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2Institut Pasteur, Unité de Biologie Cellulaire des Trypanosomes; CNRS URA 2581, Paris, France

3TELECOM ParisTech, CNRS UMR 5141 LTCI, Paris, France

ABSTRACT

In this paper we present a new procedure for tracking bi-directional
objects in kymographs. The proposed technique is based on a novel
adaptive and directional band-pass filtering method which allows us
to separate particles which move in opposite directions. The filter-
ing method exploits the curvelet analysis of the kymograph image to
automatically adapt to the objects trails characteristics and select ori-
ented features. The separation of bi-directional objects in separated
images allows us to reliably detect and track fluorescent particles
in fluorescence image sequences, despite numerous crossroad points
in the kymograph space. The new abilities provided by the proposed
technique are highlighted by the analysis of biological images which
were previously impossible to analyze reliably.

Index Terms— Curvelet transform, Kymograph, Particle track-
ing, Multiple Hypothesis Tracking (MHT)

1. INTRODUCTION

Tracking nanometric scale particles over time is the method of
choice to characterize sub-cellular mechanisms since it provides
robust and accurate information on sub-cellular dynamics [1]. Over
the past years a number of automatic approaches have been proposed
to recover the successive positions of particles in microscopy image
sequences (see [2, 3] and references therein). A number of particle
tracking methods rely on a two-steps procedure: (1) detect the spot
positions in each frame, (2) link the sets of positions between sub-
sequent frames according to the detected particles. The latter step is
generally referred as the association problem between the detected
positions and the set of tracks.
In a number of biological applications, such as particle tracking
along microtubules and axons, numerous objects go through com-
mon paths. In this case, exploiting the redundancy of the trajectories
is a possible manner to reduce the complexity of the tracking prob-
lem by imposing tracks to go through fixed spatial paths. The
kymograph analysis exploits this idea in an efficient manner: the
spatio-temporal volume is projected to a 2D space called kymo-
graph (or kymogram), where one axis represents the position along
the reference path, and the second direction is the time point in the
image sequence. When particles move slowly along the reference
path, they yield a continuous fluorescent trail in the kymograph
space which can be analyzed to recover particle trajectories. For
instance, in [4] one kymograph is built for each single fluorescent
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object, for which the trajectory is extracted by a Bayesian estima-
tion technique. In [5] the extraction of multiple trajectories from a
single kymograph is achieved by using an automatic line extraction
algorithm. However, crossing trails cannot be resolved with the
latter method and it is proposed to split tracks into small segments
to avoid false links when conflicts are detected. Hence, there exists
yet no tracking method handling robustly multiple particles which
are frequently crossing in the kymograph image.
In this paper we propose a method to track reliably multiple particles
despite numerous cross-points in the kymograph space. The method
relies on a novel band-pass filtering technique which is both direc-
tional and adaptive to the kymograph features. We propose here to
exploit the curvelet domain representation [7] of the kymograph to
separately extract the frequency components corresponding to the
trails of particles showing anterograde and retrograde motion. While
some methods have been proposed for directional components sep-
aration based on the estimation of local orientations (e.g. [6]), our
technique automatically achieves the separation by selecting the
frequency wedges which fit the anterograde and retrograde particle
trails, respectively. As a result, trails with opposite directions are
reconstructed in different images in which the signal-to-noise ratio
(SNR) is improved. The independent extraction of anterograde and
retrograde trails and the improved SNR allow us to track particles
in the separated images in a robust manner. This point is illustrated
with the tracking of numerous crossing cargos in the trypanosome
flagellum using a robust Bayesian tracking technique [8].
The outline of the paper is as follows: in Section 2 we describe the
kymograph analysis based on the curvelet transform for separating
bi-directional particles. We then provide in Section 3 experimental
results of cargo tracking in microscopy images of the trypanosome.
Finally, we summarize and discuss our proposals.

