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‡ Institut Mines-Télécom, Télécom ParisTech, CNRS LTCI, Paris, France
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ABSTRACT

In this paper, an extension of the framework proposed by Deledalle
et al.[1] for Non Local Means (NLM) method is proposed. This ex-
tension is a general adaptive method to denoise images containing
multiple noises. It takes into account a segmentation stage that indi-
cates the noise type of a given pixel in order to select the similarity
measure and suitable parameters to perform the denoising task, con-
sidering a certain patch on the image. For instance, it has been ex-
perimentally observed that fetal 3D ultrasound images are corrupted
by different types of noise, depending on the tissue. Finally, the pro-
posed method is applied to denoise these images, showing very good
results.

Index Terms— ultrasound image, image denoising, non local
means, multiple noises, ultrasound segmentation

1. INTRODUCTION

Ultrasound images are known to be very noisy, and the usual as-
sumption is that pixel intensities follow a Rayleigh distribution [2,
3, 4]. However, it was identified by Anquez [5] that in fetal 3D ultra-
sound (US) images, different noise distributions characterize differ-
ent tissues appearances, depending on pixel intensity saturation and
tissue type. For example, it is shown that the noise is governed by
a Gaussian distribution in fetus tissues and by an Exponential distri-
bution in amniotic fluid area (in the saturated case).

This analysis can be extended by using the Chi-Square test to
verify the fitting of the histogram data of each tissue or class to some
distributions and the Method of Moments for parameter estimation
of these distributions. In our examples, the US image can be sep-
arated in two classes only, namely Dark (DA) and Light (LA) (see
Fig. 1).

The LA class, comprising fetus and light regions of other tis-
sues of a pregnant woman (OP) such as placenta and outside it, is
corrupted by Gaussian noise (independent of the saturation level),
whereas DA class, comprising amniotic fluid and dark areas of OP, is
corrupted by Rayleigh, Gamma or Exponential distributed noise, de-
pending on whether the image is saturated or not. So, the Chi-Square
test could be used to determine the best fit among these distributions
for DA.

Therefore, an adaptive method to denoise these images taking
into account the different distributions is necessary. In order to pro-
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Fig. 1. Segmented Image for analysis: (a) Original image, (b) Man-
ually segmented images in three classes (fetus, amniotic fluid and
other tissues of pregnant woman), (c) Dark and light areas from other
tissues of pregnant woman and (d) Manually segmented images in
two classes (Light and Dark areas).

pose such a method, a state-of-art Non Local Means (NLM) ap-
proach is adapted in this work, extending the framework proposed
by Deledalle et al. [1], to refine the NLM weights according to the
noise distribution.

This paper describes the proposed 2D method and discusses
some denoising results on fetal ultrasound images to evaluate it.
However, despite its application for US images, the proposed method
is general. Indeed, it is important to highlight that it could be useful
in other domains where different classes of noise distributions have
to be taken into account or where a higher number of classes has to
be considered.

Note that the aim of denoising in this paper is not to improve the
visual inspection by medical experts (who are used to interpret the
images with speckle noise), but to facilitate the automated segmen-
tation.

Finally, this text is organized as follows. Section 2 presents the
considered Non Local Means approach. Section 3 describes the pro-
posed adaptive method to denoise ultrasound images. Finally, some
experiments and results on fetal ultrasound images are described in
Section 4 and a final discussion is presented in Section 5.

2. NON LOCAL MEANS

The classical NLM method was proposed in [6] and is mainly based
on the redundancy of patches in images. In this method, the noise-
free value of a pixel is basically estimated as a weighted mean of
pixels in a certain region. These weights are calculated using a Eu-
clidean distance to measure the similarity between a central patch
and neighboring patches in a search window, where the central pixel
of both the central patch and the search window is the current pixel
to be estimated. As the classical method is based on the Euclidean
distance, it is suitable for Additive White Gaussian Noise (AWGN).
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This method can be represented by the following equation [6]:

ûs ,

∑
t∈W ω(s, t)vt∑
t∈W ω(s, t)

, (1)

where ûs is a current noise-free estimation of the value of the pixel at
position s, vt is a noisy value of a pixel t belonging to a search win-
dow W and ω(s, t) are the weights comparing the patches centered
at s and t and defined by [6, 7]:

ω(s, t) , exp

(
− 1

h

∑
k

|vs,k − vt,k|2
)
, (2)

where h controls the exponential decay, vs,k and vt,k are the k-th
pixel in the patches s and t from noisy image v, respectively.

