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ABSTRACT

Multiple hypothesis tracking (MHT) is a preferred technique for
solving the data association problem in modern multiple targets
tracking systems. However its computational cost is generally
considered prohibitive for tracking numerous objects in cluttered
environments due to numerous targets and spurious measurements.
We present in this paper a new MHT formulation in which target
perceivability is modeled whereby automatic early track termination
and false measurements exclusion reduce the problem complexity
and improve the method robustness to clutter. Moreover we pro-
pose a MHT implementation exploiting the tree structure of the
potential tracks to take full advantages of recent parallel computing
technologies. We provide experimental results showing that both
the track model and algorithmic design make the algorithm fast and
robust even in highly complex situations such as tracking numerous
particles in fluorescent microscopy images.

Index Terms— Particle tracking, Multiple Hypothesis Tracking
(MHT), bioimaging, Hidden Markov Model

1. INTRODUCTION

The principle of Multiple Hypothesis Tracking (MHT) [1] is to de-
lay the association task between a set of measurements and a set of
tracks to an ulterior time when the decision is made easier by the
knowledge of future frames. In practice it relies on building all the
possible associations between tracks and measurements for a num-
ber of successive frames and comparing them. Since the temporal
information is well exploited, the MHT is generally accepted as the
preferred method for solving the data association problem in mod-
ern multiple target tracking systems. Despite many improvements
[2], its use was rapidly abandoned for tracking a high number of
targets in dense clutter conditions, such as biological targets track-
ing in fluorescent microscopy images, because of its computational
cost. This cost is known to increase exponentially with the number
of measurements, and is generally considered prohibitive for such a
complex task.
We introduce here an approach that should change this view since
we propose a MHT algorithm that is efficient even when tracking
numerous particles in dense clutter thanks to our algorithmic de-
sign and the use of advanced computing technologies. We propose
a scheme whereby fully exploiting the tree structure of the potential
tracks makes enumerating all the possible associations and select-
ing the best one in an extremely efficient way. We use a massive,
but exact, associations pruning that is based on a branch and bound
scheme. This technique relies on an association score choice which

N.Chenouard is funded by C’Nano IdF.

Corresponding authors: N. Chenouard and J.C. Olivo-Marin

correspondence: {nicolas.chenouard, jcolivo}@pasteur.fr

decreases with the additions of tracks to the association, giving a
hard decision threshold for pruning. Moreover our algorithmic de-
sign allows massively parallel processing which makes the different
steps of the algorithm very fast on parallel computing architectures
which have become widespread in recent years.
In applications such as bioimaging, frequent targets appearance and
disappearance combined with the high density of clutter can lead to
continuation of tracks with spurious measurements and false tracks
construction. Hence, in this case it is essential to model the tar-
get perceivability, which is its capability to generate measurements.
We define a two states Hidden Markov Model (HMM) following
the model proposed in [3]. It allows the early detection of the end
of a track, the initiation of tracks corresponding to real targets only
and automatically discarding spurious measurements thanks to the
knowledge of future frames.
A proposition of a Probabilistic MHT (PMHT) [4] algorithm using a
Markovian state of targets is presented in [5]. However, the PMHT
approach relaxes some fundamental MHT principles in order to re-
duce complexity: its main feature is the candidate tracks averaging
in place of the enumeration of the possible associations. In cluttered
environments, the performance of basic PMHT techniques turns out
to be at best similar to that of the joint probabilistic data associa-
tion filter [6] algorithm which is much less numerically demanding.
So in high clutter density and numerous targets conditions we ar-
gue that the competition principle between tracks is a key advantage
for discarding false measurements and detecting tracks initiation and
termination events. Hence in contrast with the PMHT approach we
want to impose that tracks compete, and we therefore focus on the
original definition of the MHT algorithm.
In Section 2 we present the track perceivability model which is cen-
tral to the method. Then Section 3 details our fast MHT implemen-
tation and in the last section we give evidence of feasibility and ben-
efits of the proposed MHT in challenging time-lapse microscopy im-
ages of biological interest.

