
pa and pb and the horizontal axis. An orientation histogram
is simply a normalized angle histogram [5] where the angles
are computed modulus π and its support has a length equal to
π.

To evaluate the degree to which two orientation his-
tograms are approximately the same, we have to consider the
imprecision linked to comparing whether two angles are the
same. We introduce this imprecision by performing a fuzzy
morphological dilation [6] of each histogram by a structur-
ing element ν0, which is designed such that it represents the
imprecision attached to the angle comparison. In our exper-
iments we modeled ν0 by a trapezoid function. The dilated
orientation histogram, Dν0

(O(x, y)) can be also considered
as a fuzzy number. To compare the dilated histograms we can
use any similarity criterion between two functions or between
fuzzy numbers. We decided to use the maximum of the in-
tersection of the dilated histograms [7], therefore we define
the degree of similarity between n orientation histograms
{O(ai, bi)}

n
i=0 by:

sim({O(ai, bi)}
n
i=0) = max

φ∈[0,π[

n∧

i=0

Dν0
(O(ai, bi))(φ), (2)

where Dν0
(O(x, y)) is the fuzzy morphological dilation of

O(x, y) by a structuring element ν0 [8].

2.2. Alignment Definition

In order to extract the groups of aligned objects of an im-
age, we introduce two definitions of alignment; global and
local alignment. For the extraction we first identify the lo-
cal alignments, and use these alignments as candidates for
global alignments. The globally aligned groups of objects
correspond to the alignments mentioned in Sec. 2

Both locally and globally aligned groups should be con-
nected by a neighborhood relation. By neighborhood rela-
tion we mean a spatial neighborhood, for instance a Voronoi
neighborhood or a neighborhood defined by a fixed distance
around an object. Then, we say that a group is connected by
a neighborhood relation if for every pair of objects a and b in

the group, there exist c0, . . . , cn objects in the group, such that
c0 = a and cn = b and for every i = 0, . . . , n− 1 the objects
ci and ci+1 are neighbors. The locally and globally aligned
groups should be connected by the neighborhood relation to
ensure that the members of the groups are close together.

We say that a group is globally aligned if it is connected
by a neighborhood relation and there exists an angle θ such
that for every member a of the group, all the other members
of the group are located at an orientation “approximately” θ

from a.

Definition 2.1. Given a group of objects S = {a0, . . . , aN},
with N ≥ 3, we define a degree of global alignment as:

μALIG(S) = sim (O(a0, S \ {a0}), . . . , O(aN , S \ {aN})) .
(3)

We say that a group of objects is locally aligned if it is
connected by a neighborhood relation, and if for every object
a in S and every pair of objects b, c in the neighborhood of a
the orientation histograms O(a, b) and O(a, c) are similar.

Definition 2.2. The degree of local alignment is defined by:

μLA(S) = min
a,b,c:Neigh(a,b)∧Neigh(b,c)

sim(O(a, b), O(b, c)),

(4)
where Neigh(a, b) is a binary relation that is equal to 1 when
a and b are neighbors and 0 otherwise.

2.3. Method for extracting local and global aligned groups
of objects

Given a group of objects A = {a1, . . . an}, we first determine
the possible subsets of locally aligned groups of objects. To
do this, we construct a neighborhood graph GN = {V,E},
where the vertices represent the objects of the group, and
there is an edge between two vertices if and only if the cor-
responding objects are neighbors. Using the neighborhood
graph we construct its dual graph. The dual graph is denoted
by G̃N = {Ṽ , Ẽ} where each vertex Ṽi represents an edge
in the graph GN . An edge exists between two vertices ṽi and
ṽj of G̃N if the two corresponding edges of the graph GN

have a common vertex. Each edge ẽij is attributed with the
similarity value sij between the orientation histograms cor-
responding to the nodes represented by ṽi and ṽj . The dual
graph allows us to compare directly the orientation between
the pairs of objects which have one object in common. Fig-
ure 2 shows an example of neighborhood graph and its dual
graph. Notice that the edges of G̃N with a high value repre-
sent two pairs of objects with a similar orientation histogram,
which share a common object. For instance, in the dual graph
the edge between the nodes (1 - 2) and (2 - 3) has a simi-
larity value of 1, this edge corresponds to the objects labeled
1, 2 and 3 of Fig. 2(a). In a similar way, edges with a low
value represent objects which are not aligned, for example in
the dual graph the edge between the nodes (1 - 2) and (6 - 2)
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Fig. 2. Neighborhood graph and dual graph of a group of objects

has a similarity value of 0.11 and corresponds to the objects
labeled 1, 2 and 6, which do not form an alignment.

