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Abstract

In the context of the study of the maturation process of the in-

fant brain, this paper focuses on postnatal piglet brain, whose

structure is similar to the one of an infant. Due to the small size

of the piglet brain and the abundance of surrounding fat and

muscles, the automatic brain extraction using correctely initial-

ized deformable models is tedious, and the standard approach

used for human brain does not apply. The paper proposes an

original brain extraction method based on a deformable model,

whose initialization is guided by a priori known relationships

between some anatomical structures of the head. This con-

cerns a structural model related to a priori known inclusion

and photometric relationships between eyes, nose and other in-

ternal head entities (fat and muscles). This a priori structural

information also involves the relative position of both eyes and

nose, assumed to be an anatomical invariant similar to a trian-

gle. Using this structural model, our proposal detects both eyes

and nose, from which one deduces the brain center, for finally

initializing deformable models. Anatomical structures are re-

trieved by matching observed relationships with those embed-

ded in the a priori structural model. This involves graph and

hypergraph matching, where hypergraph matching concerns

relative position of eyes and nose (ternary constraint related to

these 3 entities). The method has been implemented and pre-

liminary experiments have been performed on a set of 6 piglets,

to evaluate the accuracy of the brain center localization, the

one of the final brain extraction using deformable models. The

brain center is correctly localized with a mean error of 1.7 mm,

underlying the relevance of the approach. The mean similarity

index has been measured to be of 0.85 (with a standard devia-

tion of 0.04). More generally, this work illustrates the potential

of considering high level a priori known relationships, related

to anatomical invariants, managed using graph and hypergraph

matching.

1 Introduction

Piglets are increasingly used as an animal model for human in-

fants due to the fact that their brain structure and function are

similar to the ones of infants [1]. Therefore, studying piglet

brain helps to better understand the maturation process of in-

fant brains, and to anticipate future neuro-developmental dis-

orders [2]. Magnetic resonance imaging (MRI) is a useful im-

age modality for monitoring this maturation process [1, 3]. A

major difficulty concerns the automated segmentation of brain

structure from MR images. Although many works have been

achieved for human infant brains [3], few has been done for

piglets. We can mention a recent work which focused on the

building of piglet brain atlas [1], in order to automate the seg-

mentation of internal brain structures using an altas-based ap-

proach, as often considered for human brains. A difficulty con-

cerns the automated segmentation of the entire brain, being a

crucial preliminary step before segmenting internal structures.

For instance, in [1], the entire brain mask is manually drawn,

this being really time consuming, and unappropriate for build-

ing of large databases of segmented piglet brains. Due to the

abundance of muscle and fat in the piglet’s head [1], techniques

considered for human brain cannot be applied. For instance, we

can mention the widely used BET algorithm (Brain Extraction

Tool) [4, 5]. This algorithm uses deformable models initialized

by a sphere centered on the center of mass of the entire human

head. This is appropriate for human head due to the surround-

ing thin skull allowing a relevant estimate of the brain center

of mass, this being difficult for piglet, due to the previously

mentioned abundance of muscle and fat.

This work aims at overcoming this limitation, by initial-

izing deformable models using the relative position of piglet

brain with respect to eyes and nose, appearing as dark anatom-

ical structures that are assumed to be easy to segment. This

proposal constitutes the main contribution of this work, pro-

viding an entire fully automated brain segmentation technique,

allowing to then perform the segmentation of internal brain

structures [1]. The proposed approach is based on the a priori
knowledge of the photometric, topological and spatial structure

of piglet head. In our case, we consider another approach based

on a qualitative a priori knowledge related to the perception of
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the structure of the head in the image (spatial relationships as

well as photometric and inclusion ones). For instance, eyes

and nose appear darker than any other structure (photometric

relationships), and belong to the piglet head (inclusion rela-

tionships). The nose and both eyes represent three points, that

are spatially similar to a triangle (spatial relationships). Such

a kind of approach facilitates the declaration of the model (i.e.