2. KYMOGRAPH ANALYSIS WITH THE CURVELET
TRANSFORM

2.1. Kymograph representation of an image sequence

The kymograph K is a 2D representation of the intensity fluctuations
over time along a reference line L in 2D (or 3D) space. Each line
of K corresponds to the observed intensities along L at a given time
point. At each time point k the intensity value in the kth image is
sampled along L with a fixed step δ. For instance, we show in Fig-
ure 1 a kymograph extracted from a microscopy image sequence of a
trypanosome parasite. The kymograph values K(t, d) give the inten-
sity value at time t at position d × δ on the trypanosome flagellum
(L), a long tubular structure. In K, hundreds of fluorescent trails
with various properties can be observed: some are very regular and
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Fig. 1. Kymograph image extracted from a microscopy image se-
quence of the trypanosome. Fluorescent trails correspond to particle
trajectories along the flagellum.

thin lines, other are thick with irregular curvature. The trails in K
correspond to fluorescent particle trajectories along L: a regular line
indicates a particle moving with a constant velocity which is propor-
tional to the line’s slope, and a more complex pattern corresponds to
a particle with varying motion types.
In Figure 1 we show that many trails do cross in the kymograph
space, hence reflecting the bi-directionality of the particles along L.
The numerous crossroads in L prevent the use of procedures based
on line extraction techniques such as [5]. On the other hand, for two-
step tracking approaches, the association problem is ill posed since
standard detection methods produce a single detection for several
crossing particles at crossroad points.

2.2. Separation of anterograde and retrograde movements in
the curvelet domain

In order to solve the issue of bi-directional particles in the kymo-
graph space, we present next a new method to split anterograde and
retrograde trajectories into two independent kymograph images. The
separated kymographs can then be processed separately with a stan-
dard tracking procedure.

2.2.1. Directional image analysis with the curvelet transform

The 2D curvelet transform allows the directional and multiscale
analysis of an image by decomposing it as a combination of seg-
ments of various length and width [9]. The digital curvelet decom-
position is linear and takes as input Cartesian arrays of the form:
f [t1, t2], 0 ≤ t1 < n1, 0 ≤ t2 < n2. The output is a set of
coefficients c(j, l, k) at each scale j and angle l which can thus be
expressed as:

c(j, l, k) =
X

0≤t1<n1, 0≤t1<n2

f [t1, t2]φj,l,k[t1, t2] (1)

where each φj,l,k is a digital curvelet waveform. Equation 1 can be
rewritten in matrix form as:

X = Y Φ, and X = Φ̄∗Y, (2)

where X is the column vector of the curvelet coefficients and Y is
the image concatenated in a column vector. The matrix Φ contains
the curvelet waveforms and is called the analysis operator, while Φ̄∗

(a) Fourier domain coronization (b) Kymograph
spectrum

Fig. 2. Fourier domain analysis. On the left-hand side we show the
domain coronization that is achieved by the curvelet decomposition
when omitting the wedge overlaps. On the right-hand side, we show
the frequency spectrum of the kymograph shown in Figure 1. We in-
dicate in yellow that most meaningful information of the kymograph
is included in two sectors corresponding to few curvelet wedges.

corresponds to the synthesis operator. In practice, neither the digital
waveforms nor the matrices Φ and Φ̄∗ are built: they are implic-
itly defined by the algorithm. The wrapping implementation of the
curvelet transform [7] relies on the computation of the coefficient
c(j, l, k) in the Fourier domain as:

c(j, l, k) =

Z
f̂(ω)Ũj(S

−1
Θl

ω)ei<b,ω>dω, (3)

where Ũj(S
−1
Θl

ω) is a smooth frequency window which is supported
on a parallelipedal region (the matrix SΘl is a shear matrix of an-

gle Θl, and b � (k12
−j , k22

−j/2) with k = (k1, k2)). In practice,
the frequency domain is tiled with a set of oriented smooth windows
Ũj,l, called wedges. The wedge decomposition consists in an coro-
nization of the frequency domain based on concentric squares and
shears which are slightly overlapping. We illustrate the coronization
in Figure 2(a) by omitting the overlaps between wedges.