2. BAYESIAN FRAMEWORK AND TARGET
PERCEIVABILITY MODEL

The first step of the tracking procedure consists in detecting tar-
gets position in the whole sequence. Detections are then linked to
form target trajectories. For this we adopt a Bayesian framework in
which we aim at building the set of tracks that maximizes the like-
lihood P{Θl|Zl} of the associations between tracks and measure-
ments from the sequence of l images. We denote respectively Zk

and Θk the vector of measurements and a feasible association, both
from time 1 up to time k. Z(k) = {zi(k)}i=1..mk is the set of mk

independent measurements in frame k. Each measurement is a vec-
tor of coordinates zi(k) = [xi(k), yi(k), zi(k)]T that are given by
the detection procedure, and other optional measured features such
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as the local intensity. The set of tracks is composed of n elements
Θl = {θj}j..n which likelihood L(Θl) is written in the following
way:

L(Θl) � P{Θl|Zl} = P{Θl, Zl}/P{Zl} ∝ P{Θl, Zl}, (1)

where we can re-write:

P{Θl, Zl} =
Y

k=1..l

P{Z0(k)}
Y

j=1..n

p(θ
Ij

j , z
Ij
tj

), (2)

when assuming that targets have independent movements and inde-
pendent measurement processes. In Equation (2) Z0(k) is the set of
unassigned measurements at time k, that are false detections com-
ing from the sensor noise, and which distribution hence depends
on the acquisition device and the detection procedure. The couple

(θ
Ij

j , z
Ij
tj

) corresponds to the set of positions of the target j and its

associated measurements during the time interval Ij of its presence
in the images. When a track is not assigned to a measurement from
Z(k) we associate it to a virtual measurement which is predicted by
the dynamic filter. This feature models the temporarily disappear-
ance of a target.
We define a two states HMM for target capability to generate mea-
surements: a target is perceivable (state s1) if it can be detected,
otherwise it is non perceivable (state s0). In state s0 the object can
have physically disappeared, bleached to a low level of intensity or
left the surveillance volume. Hence it will not produce any measure-
ment in future frames and the corresponding track should be ended.
We define fixed transition probabilities between the states: let πi,j be
the transition probability between state i and state j. In the following
we consider that a non perceivable target cannot become perceivable
again, hence π0,1 = 0. In Equation (2) we write the probability of
association (θk

j , zk
tj

) up to time k as follows:

p(θk
j , zk

tj
) = p(θk

j , zk
tj

, s0
j (k)) + p(θk

j , zk
tj

, s1
j (k)), (3)

hence explicitly accounting for the target perceivability. Using the
perceivability concept in the estimation of tracks likelihood favors
perceivable tracks, hence increasing the robustness of the tracking
procedure to spurious measurements.
We derive the following probability for each perceivability state
si

j(k) (i ∈ {0, 1}) at time k:

p(θk
j , zk

tj
, si

j(k)) � ξi
j(k)

= p(ztj (k)|zk−1
tj

, θk
j , si

j(k))p(θj(k)|zk−1
tj

, θk−1
j , si

j(k))

· p(si
j(k)|zk−1

tj
, θk−1

tj
)p(θk−1

j , zk−1
tj

), (4)

which shows that p(θk
j , zk

tj
, si

j(k)) can be evaluated by updating

the previous probability p(θk−1
j , zk−1

tj
), hence leading to the com-

putation of p(θk
j , zk

tj
) by the iterative estimation of p(θr

j , zr
tj

) with
r = 1..k. By applying the Bayes’ rule we derive the predicted prob-
ability of target perceivability at time k as follows:

λi
j(k) � p(si

j(k)|zk−1
tj

, θk−1
j ) =

π0jξ
0
j (k − 1) + π1jξ

1
j (k − 1)

ξ0
j (k − 1) + ξ1

j (k − 1)
.