a priori relationships) used for interpreting the scene content

[6, 7, 8, 9, 10, 11, 12]. This overcomes the limitation of tech-

niques based on deep learning (see [13] for a recent review of

such a technique for brain imaging) that is well known to be

efficient but requires a really large learning database, often dif-

ficult to acquire and to annotate. Such a structural approach has

already shown its potential for medical image analysis, where,

for instance, the a priori knowledge of spatial and photometric

relationships between anatomical and pathological structures

can help in guiding interpretation [8, 9, 10, 11, 12]. A ma-

jor difficulty is to fill the gap between the high level structural

knowledge and low level image properties (i.e. at voxels level)

[6, 7]. Structural information is often expressed as a graph of

relationships between structures and image interpretation is re-

garded as a graph matching problem. This graph matching can

be seen as a set of binary constraints to be verified, regard-

ing inclusion and photometric relationships in our case. In

this work, we also consider ternary constraints that we pro-

pose to express as a hypergraph matching problem [14, 15]. In

our case, hypergraph matching is required to recover the three

structures (both eyes and the nose) that are declared to be sim-

ilar, in terms of spatial relationships, to an isosceles triangle

(ternary constraint). The localization of these three structures

allows to estimate the center of mass of the brain, assuming

that its relative position (with respect to eyes and nose) is sta-

ble over piglets. Deformable models, initialized by a sphere

centered at this center of mass, are finally used, as for the hu-

man brain, to recover the entire piglet brain.

Section 2 presents the proposed approach, including an

overview of the entire processing sequence. Preliminary ex-

periments are presented in Section 3, before concluding in Sec-

tion 4.

2 Method

2.1 Overview

The proposed approach depicts severals steps, summarized by

Figure 1. It is based on a priori known relationships, detailed in

Section 2.2. From the initial MR image (Figure 1-A), nose and

eyes candidates are first recovered (Figure 1-B, detailed in Sec-

tion 2.3) using a priori inclusion and photometric relationships,

with an approach that is similar to one recently proposed [7].

Step C, being formulated as a hypergraph matching problem

[14, 15], aims at recovering the nose and both eyes, this being

detailed in Section 2.4. The brain is finally segmented using a

deformable model initialized by a sphere placed at brain center,

this center being estimated relatively to previous localized nose

and eyes (Figure 1-D, detailed in Section 2.5).

2.2 A priori structural model

The a priori structural model is based on relationships be-

tween four structures of the piglet head: nose, both eyes and

remaining internal head structures (mainly muscles and fat).

We consider that the image I is composed of a set of regions

R(u), u ∈ N , with N = {MF, Leye, Reye, Nose} (MF, Leye
and Reye respectively stands for “muscles and fat”, “left eye”

and “right eye”). Relationships are represented by three graphs,

embedding inclusion relationships (GT,m = (N, AT,m) graph,

where the subscript “T” stands for topology), photometric re-

lationships (GP,m = (N, AP,m) graph, where the subscript

“P” stands for photometry) and spatial relationships (GS,m =
(NS , AS,m, μm) graph, where the subscript “S” stands for spa-

tial). Spatial relationships concern the relative position of

structures. For GS,m, the set of nodes is NS = N \ {MF}, be-

cause the considered spatial relationships do not involve mus-

cles nor fat (see Figure 1-C). The subscript m stands for model.

These relationships are related to a qualitative description of

the scene content, that could be expressed by notions such as

“A is included in B” (inclusion relationships), “A is brighter

than B” (photometric relationships), “A is similarly bright as

B” (photometric relationships), “the distance between A and

B is about 50 mm” (spatial relationships and semi-qualitative

description).

Concerning GT,m = (N, AT,m), edges (AT set) corre-

spond to inclusion relationships [6, 7], defined by (see Figure

1-B):

i
T−→ j ⇔ R(i) � R(j). (1)

Concerning GP = (S, AP,m), edges (AP,m set) denote or-

der relations between mean intensities of regions [6, 7], and are

defined by (see Figure 1-B):

i
P−→ j ⇔ R̄(i) ≤ R̄(j), (2)

i
P↔ j ⇔ R̄(i) � R̄(j), (3)

where R̄(i) is the mean intensity value of region R(i):

R̄(i) =
∑

p∈R(i)

I(p)
|R(i)| (4)

Concerning GS,m = (NS , AS,m, μm), edges (AS,m set)

correspond to distances between regions, related to edges at-

tributes defined by the μm function:

∀(i, j) ∈ AS , μm(i, j) = d(R(i), R(j)). (5)

In our case, the considered distance is the euclidean distance

between region barycenters.