Following the approach proposed here, a connected subset
Ã ⊆ Ṽ for which all the edges connecting its vertices have
a value superior to α, where α is a user defined tolerance,
corresponds to the edges joining a locally aligned group A in
G.

The locally aligned groups are the possible candidates for
aligned groups. To determine if a locally aligned group A

forms a globally aligned group we measure its global degree
of alignment (Eq. 4). If the global degree is inferior to the
user specified value α, then we eliminate the vertex ṽ, from
the corresponding subset Ã on the dual graph, which has the
lower average edge value over all the edges connected to it.
This vertex represents the pair of objects in A which have
an orientation less similar to those of their neighbors. We
repeat this elimination process until the group has a globally
aligned degree greater than or equal to α, or until it has less
than three elements, and in that case it is not considered as
globally aligned.

3. RESULTS

The algorithm was applied to the objects of Figs. 1(a), 2(a),
3(a) and 4(b). For Fig. 1(b) the whole group is successfully
obtained with a degree of global alignment of 0.88. For the
case of Fig. 2 the group containing the objects 1, 2, 3 and 4 is
found and has a degree of global alignment of 1.0.

Fig. 3(c) shows some of the globally aligned subsets of
boats with a degree greater than or equal to 0.8 obtained from

a) b)

c) d)

Fig. 3. a) Original Image. b) Segmented boats. c) Sets of globally
aligned boats with a degree greater than or equal to 0.8. d) Groups
of globally aligned groups which are parallel and near to the decks
(in red).

the set of segmented boats of Fig. 3(b). In this experiment,
boats were obtained by manually selecting the objects be-
longing to boats after performing a mean shift segmentation
[9]. In Fig.3(c) we can observe that the algorithm obtains the
most distinctive groups of the image (purple, blue, yellow and
green sets), which can be used for identification of a harbour.
However, not all the obtained groups are meaningful for the
description of the scene (pink and orange sets), since these are
subsets which are aligned but they do not give any informa-
tion about the arrangement of the boats. To interpret the im-
age it is necessary to consider only the meaningful groups of
aligned objects (those which give us some information about
the objects arrangements). In the case of Fig. 3 the mean-
ingful groups of aligned objects correspond to the groups that
are “parallel to” and “close to” a linear object. The spatial
relation “parallel to” and “close to” are modeled in the same
way as in [10] and [11], respectively. Fig. 3(d) shows the
groups satisfying of globally aligned boats which are parallel
to a linear object and the linear objects. By using the spatial
relations of alignment and parallelism it is possible to extract
the structural arrangement of the scene.

Fig. 4(c) shows some of the aligned subsets of houses ob-
tained from the set of segmented houses of Fig. 4(b). It is
not possible to show all the aligned groups found by the algo-
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a) b)

c) d)

Fig. 4. a) Original Image. b) Segmented buildings. c) Some sets
of globally aligned buildings. d) Clusters of buildings belonging to
globally aligned groups which are parallel and near to other groups.

rithm since there are objects which belong to more than one
group. In this experiment, buildings were obtained by using
the method described in [12]. For the extraction we used an
α = 0.85 and a Voronoi neighborhood constrained by a dis-
tance of 30 pixels equivalent to approximately 21 m. Notice
that the method obtains groups of globally aligned objects of
different sizes which do not have aligned barycenters. From
the obtained globally aligned groups of houses we extracted
the groups which are “parallel” and “close to” another group.
The spatial relation “parallel to” and “close to” are modeled as
in the previous example. The groups of houses satisfying the
previous conditions are shown in Fig. 4(d). These houses cor-
respond to the regions containing organized groups of houses,
which are characteristic of residential areas.

4. CONCLUSIONS

In this work, we presented an original method to determine
aligned groups of objects in high resolution remote sensing
images. The proposed method extracts the local alignments
by considering the relative directional position between the
objects. Once the local alignments have been detected, these
are used as candidates for global alignments, then objects in
the group are eliminated until the group satisfies the desired
degree of global alignment. The relation was illustrated in

real images showing its interest for high level image interpre-
tation.

Future work aims at further investigation of image inter-
pretation tasks by combining alignments with other types of
structural information.
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