2.2.2. Kymograph Fourier analysis

We show in Figure 2(b) the frequency spectrum of the kymograph
built previously in Fig. 1. Interestingly, the spectrum shows well
identified sectors, grossly delineated in yellow in Figure 2(b), which
contain most of the meaningful information. Each of these two sec-
tors corresponds to a different class of fluorescent trails in K:

• Sector A is close to the vertical axis, it thus corresponds to
trails with a slope value close to 0 in K (high velocity). The
regularity of the trails, and the nearly constant velocity of
the particle motion, yield a thin sector in the Fourier domain.
This sector corresponds to retrograde trails in K.

• Sector B is much wider than the sector A, which indicates that
the corresponding movements are less regular. It corresponds
to particles showing anterograde motion.

The two frequency sectors, A and B, are both contained in different
wedges. We thus propose to take advantage of the frequency tiling
achieved by the curvelet decomposition to isolate the two frequency
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components, thereby separating bi-directional trails. The sectors are
also embedded in only few wedges, we thus automatically fit the
wedge selection to the sectors to exclude noise-only components and
improve the SNR of the reconstructed images.

2.2.3. Adaptive band-pass filtering by wedge selection

We first apply the curvelet decomposition to the kymograph image
K to obtain the representation X such that K = Φ̄∗X . Our goal is to
design two matrix operators Ma and Mr , which select the curvelet
coefficients corresponding to anterograde and retrograde trails in K,
respectively. The separated images Ka and Kr are then obtained by
applying the backward curvelet transform to the masked coefficients
as follows:

Ka = Φ̄∗MaX, Kr = Φ̄∗MrX. (4)

The proposed approach is to select wedges which correspond to the
desired trail directions and obtain a directional band-pass filtering of
K.

Quadrant selection. As shown in Fig. 2(b) the two frequency
sectors of interest lie in different quadrants of the Fourier domain.
Hence, wedges can be selected according to the quadrant in which
they are contained. We note Qa and Qr the binary matrices selecting
curvelet coefficients in the frequency quadrant corresponding to an-
terograde and retrograde motion, respectively. The lowest frequency
wedge is also discarded by Qa and Qr . Applying the operators Qa

and Qr to X allows us to separate anterograde and retrograde mov-
ing particles in two independent images, and to flatten the kymo-
graph background.

Adaptive wedge selection. The quality of the reconstructed ky-
mograph images Ka and Kr can be improved by discarding wedges
that do not contain meaningful information for particle tracking. In-
deed, the pixel wise noise corrupting K is uniformly distributed in
the Fourier domain, while the particle signal is restricted to the sec-
tors A and B. We thus propose to adaptatively detect the set of
wedges representing particle trails. To do so, we compute the nor-
malized mean energy for each wedge at each scale:

e2
j,l =

1

nj,l

X
k

c(j, l, k)2

σ2
j,l

, (5)

where nj,l is the number of wavelet coefficients c(j, l, k) corre-

sponding to the wedge Ũj,l, with l the index of the wedge at scale
j. The normalizing term σ2

j,l is the energy scaling factor for the

wedge Ũj,l (σ2
j,l is estimated by computing the energy of the wedge

Ũj,l when the curvelet transform is applied to an image of unit en-
ergy). After normalization, the range of the energy values can be
compared between wedges with different orientations and from dif-
ferent scales. We propose to cluster the histogram of the wedge en-
ergy for each scale in two classes: wedges with high energy that
correspond to a meaningful information, and low energy wedges
which correspond to artifacts and noise only. The histogram seg-
mentation method in [10] provides an energy threshold tj for each
scale j which is used to design a binary matrix W for the selection of
the curvelet coefficients. A coefficient in the wedge Ũj,l is selected
if e2

j,l > t2j ; it is discarded otherwise.
Finally, the image separation matrices Ma and Mr are obtained by

combining the quadrant separation rule and the adaptive band-pass
filtering procedure in the following way:

Ma = QaW, Mr = QrW. (6)

(a) Anterograde
trails wedge selection
(green)

(b) Retrograde trails
wedge selection
(green)

(c) Ka: anterograde
trails kymograph

(d) Kr ; retrograde
trails kymograph

Fig. 3. Separation of bi-directional trails with adaptive band-pass
filtering.