Both GT,m and GP,m graphs are only used to detect nose

and eyes candidates, merged into a single image region (Figure

1-B, detailed in next Section 2.3). The GS,m graph is then used

to retrieve each eye and the nose from this region (detailed in

Section 2.4).
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Figure 1. Overview of the proposed brain segmentation approach, based on a priori known relationships (inclusion, photometric

and spatial relationships) between different entities: MF (standing for muscules and fat), Leye (left eye), Reye (right eye) and

Nose. From the MR image (A), one detects nose and eyes candidates (B), knowing that they are included in MF (inclusion

relationships) and darker than MF (photometric relationships, where ’↔’ declares similar intensities). The C step recognizes

the nose and both eyes, by analyzing the relative position of candidates. The D step aims at recovering brain boundaries using

deformable models initialized by a sphere placed at the brain center, being estimated from the position of the nose and both eyes.

2.3 Nose and eyes candidates detection

This step corresponds to Figure 1-B. The processing line for

this step starts by segmenting the entire head of the piglet,

mainly based on a binary thresholding, leading to the MF en-

tity. Nose and eyes candidates are then searched using a binary

thresholding constrained to the region of interest defined by

this head region, according to inclusion relationships declaring

that targets (i.e. eyes and nose) belong to head (GT,m). The

region of interest is automatically computed from the a priori
knowledge (inclusion relationships) and the contextual knowl-

edge (fact that the region R(MF) is identified), as detailed in

[7]. As considered in [7], a binary thresholding is considered

because, according to a priori photometric relationships, only

two classes C1 and C2 of photometrically different structures

are assumed to belong to the region of interest (declared in

GP = (S, AP,m)): C1 = {MF} (bright) and C2 = {Leye,

Reye, Nose} (black). This identification is performed by a

simple exact graph matching approach, based on photomet-

ric information only [7]. It involves the photometric graph

GP,r = (M, BP,r) (“r” stands for real image), built from mea-

sured intensities of both classes (M = {C1, C2}). This graph

is then matched with the model graph GP,m, to automatically

identify that C2 corresponds to the nose and both eyes.

Even if only basic image processing operators are involved,

this approach aims at facilitating the guidance of operators (i.e.

ROI, number of classes for thresholding) and the identification

of outputs (i.e. nose and eyes candidates), based on a simple

preliminary declaration of observed relationships.

2.4 Nose and eyes detection

This step corresponds to Figure 1-C. The purpose is to find

the three regions corresponding to NS = {Leye, Reye,

Nose}, that are initially merged, together with artefacts, within

the region corresponding to the previously mentionned C2
entity. We propose to exploit a priori known spatial rela-

tionships, corresponding to the undirected graph GS,m. For

this, one first builds the graph associated with the real im-

age: GS,r = (M, BS,r, μr), where “r” stands for real im-

age. The purpose is to find the best matching g between the

sets NS and M . Because M 	= NS , one faces an inexact

graph matching problem [6]. In our case, we have the fol-

lowing constraint on g: ∀i ∈ NS , ∃!j ∈ M | g(i) = j and

∀(i, j) ∈ N2
S , i 	= j ⇔ g(i) 	= g(j). By considering an asso-

ciation matrix X (Xi,j = 1 ⇔ j = g(i)), we can define the set

P of all possible matchings verifying these constraints [14]:

P = {X ∈ {0, 1}|NS |×|M | |
|NS |∑

i=1
Xij ≤ 1,

|M |∑

j=1
Xij = 1} (6)

In our case, one can exploit some inter-edge properties such

as the symmetry of both eyes. This means the matching must

be expressed so that it can support such ternary contraints (i.e.

constraints regarding simultaneously the three nodes and edges

of the model). This can be formulated as a hypergraph match-

ing problem [14, 15], corresponding to hypergraphs ḠS,m =
(NS , ĀS,m) and ḠS,r = (NS , ĀS,r). In our case, a hyperedge

is defined by a set of three nodes. The set of hyperedges ĀS,m

contains a single element: ĀS,m = {(Leye, Reye, Nose)}.