In order to apply this simple idea to other noise models and to
improve the results, a framework was proposed in [1] to iteratively
generate and refine the weights based on Weighted Maximum Likeli-
hood estimation. This method is derived from the following equation
in a Bayesian Framework

ω(s, t)(i) , p(H0|vs,vt,û
(i−1))

p(H1|vs,vt,û(i−1))
=
p(vs,vt|H0)

p(vs,vt|H1)︸ ︷︷ ︸
likelihood

× p(H0|û(i−1))

p(H1|û(i−1))︸ ︷︷ ︸
a priori

, (3)

where H0 : u1 = u2 ≡ u12 is the null hypothesis, H1 : u1 6= u2

is the alternative hypothesis, vs and vt are noisy patches, u1 and u2

are the noise-free patches, u12 is a common parameter and û(i−1)

is a noise-free image estimated in the previous iteration.
Assuming that the pixels inside a patch are independent of each

other conditionally to the class, two similarity measures were di-
rectly derived: the Generalized Likelihood Ratio (GLR) and Sym-
metric Kullback-Leibler Divergence (SKLD), respectively.

The GLR is defined in [8]:

LG(v1,v2) =
supt p(v1,v2|u12 = t,H0)

supt1,t2
p(v1,v2|u1 = t1,u2 = t2,H1)

. (4)

In turn, the SKLD is defined in [1]:

DKL(u1,u2) =

∫
(p(v|u1)− p(v|u2)) log

p(v|u1)

p(v|u2)
dv. (5)

Assuming uncorrelated noise, the similarity between patches
corresponds then to a product of the similarities between their pix-
els. Thus, taking the log of this product, the joint similarity measure
can be defined by [1]:

ω(s, t)(i) = φ

[
−
∑
k

(
− logLG(vs,k,vt,k)

α
−
DKL(û

(i−1)
s,k

,û
(i−1)
t,k

)

β

)]
. (6)

where φ is a kernel (usually defined as an exponential or a trape-
zoidal kernel) and α and β are confidence parameters in the amount
of filtering and pre-estimated image, respectively. It is worth noting
that the pre-estimated image in the first iteration can be defined as
non iterative NLM. This initial condition corresponds to define the
pre-estimated images as a matrix of constant values equal to 1 and
the first value of β equal to 1. Besides if the noise is Gaussian, it
corresponds to the classical NLM of Buades et al. [6].

Table 1 summarizes the GLR and SKLD of Gaussian, Rayleigh
and Gamma distributions. Also, these measures for Gamma dis-
tribution are the same for Exponential distribution, since the latter
is a special case of the former. In addition, Fig. 2 summarizes the
weights from individual and joint similarity measures. The graphs

Table 1. GLR and SKLD for some distributions.
Distribution GLR SKLD NLM

Gaussian e−(v1−v2)
2

−(û1 − û2)
2

∑
t∈W ω(s,t)vt∑
t∈W ω(s,t)

Rayleigh v1v2

v2
1+v

2
2

û2
1

û2
2
+

û2
2

û2
1
− 2

√∑
t∈W ω(s,t)v2

t∑
t∈W ω(s,t)

Gamma v1v2
(v1+v2)2

(û1−û2)
2

û1û2

∑
t∈W ω(s,t)vt∑
t∈W ω(s,t)

in this figure represent the obtained values of the similarity mea-
sures described in Table 1 (as well as the weights generated by a
exponential kernel), when the difference between the intensities of
the two pixels increases. It is important to note that in these graphs
− logLG(vs,k, vt,k) is used rather than GLR only, for reasons of
simplicity. More details on GLR and SKLD can be found in [1, 8].

(a) (b)

Fig. 2. Comparison of (a) Similarity Measures and (b) Joint Similar-
ity Measures in terms of weights.

Finally, an extension to adapt this method for a multi-distribution
image is proposed in the next section.

3. THE PROPOSED ADAPTIVE METHOD

In this section, an extension of the framework proposed in [1] for
images containing multi-distribution noise is presented. To apply the
most suitable similarity measure for SKLD and GLR for each pixel,
its distribution noise should be determined previously. So, assuming
that we have a pixel classification such that pixels corrupted by the
same noise distribution are in the same class, we can rewrite the
framework equations to consider this information. Thus, let L be a
classification of an image according to the noise distribution at each
pixel, then Eqs. 3 and 6 can be rewritten as, respectively:

ω(s, t)(i) , pL(H0|vs,vt,û
(i−1))

pL(H1|vs,vt,û(i−1))
=
pL(vs,vt|H0)

pL(vs,vt|H1)︸ ︷︷ ︸
likelihood

× pL(H0|û(i−1))

pL(H1|û(i−1))︸ ︷︷ ︸
a priori

, (7)

ω(s, t)(i) = φLs

[
−
∑
k

(
− logL

(Ls,k)

G
(vs,k,vt,k)

αLs,k
−
D

(Ls,k)

KL
(û

(i−1)
s,k

,û
(i−1)
t,k

)

βLs,k

)]
, (8)

where φLs is a kernel for noise distribution L on s-th pixel, L(Ls,k)

G

and D(Ls,k)

KL are the GLR and SKLD (similarity measures) for the
noise distribution L on k-th pixel from the patch defined by s, re-
spectively, and αLs,k and βLs,k are confidence parameters in the
filtering quantity and pre-estimated image for the noise distribution
L on k-th pixel from the patch defined by s, respectively. It is worth
to note that if an image is represented by a single noise distribution,
we obtain the original equations defined in [1]. So, the extended
algorithm, namely 2D-DirectAdapt, is presented in Algorithm 1.