The measurement probability p(ztj (k)|zk−1
tj

, θk
j , si

j(k)) can take

four forms, depending on whether it is a real detection and depend-
ing of the target perceivability. If the target is perceivable the mea-
surement probability is computed as:

p(ztj (k)|θk
j , zk−1

tj
, s1

j (k)) =

j
PDPGσj(k) if zj(k) ∈ Z(k)
1 − PDPG if zj(k) /∈ Z(k)

,

(5)

where PD and PG are respectively the probability of detecting a tar-
get and the probability that the target position falls in the search gate
given by the kinetic model. In Equation (5) σj(k) is the probability
that the measurement zj(k) originates from the target tj under the
assumption that tj exists up to the time k. This probability is com-
puted with an estimation technique of the target state derived from
the Kalman filter. We use the Interacting Multiple Models (IMM)
filter [7] that is able to accurately model various types of movement
by maintaining an adaptive mixture of kinetic models that self adapts
to abrupt motion changes.
In contrast, a non perceivable target does not generate a real mea-
surement. Hence if the measurement is real we compute its proba-
bility as the probability of a false detection, and if it is virtual we do
not have to consider it since both the measurement and the track do
not exist. The corresponding probabilities are:

p(zj(k)|θk
tj

, zk−1
j , s0

j (k)) =

j
PFD if zj(k) ∈ Z(k)
1 if zj(k) /∈ Z(k)

, (6)

where PFD is the probability that the measurement zj(k) is a false
detection. Usually in tracking applications a uniform spatial distribu-
tion in the images is assumed for false detections, while their number
n0(k) = |Z0(k)| is modeled as a random value sampled in a Pois-
son process. We propose instead to use an exponential distribution
for n0(k) with a mean λV , which is the expected number of false
detections in the surveillance volume V . Resulting probabilities are
given by:

p{Z0(k)} = λ−1
V e−λ−1

V
n0(k)V −n0(k)

= λ−1
V

Y
i=1..mk

(e−λ−1
V V −1)1−δi(k), (7)

where δi(k) = 1 if the measurement zi(k) is assigned to a track
and δi(k) = 0 otherwise. Equation (7) involves the product of an in-

dependent contribution e−λ−1
V V −1 for each non assigned measure-

ment to the probability p{Z0(k)}. By doing so we are able to in-
tegrate the perceivability concept in tracks likelihood when setting
PFD to a proper value. More specifically, when the probability of
perceivability of an object is zero we should consider that it does not
exist anymore. Hence a real measurement associated to such a track
should participate to the tracks likelihood (Eq. (1)) in the same way
as a non assigned measurement:

∀zj(k) ∈ Z(k) :

lim
p(s1

j (k)|θk
tj

,zk−1
j )→0

p(zj(k)|θk
tj

, zk−1
j ) = e−λ−1

V V −1, (8)

which implies:

p(zj(k)|θk
tj

, zk−1
j , s0

j (k)) = e−λ−1
V V −1. (9)

From Equations (6) and (9) we therefore set PFD = e−λ−1
V V −1.

3. FAST MHT DESIGN

3.1. MHT scheme

The MHT technique aims at building iteratively the association
Θ�(k) that maximizes the likelihood P{Θk+d|Zk+d} instead of
maximizing P{Θk|Zk} as instantaneous association algorithms do.
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Fig. 1. Proposed MHT flow chart

At frame k, the previous processing steps provide the set of tracks
Θ�k−1 and we have to extend the tracks during d + 1 frames with
measurements from the set Zk:k+d. For each frame we adopt a four
steps procedure summarized in Figure 1.
We first build independently for each track θ�k−1

j ∈ Θ�k−1 the set

of potential tracks Γk+d
tj

up to frame k + d formed by the possible

associations of θ�k−1
j with detections from Zk:k+d. The second

step consists in dividing the global association problem into a set
of smaller tasks by clustering the association trees that are con-
current for at least one measurement. We denote Γk+d

ci
the set of

potential tracks forming the cluster ci. Then in the association se-
lection step for each cluster ci we build a subset of potential tracks
Θ�k+d

ci
⊂ Γk+d

ci
which has the highest likelihood L(Θk+d

ci
). In the

final step the best association is built by merging the association
found for each cluster: Θ�k+d = ∪iΘ

�k+d
ci

. On this basis, validated
tracks are either continued or ended while a number of new tracks
are validated.
In the following we give a detailed presentation of step 1 and 3 only
as they are central to our method.