The set of hyperedges ĀS,r contains all possible sets of three
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A B C A B C

Figure 2. Matching results over the 6 piglets. A: After thresholding. B: After filtering (removal of small connected components).

C: Recovered eyes and nose, resulting from the hypergraph matching with the model.

elements of M : ĀS,r = {(i, j, k) ∈ M3}.

As in [14], we consider a tensor formulation of hypergraph

matching, using a 6D supersymmetric tensor H , used to evalu-

ate a score S of a matching X ∈ P :

S(X) =
∑

i1,i2,j1,j2,k1,k2

Hi1,i2,j1,j2,k1,k2Xi1,i2Xj1,j2Xk1,k2

(7)

The product Xi1,i2Xj1,j2Xk1,k2 is equal to 1 if and only

if points (i1, j1, k1) ∈ ĀS,m are, respectively, matched to

the points (i2, j2, k2) ∈ ĀS,r. In this case, it will add

Hi1,i2,j1,j2,k1,k2 to the total score function and 0 otherwise.

Note that the tensor H is supersymmetric because invariant un-

der permutations in (i1, j1, k1) or (i2, j2, k2). H represents a

similarity measure between matched triangles:

∀(i1, j1, k1) ∈ ĀS,m, (i2, j2, k2) ∈ ĀS,r,

Hi1,i2,j1,j2,k1,k2 = exp(−di1,i2,j1,j2,k1,k2) (8)

where di1,i2,j1,j2,k1,k2 can be considered as the similarity dis-

tance for the considered matching. This term is assumed to

embed the properties related the underlying geometric structure

(i.e. isoceles triangle). In this paper, focusing on a preliminary

study, we only consider the difference between edges length of

matched triangles:

di1,i2,j1,j2,k1,k2 = |μm(i1, j1) − μr(i2, j2)|
+ |μm(i1, k1) − μr(i2, k2)| + |μm(j1, k1) − μr(j2, k2)|

(9)

The final matching X∗ is the matching X ∈ P maximizing

the score S:

X∗ = argmax
X∈P

(S(X)) (10)

Note that, due to the symmetry of the triangle, both identified

eyes can be flipped by the matching, with respect to the model.

In our case, this is managed by comparing their relative posi-

tion, at head boundaries, with respect to the barycenter of the

piglet head.

2.5 Brain segmentation

This step corresponds to Figure 1-D, where a 3D deformable

model is used to retrieve brain boundaries. A key aspect of this

step concerns the initialization of the 3D deformable model by

a sphere automatically placed at the center of the brain. We

consider the 2D coordinate system (O,�i,�j) related to the tri-

angle: the center O is the center of mass of the triangle and

the two orthonormal vectors are associated to two orthogonal

planes the intersection of which corresponding to the line pass-

ing through O and the barycenter of the nose (see Figure 1-D).

The first plane is coplanar with the triangle. The second one

is therefore perpendicular to the triangle. The estimated brain

center B is defined, relatively to O by:

−−→
OB = Bx

�i + By
�j (11)

where Bx and By are assumed to be anatomical constants.

3 Experiments

Preliminary experiments aim at evaluating the relevance of this

approach, focusing on the retrieval of the brain center from the

initial image, as well as on the accuracy of the final brain ex-

traction. One proposes to first study the relevance and the ef-

ficiency of the hypergraph matching step, based on the model

graph that is assumed to be stable over piglets (anatomical in-

variant regarding distances between eyes and nose). One also
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Figure 3. 3D models of automatically extracted piglet brains.

verifies that the position of the brain center with respect to the

triangle is stable, to ensure an acceptable initialization of the

deformable model. Finally, one evaluates the accuracy the re-

sulting brain extraction.

3.1 Database

These preliminary experiments have been performed on a set

of 6 3D MRI images, corresponding to 6 different piglets (2

weeks old piglets). For evaluation purposes, the coordinates of

the barycenter of each eyes and of the nose have been manu-

ally estimated. This enabled to compute the model GS,m (mean

relative distances). One also manually captured the coordinates

of a reference point within the brain (barycenter of both lateral

ventricles), to be used for deformable model initialization. The

brain has also been manually segmented, for evaluating the en-

tire procedure.