Here, all patches within a given search window are considered,
even if they belong to different classes or cover several classes. Also,
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Input: - noisy image v

- pre-estimated image u′
- 2D-FFT (Fast Fourier Transform) of the patch shapeF(S)
- seach window W
- contributions of similarity on noisy imageαLs,k
- contributions of similarity on pre-estimated image βLs,k
- segmented image according to noise type classes L

Output: - estimated noise-free image û
1 Initialize the accumulator images A and B to zero
2 forall the shift δ in theW do

3 Compute ∆v,δ(s) =
− logL(Ls)

G
(v(s),v(s+δ))

αLs+δ
for all pixels s in v

4 Compute ∆
u′,δ(s) =

D(Ls)
KL

(u′(s),u′(s+δ))
βLs+δ

for all pixels s in u′

5 Compute the 2-D FFTF
(
∆v,δ(s)

)
andF

(
∆

u′,δ(s)

)
6 Perform the convolution of ∆v,δ(s) and ∆

u′,δ(s) by the shape S:

dv(., . + δ) = F−1
(
F(S)F

(
∆v,δ(s)

))
(.)

d
u′ (., . + δ) = F−1

(
F(S)F

(
∆

u′,δ(s)

))
(.)

7 forall the pixels s do
8 Compute the weights:

ω(s, s + δ) = φLs

(
−
(
dv(s, s + δ) + d

u′ (s, s + δ)
))

9 Update the accumulators:
A(s) = A(s) + ω(s, s + δ)v(s) according NLM forLs in Table 1
A(s) = A(s) + ω(s, s + δ)

end
end

10 û(s) =
A(s)
B(s)

for all pixels s, according NLM forLs in Table 1

Algorithm 1: 2D-DirectAdapt. Based on [7].

note that the similarity between two noisy patches vs and vt is de-
fined as the sum of the similarities between vs,k and vt,k according
to the type of noise on vs,k (similarly for SKLD). This enables to
consider multi-class patches.

In turn, to obtain the optimal thresholding of a fetal ultrasound
image, it is important to define the distribution D of pixels in Dark
Area (amniotic fluid and dark regions of the mother’s body) along
the image. Basically, this region can be corrupted by Exponential,
Rayleigh or Gamma Distribution. To determine which among these
distributions fits better the Dark Area, a Chi-Square test can be used.

Based on the work by Anquez in [5], where it is shown that
the K-means produce satisfying segmentation results for our images,
we have also tested it to obtain an initial segmentation. Basically,
the class with the centroid corresponding to the lowest mean shows
high correspondence with the amniotic fluid and darker tissues of
the mother. In turn, the class with the centroid corresponding to
the highest mean shows high correspondence to the fetus and lighter
parts of the mother. So, the Chi-Square test can be applied on DA.

Once this is done, spatial regularization is achieved using a
Markov Random Field model (using a Potts model), solved using
the Iterated Conditional Modes (ICM) algorithm [9] for maximum a
posteriori (MAP) estimation. The estimation of the Beta parameter
(spatial dependency parameter that controls the tradeoff between
likelihood and prior knowledge) is done numerically as in the work
of Levada [10, 11]. Therefore, this optimal segmentation contains
two classes, Dark Area and Light Area, that are described by D and
Gaussian distribution (likelihoods for each class used in ICM), re-
spectively. ICM is a deterministic method, which usually converges
in a few iterations. However, its result is dependent on the initial
estimate of the classes. Note that a more efficient method to do this
optimization step such as graph-cuts [12] can be used.

It is noteworthy that only an initial rough classification is re-
quired here, which justifies the choice of unsupervised and simple
methods for this task. In addition, the focus of this work is to evalu-
ate the adaptive denoising method only.

So, the proposed methodology can be summarized by the dia-
gram in Fig. 3. Finally, based on what has been discussed so far, in
the next section we discuss some results of the proposed method.

Fig. 3. Block diagram of the proposed methodology to denoise fetal
ultrasound images.