3.2. Potential tracks formation

For each track θk−1
tj

∈ Θ�k−1 we independently enumerate potential

tracks built by associating it with measurements from Zk:k+d. θk−1
tj

can be associated only to a subset of p measurements from Z(k) that
fall into the track search gate. These associations allow us to form
a set Γk

tj
= {θk

tj ,zi
}i=1..p of potential tracks. θk

tj ,zi
is the potential

track that is built by associating the track θk−1
tj

with the detection

zi ∈ Z(k). We iteratively repeat the association process for every
set Γt

tj
with t = k..k + d − 1.

We model the formation of potential tracks Γk+d as the construction
of trees of feasible associations since a track θk−1

tj
may give birth to

a set of potential tracks Γk
tj

which in turn may create potential tracks

and so on. Each track θk−1
tj

is the root of a tree of nodes Γk:k+d
tj

.

Moreover we create a tree from each detection in Zk:k+d in order
to model the possibility for new targets to appear. Nodes in Γk:k+d

tj

without any link to a node at the next level of the tree constitute the
possible tracks of continuation for θk−1

tj
.

During the nodes formation process we label the potential tracks ac-
cording to their probability of perceivability. A track θt

tj
at frame

t is confirmed if ∃t′ ≤ t such that λ1
tj

(t′) ≥ pc, and terminated
if λ1

tj
(t) ≤ pt. Details on the computation of the confirmation and

termination thresholds, pc and pt, will be provided elsewhere. Since
a terminated track has a low probability of perceivability it is useless
to continue it. Hence, we do not associate any more detections to
a terminated track. Similarly, in the association selection procedure

we will consider only confirmed potential tracks. Both techniques
reduce significantly the size of the association problem.
We have taken advantage of the tree structure of the procedure to
implement a recursive track construction procedure that is massively
parallel: each time a node is created, it launches in a parallel way a
node creation procedure for each measurement it can be associated
with at the next time, an so on. By doing so, multithreading com-
puting technologies make the construction of thousands of potential
tracks very fast as shown in the Experiments section.

3.3. Association hypothesis selection up to frame k + d

The association hypothesis selection procedure consists in finding a
subset of potential tracks Θ�k+d ⊂ Γk:k+d maximizing the likeli-
hood L(Θk+d). The number of feasible associations is dramatically
increased by the presence of false detections that should remain not
associated to any track, hence enumerating all the associations is
unfeasible in a short time. Fortunately the unicity principle of as-
sociation between tracks and detections imposes numerous tracks
incompatibilities that can be exploited to reduce the number of con-
sidered associations. A usual way to solve the issue is to formulate it
as a standard convex optimization problem with a set of constraints
given by tracks incompatibilities. We have however preferred to de-
velop our own solver that fully takes advantage of the tree structure
of the tracks formation process in two ways: (1) building only a very
restricted number of associations Θk+d by pruning huge sets of so-
lutions, (2) massively parallel computing.
For the sake of clarity we rewrite the likelihood Equation (2) of the
association Θk+d as:

L(Θ) =
Y

t=1..k+d

p{Z0(t)}
Y

j

f(θk+d
j )

