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Abstract

Tracking nano-metric particles in a biological envi-
ronment is a very difficult task because of the low sig-
nal intensity and the high mobility of these small ob-
jects. The task becomes nearly impossible for classical
tracking procedures when the targets are labeled with a
marker that is not strictly specific, because in this case
dynamic structures in the cell are also visible. To ad-
dress this limitation, we propose to use a source sepa-
ration technique based on sparsity principles which al-
lows the discrimination of objects with different mor-
phologies. We prove in a real case that tracking in the
source separated images allows to track particles that
interact with other sources, something which was not
feasible until now. This capability opens up new per-
spectives for the analysis documenting intricate inter-
actions between cellular compartments.

1 Introduction

The classical paradigm of particle tracking is a detec-
tion step followed by an association procedure between
the measurements and the active tracks sets. However,
in practice the set of detections is generally corrupted
by detections, called clutter, that do not correspond to a
target. The performance of tracking algorithms quickly
decreases with an increasing level of clutter because
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false tracks appear and associations of tracks with clut-
ter occur. Clutter occurs mainly from two phenomena:
(1) sensor’s noise, and (2) objects that are labeled but
are not of interest. The latter is common in biological
images because targets such as ribonucleic acid (RNA)
particles, vesicles or proteins, evolve in cells or intercel-
lular spaces that are very crowded environments. Since
in many fluorescent biological images the labeling is not
strictly specific to the targets, structures such as mem-
branes or filaments emit light which creates a dynamic
structured background and generates a high density of
clutter. It therefore degrades significantly tracking re-
sults.
In this paper, we propose a new method for tracking
small targets in a complex environment. Our approach
consists of a combination of a detection step using the
results obtained by a Blind Source Separation (BSS)
technique, followed by a Bayesian tracking procedure.
We have adapted the BSS method to the characteristics
of fluorescence biological images.
We show in Section 2 that for the BSS task the Mor-
phological Component Analysis (MCA) [5] algorithm
achieves very good performances in real fluorescence
biological images when using our proposed set of dic-
tionaries. In Section 3.1 a detection procedure using
MCA is described. We compare its results with de-
tections of a classical wavelet based approach in fluo-
rescence images from plant cells. In Section 3.2 the
combination of our detection procedure with a Bayesian
tracking step is shown to outperform a classical track-
ing procedure. Also the capacity of the proposed ap-
proach to track targets that interact with the background
is demonstrated.
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2 Blind Source Separation in biological
images

2.1 Morphological Component Analysis

The aim of blind source separation techniques is to
recover the set of sources S = [sT

1 , ..., sT
n ] from the ob-

servation of their mixture: Y = AS+N , where A is the
mixture coefficients matrix, Y is the measured signal
and N is the matrix containing measurement noise and
model error. While well known Independent Compo-
nent Analysis methods [2] rely on statistical principles,
very recently some methods based on morphological di-
versity and sparsity have emerged [5]. They require the
definition of a dictionaries set such that each source can
be represented in a very sparse way in a given waveform
dictionary of the set and in a very non-sparse manner in
every other. In the case of noisy measurements, a signal
si is said to be sparse in a waveform dictionary Di if it
can be represented from a very few dictionary elements:
si = αiDi, where most of the coefficients αi are nearly
zero.
The MCA algorithm [5] was primarily designed for the
analysis of natural images and astronomical data. It de-
composes the signal Y in a union of over-complete dic-
tionaries using a modified block coordinate relaxation
method which minimizes iteratively the following score
function:

{αi}1...n = argmin
{αi}1...n

[ n∑
i=1

||αi||0+λ||Y −
n∑

i=1

αiDi||22
]

The first term of the sum reflects a sparsity constraint
while the second term is the reconstruction error and
introduces a data-driven constraint.

2.2 Dictionaries set for biological images

In order to separate small particles, whose tracks are
wanted, from background in biological images, we pro-
pose to use the MCA algorithm by considering the par-
ticles as one source and background structures as other
sources. We therefore have to define at least two dic-
tionaries that are mutually incoherent and model in a
sparse way biological images.
In many fluorescence biological images small parti-
cles appear as nearly Gaussian spots because the point
spread function of the acquisition system is very well
approximated by a Gaussian function [7]. We therefore
propose the Undecimated Discrete B3-Wavelet Trans-
form (UDWT) [6] as the waveform dictionary D1 for
this source, because it is built from nearly Gaussian
functions. The dictionary D2, that represents the back-
ground must also be selected according to its morphol-
ogy. Very often the non isotropic background in fluo-
rescence images is composed of linear structures, such

as membranes and filaments. The Discrete Curvelet
Transform (DCvT) [1] is well adapted to these signals
in 2d because it represents C2 smooth curves optimally.
For images in which the background looks like texture,
the Discrete Cosine Transform (DCT) is an appropriate
dictionary because it models locally periodic signals in
a sparse way. These three dictionaries have very fast
implementations of direct and inverse transforms in 2d,
which makes MCA computationally feasible.
An example of MCA capabilities when it is applied
with an appropriate set of dictionaries is presented now.

Figure 1 shows an image of epidermal root cells of

Figure 1. A GFP KOR1 protein labeled vac-
uoles membranes and small compartments.

Figure 2. Results of MCA using the proposed
dictionaries: (a) Original crop (b) Wavelet part
α1D1, (c) Curvelet part α2D2.