Table 2. Denoising results for synthetic images.
Methods PSNR SSIM
Noisy 11.92 0.10
BM3D (σ2 = 0.36) 20.62 0.74
BM3D (σ2 = 0.40) 20.63 0.74
NLM for Gamma (α = 0.29, β = 0.29) 21.98 0.66
NLM for Gamma (α = 0.18, β = 0.18) 22.55 0.62
NLM for Rayleigh (α = 0.30, β = 0.30) 18.98 0.66
NLM for Rayleigh (α = 0.14, β = 0.14) 18.52 0.45
NLM for Gaussian (α = 0.41, β = 0.41) 21.24 0.62
2D-DirectAdapt (RAY = 0.27,GAM = 0.26,GAU = 0.10,EXP = 0.45 ) 24.41 0.67
2D-DirectAdapt (RAY = 0.15,GAM = 0.15,GAU = 0.07,EXP = 0.26 ) 25.06 0.57

4. EXPERIMENTS AND RESULTS

In this section, some results to evaluate the proposed method are
presented and discussed. In all experiments a trapezoidal kernel was
used.

In the first experiment, we consider a synthetic image, where
different types of noise were applied depending of the segmenta-
tion pattern. Each class in this pattern corresponds to a different
noise, totalizing four classes and four noise distributions: Rayleigh,
Gaussian, Gamma and Exponential. To generate the noisy image
here, a segmentation was considered, where for each region from
the original image corresponding to each class, one kind of noise
was applied. These noisy images were denoised by NLM for Gaus-
sian Noise, 2D-DirectAdapt method and Block Matching and 3D
Filtering (BM3D) [13]. For a quantitative evaluation, we computed
the Peak Signal-to-Noise Ratio (PSNR) and the Structure Similarity
Index (SSIM) measures [14].

The best denoising results and quantitative results in terms of
SSIM and PSNR for each method in this experiment are shown in
Fig. 4 and in Table 2. The settings used here were W = 10 × 10,
P = 3× 3 and 3 iterations for 2D-DirectAdapt and one iteration for
NLM filters. Note that the proposed method was quantitatively and
qualitatively superior to the basic NLM methods, showing very good
results. Also, it is the best in terms of PSNR. But, despite the fact that
BM3D was developed for AWGN, it also presents very good results
in these images containing multiple noises, obtaining the best results
in terms of SSIM. Also, observe that the 2D-DirectAdapt method
preserved best the DC level of the image.

In the next experiment, real images from fetal ultrasound sys-
tem are filtered using the proposed method. Its obtained results are
compared to basic versions of NLM. The settings used here were
W = 10 × 10, P = 3 × 3 and pairs (α = 0.02, β = 0.02),
(α = 0.05, β = 0.05), (α = 0.05, β = 0.25) for Gaussian, Gamma
and Rayleigh distributions in all tested methods, whose results are
shown in Fig. 5.

Finally, since there is no ground truth for quantitative compar-
ison, the evaluation takes place in a visual way. Thus, it may be
noticed that the results using the adaptive method (according to the
actual distribution of the each tissue) provides a good balance be-
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(a) (b) (c) (d)

(e) (f) (g) (h)

(i) (j) (k) (l)

Fig. 4. Denoising results for synthetic image (c) generated accord-
ing to segmentation in (b), where the regions of original image (a)
corresponding to black, dark gray, light gray and white classes are
corrupted by Rayleigh, Gamma, Exponential and Gaussian noise, re-
spectively. The remaining items are filtered by (d)-(e) BM3D, (f)-(g)
NLM for Gamma, (h)-(i) NLM for Rayleigh, (j) NLM for Gaussian
and (k)-(l) 2D-DirectAdapt. The parameters are specified in Table 2.

tween details preservation and noise removal. This indicates that
the use of an adaptive method based on NLM is promising for these
types of images.

5. FINAL CONSIDERATIONS

In this paper, a simple adaptive extension of the NLM framework of
[1], taking into account several noise distributions in the same image
was proposed. For this purpose, a segmented image was considered
such that each class corresponds to one type of noise distribution.

To evaluate the proposed method, it was applied on fetal ultra-
sound images, in which different tissues are corrupted by different
noise distributions. The proposed method has obtained very good
results.

Despite of the application of the proposed method in US images,
it is important to reinforce that this is a general method.

As the main drawback of the proposed method we can highlight
that the determination of the different parameters is done manually.

Finally, future works will include: 1) the automatic determi-
nation of the parameters, 2) the data decorrelation and subsequent
learning of dedicated parameters similarly to what was done for Syn-
thetic Aperture Radar (SAR) in [15], or modeling the local spatial
dependence of data using second order statistics in a MRF model,
and 3) an extensive quantitative evaluation of the adaptive method,
in particular by checking the influence of filtering on subsequent seg-
mentation steps.
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