In Figures 3(a) and 3(b) we show the band-pass filtering illustrating
the selection of the curvelet coefficients when the proposed matrices,
Ma and Mr , are used. We show that the selected wedges are auto-
matically fitted to the spectrum of the kymograph, hence achieving
an efficient band-pass filtering. In Figures 3(c) and 3(d) we give the
kymographs Ka and Kr obtained by applying Equation 4 with the
proposed Ma and Mr matrices. The anterograde and retrograde flu-
orescent trails are well separated in Ka and Kr , hence proving the
efficiency of the quadrant selection procedure. As compared to the
original kymograph K (Fig. 1), the signal quality is improved in Ka

and Kr , which illustrates the ability of the wedge selection proce-
dure to adapt to the signal spectrum and discard artifacts.
An alternative approach to adaptive band-pass filtering would be to
denoise curvelet coefficients and to discard the coefficients induced
by the noise. The benefits of the proposed method over the denoising
approach is however to keep low amplitude coefficients originating
from low intensity particles.
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(a) Anterograde
tracks

(b) Retrograde tracks

(c) Mean velocity for anterograde (black)
and retrograde particles (white)

Fig. 4. Tracks built by the proposed procedure. Crossroad points in
the original kymograph do not corrupt the track construction, which
allows one to measure accurately particle velocity.

3. CARGO TRACKING IN THE TRYPANOSOME
FLAGELLUM

We have applied the bi-directional tracking technique to the kymo-
graph image of protein cargos moving along trypanosome flagella
(Fig 1). The separated kymographs, Ka and Kr , have then been
processed independently to identify the cargos tracks. The tracking
problem is facilitated in the separated kymographs since the particle
signal is enhanced and no intersection occurs between bi-directional
trails. For each kymograph, we have adopted a two-step procedure:
(1) we identify putative particle positions by detecting a set of rele-
vant local intensity maxima [10] which are analysed to achieve a sub-
pixel accuracy, (2) the set of positions are linked through time thanks
to a statistical tracking algorithm [8] which automatically discards
wrong detections and compensates for missing detections thanks to
particle motion modeling. As shown in Figures 3(c) and 3(d), the
separated kymographs provide as well a clear representation of the
particle trajectories. Trajectories visualization and correction by the
user is thus highly facilitated and accelerated if needed. A total of 60
kymographs, coming from 8 separate experiments, has already been
successfully analysed, demonstrating that the system is robust and
can be used for extensive biological analyses.
We show in Figure 4(a) and 4(b) the cargo trajectories obtained by
the proposed automatic tracking technique after the computer-aided
interactions with an operator. While no existing solution was able
until now to analyze reliably trypanosoma kymographs such as Fig.
1, our proposed solution provides the accurate trajectories of 240

particles (89 anterograde and 151 retrograde cargos) in just a few
minutes. This information can be extensively analyzed to under-
stand biological phenomena, as illustrated by the velocity histogram,
shown in Figure 4(c), which we have computed from the proposed
method results. The computed histogram proves that anterograde
particles are much faster than retrograde ones.

4. SUMMARY

In this paper we have presented a novel solution to the issue of track-
ing bi-directional particles along a spatial line. We have proposed to
apply a new adaptive and directional band-pass filtering method to
kymograph images in order to separate particles which move in op-
posite directions. The proposed technique relies on the automatic
selection of relevant curvelet wedges based on the automatic analy-
sis of their energy. The benefits of the proposed method have been
illustrated with the tracking of protein cargos along the trypanosome
flagellum. The adaptive-filtering technique allows us to accurately
identify particle trajectories despite the high number of crossroad
points in the kymograph image, hence bringing a new robust tool to
study such biological data.
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