Arabidopsis plants. The seedlings expressed the Green
Fluorescent Protein (GFP) fused to the KORRIGAN1
(KOR1) protein. 20 stacks of 11 slices each were ac-
quired with a disk scanning confocal microscope be-
cause tracks of KOR1 compartments are wanted. We
apply MCA because signals of KOR1 proteins in com-
partments appear as small isotropic spots superposed to
signals of membranes of vacuoles. There is no restric-
tion on the dimensionality of sources in our framework,
but a processing of MCA slice by slice was preferred
because the cost of using 3d dictionaries representing
surfaces is prohibitive. We therefore have chosen to ap-
ply MCA with two dictionaries: UDWT for spots and
DCvT for membranes. Here the DCT is useless because
of the lack of texture in these images. The separation
of compartments and membranes signals is very well
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achieved as shown in Figure 2.

3 Tracking small particles in MCA pro-
cessed images

3.1 Spots detection

We propose to detect small particles by analyzing the
wavelet coefficients resulting from the BSS technique
proposed in Section 2.2 and then follow them through
time with a kinetic Bayesian tracking algorithm (Sec-
tion sec:res). In the following we call this combined
BSS-detection method MCA-UDWT as opposed to the
method UDWT which only uses an undecimated B3-
wavelet transform without BSS.
One or few wavelet scale coefficients of the MCA-
UWDT are selected according to the particles sizes.
A binary mask of each slice of the original image is
obtained from the binarization of these coefficients by
thresholding. The mask is used to obtain 3d positions
of individual particles by a 3d connected components
extraction.
In the case of the biological images presented in Section
2.1 the second scale of the MCA-UDWT is analyzed
because it corresponds to the size of KOR1 compart-
ments. For the purpose of validation, a manual detec-
tion process to assess precise detection performance is
highly time consuming in our case because the particles
are very numerous (in the range of several thousands)
and the third dimension considerably slows down the
manual localization. This is why we consider only one
slice of the stacks and crop it. Conclusions on perfor-
mance improvement should remain valid in 3d because
loosing the z information makes the automatic detec-
tion process even more difficult, placing us in a worst
case scenario. We compare the new detection perfor-
mance to those of a method that has been demonstrated
to be efficient in many biological images [4]. When us-
ing a single scale the latter consists in thresholding the
second scale of UDWT coefficients and extracting de-
tections in a similar way as described for MCA-UDWT.
In Figure 3 the scales 2 of MCA-UDWT and UDWT are
depicted. It shows that there no longer remains any lin-
ear structure in the second scale given by MCA-UDWT
filtering, which makes the detection process much more
easier than in the second scale of UDWT which contains
many linear residues. The corresponding binarized im-
ages clearly highlight this fact.
An expert identified 2507 spots in the movie of 20 im-
ages corresponding to this crop. Figure 4 represents the
number of recovered detections and the number of false
detections for various strategies of thresholding second
scales coefficients. It shows that MCA-UDWT always
recovers a higher number of targets than UDWT for

Figure 3. (a,d) Original crop and correspond-
ing manual detections, (b,e) 2nd scale of UDWT
and resulting binarized image by permissive
thresholding, (c, f) 2nd scale of MCA-UDWT and
resulting image by permissive thresholding.
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Figure 4. Detection performance based on
MCA-UDWT (green) and UDWT (blue).

a given number of false detections. This is especially
true when the threshold is permissive (right part of the
curves): in this case MCA-UDWT is able to recover low
intensity particles, while the UDWT cannot because it
recovers also linear structures which aggregate with true
detections, and therefore worsens results quality.

3.2 Tracking of particles

Once the detection step has been performed, a ki-
netic Bayesian tracking procedure with a mixture of
predicting filters [3] is used to build the tracks. The mix-
ture of three kinetic filters: Brownian, constant speed
and constant acceleration filters, is able to model most
common biological motions such as diffusion or motion
along filaments or tubules.
In Table 1 we present the number of manually iden-
tified displacements of targets between two consecu-
tive frames that are recovered by Bayesian tracking
when combined with MCA-UDWT and UDWT detec-
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tion procedures. The MCA-UDWT approach clearly
improves the tracking result quality due to a better set
of detections: 19% of displacements are additionally re-
covered, while at the same time the rate of false dis-
placements is decreased by 4%.

UDWT MCA-UDWT
recovered dis-
placements rate

1176/2005 =
0.59

1572/2005 =
0.78

false displace-
ments rate

283/(1176+283)
= 0.19

277/(1572+277)
= 0.15

Table 1. Tracking results on a small 2d crop of
the original images.

Figure 5. Results of tracking: (a) tracks in a
small 2d crop, (b, c, d, e,f) tracking of a vesicle
that is crossing a membrane.

Figure 6. Detection and tracking result using
MCA-UDWT detections in original 3d images.

A qualitative inspection of results obtained with the
proposed approach reveals that 22% of displacements
miss because of events, such as fusion of closely spaced
targets, that are not related to BSS and for which we
are currently developing other solutions. This confirms
the efficiency of MCA-UDWT combined with Bayesian

tracking to solve the issues described in Section 1. In
Figure 5 we show that thanks to MCA-UDWT we are
able to track particles that interact with membranes, or
cross them. This capability of the approach is opening
new perspectives for biological studies: we can quantify
interactions with background structures because each
separated image gives information about positions and
dynamics of a source.
Results of detection and tracking in 3d of the proposed
approach are presented in Figure 6. The same benefits
that were proven in 2d are observed: the resulting tracks
are not degraded by the presence of any remaining back-
ground structure. We are planning now to quantify the
improvement as for the 2d case.

4 Conclusion
We have proposed the use of the MCA algorithm

with representation dictionaries adapted to biological
fluorescence images in order to separate small isotropic
targets from other fluorescent sources coming from
structured dynamic background. The benefits of the
method was proven in an example of real and challeng-
ing biological case. The combination of this technique
with a Bayesian tracking procedure allows following
particles that were previously impossible to track be-
cause of their interactions with background structures.
These results open up new perspectives in studies of in-
teractions and relative motions between small particles
and other structures in biological images.
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