3.2 Results

The proposed approach has been implemented using the

Python language together with appropriate scientific packages,

and the ITK-SNAP software for manually capturing reference

coordinates. For the hypergraph matching step, the number of

candidates has been reduced by keeping the seven largest ones,

in order to reduce computation time. Hypergraph matching has

been done by testing all possible cases (set P , in equation 6),

without any optimization [14, 15] because the paper focuses

on showing the relevance of this hypergraph-matching-based

problem formulation rather that on optimizing its implementa-

tion.

The a priori GS,m model is reported in Table 1 (μS,m func-

tion, corresponding to distances). Note the weak standard de-

viation, underlying that spatial relationships seem to be sta-

ble over piglets. Although the property of symmetry is not

exploited in this preliminary work for hypergraph matching,

it appears that the hypothesis of facing an isoceles triangle is

relevant (distances of both eyes with respect to the nose are

strongly similar).

On this set of piglets, the hypergraph matching led to a per-

fect identification of both eyes and nose, compared to manually

identified structures (see Figure 2).

Values of Bx and By have been measured to be respec-

tively 3.6 mm and 48.5 mm, averaged over the experimental

database. This relative position has been used to evaluate the

accuracy of the estimation of the brain center (reference point):

the location of this reference point has been computed using

Distance (μS,m) Mean (standard deviation)

(Leye, Reye) 47.4 (1.9)

(Leye, Nose) 83.3 (2.3)

(Reye, Nose) 83.8 (2.2)

Table 1. Spatial model GS,m, computed for the 6 piglets of

the experimental database (mean distance, in millimeters, and

standard deviation).

these mean values, and has been compared to manually cap-

tured 3D coordinates. The mean error has been measured to

be of 1.7 mm (ranging between 0.5 mm and 4.4 mm, with a

standard deviation of 1.6 mm), which is negligible with respect

to approximative brain size (about 50 mm wide, manually esti-

mated on one image).

For each piglet, the sphere has then been placed at the es-

timated reference point, to initialize the deformable model to

finally extract the brain (see resulting 3D brain models reported

in Figure 3). Automatically extracted piglet brains have been

compared to manually segmented ones using the similarity in-

dex. The mean similarity index has been measured to be of

0.85 (ranging between 0.8 and 0.9, with a standard deviation

of 0.04). The quality of the result has also been visually con-

troled.

Although these preliminary results are promising, addi-

tional experiments are required on a larger database (only 6

piglets are considered in this paper), to validate the proposed

approach. Concerning the last step regarding entire brain seg-

mentation using deformable models, parameters have been

manually tuned to obtain visually acceptable brain surfaces.

Experiments on a larger database will involve an automated

optimization of these parameters, in order to objectively quan-

tify the best reachable similarity index, maybe better than the

one observed on this small database. The initial hypothesis of

the anatomical invariance of the relative position between the

nose and both eyes appears relevant with respect to our pur-

pose of retrieving an acceptable estimate of the brain center

(compared to an estimate based on the barycenter of the entire

head). Moreover, observed variations of these relative positions

appear low enough to achieve a correct hypergraph-matching-

based detection of the nose and both eyes.
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4 Conclusion

According to these preliminary experiments, the proposed ap-

proach appears to be promising, with the advantage of being

based on a priori knowledge that is easy to acquire and to for-

mulate. From a methodological point of view, this work also

illustrates how the perception of the scene (i.e. qualitative high-

level relationships: “brighter than” and “included in”, “trian-

gular structure”) can be connected to low level image features

(intensities and coordinates in our case) and algorithms (e.g.

binary thresholding in our case).

The next step will concern the experimental evaluation of

the entire processing line on a larger database. Our proposal is

based on spatial relationships that may significantly vary with,

for instance, the age of the piglet (distances between eyes and

nose). To overcome this limitation, an improvement would

concern the adptation of our proposal so that the score used for

hypergraph matching does not depend on these distances. We

plan to favor other aspects such as the symmetry of the triangle

and the sphericity of eyes (score depending on both edges and

nodes of the hypergraph).

The perspective of this work concerns the application of

this approach to other animals and other anatomical regions.
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