= F0(Θ
k+d)F(Θk+d) (10)

where f(θk+d
j ) = p(θk+d

j , zk+d
tj

) denotes the joint probabil-

ity of the associations selected for the track tj , F(Θk+d) =Q
j f(θk+d

j ) the product of all track probabilities, and F0(Θ
k+d) =Q

t=1..k+d p{Z0(t)} the probability of measurements considered as
spurious detections.
We begin by back-propagating in the potential tracks trees the prob-
abilities f(θk+d

j ) such that each node knows the probability f� that
is the greatest among the subtree of tracks originating from it. By
doing so we are able to know beforehand the greatest track proba-
bility we would be able to achieve by going through a node when
exploring a tracks tree.
The proposed association hypothesis selection procedure proceeds
by recursive exploration of trees and relies on an efficient branch
and bound technique to build as few as possible hypotheses.
First a track θt1 is selected in the first tree. Hence for now the set of
tracks is Θ = {θt1} and the incomplete product of track likelihoods
is initialized as: F(Θ) = f(θt1). The second tree is then consid-
ered. The compatibility of its root node θk−1

t2
is checked against Θ:

if the measurement associated to the node is already used by any
track in Θ the hypothesis is abandoned since a measurement can be
associated to one track at most.
By using a track originating from the node θk−1

t2
the greatest achiev-

able likelihood is f�(θk−1
t2

). So we compute F�(Θ, θk−1
t2

) =

F(Θ) × f�(θk−1
t2

), the best likelihoods product when using a track

originating from this node. By definition, ∀θtj ∈ Γk:k+d, 0 ≤
f(θtj ) ≤ 1, so the product F(Θ) decreases each time a track is
added to the set Θ. We therefore ensure that for any track θj se-
lected in a tree to extend Θ, we get F(Θ ∪ θj) ≤ F(Θ). Moreover,
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0 ≤ F0(Θ) ≤ 1 by definition, which implies that: L(Θ) ≤ F(Θ).
In summary, when considering a node the following set of inequa-
tions is valid:

L(Θ) ≤ F(Θ ∪ θj) ≤ F(Θ) (11)

Let L� be the greatest likelihood found until now, and Θ�k+d the
corresponding set of track. When considering a node θk

tjzi
if we ob-

serve F�(Θ, θk
tjzi

) ≤ L�, we then deduce from Equation (11) that

L(Θ) ≤ L� for any combination of a track originating from θk
tjzi

with tracks of other trees that could be added to complete Θ. In this
case the association process is stopped since the likelihood of any set
of tracks based on Θ and θk

tjzi
cannot achieve a likelihood greater

than the likelihood of Θ�k+d.
If the node θk−1

t2
satisfies both the compatibility test with Θ and the

bounding test on F�(Θ, θk−1
t2

) we repeat the exploration procedure
for the nodes it is linked to at the next level. This process is ap-
plied recursively until the end of a branch is reached. In this case
a Θ duplicate is extended with the track θt2 with which we ended:
Θ = Θ ∪ θt2 , and another tree is selected.
Θ is complete if it contains a potential track for every non terminated
track in Γk−1, but still it is eventually extended with other potential
tracks that correspond to the appearance of a target. If the association
likelihood L(Θ) is greater than L� the corresponding associations is
stored as the best one until then: Θ�k+d = Θ and L� = L(Θ).
The proposed procedure takes advantage of the tree structure of the
potential tracks to exclude huge sets of associations each time a node
is branched to the current hypothesis, which significantly speeds up
the construction of the feasible associations Θk+d. It is worth not-
ing that these techniques ensure exact, instead of heuristic, pruning
so we end up with certainty with the optimal solution Θ�k+d.
Thanks to the proposed algorithmic scheme we have designed a
recursive implementation of the whole association selection proce-
dure: each time a node is valid for association extension the branch
and bound technique is started for each of its following nodes. In
practice we launch a new thread to perform each of these tasks, so
thousands of associations are built and compared in parallel, which
significantly reduces the computation time on parallel computing ar-
chitectures.

4. EXPERIMENTS

A recent biological study [8] has focused on the transport of Golgi
units (vesicles) in the ovocytes of the Drosophila melanogaster
thanks to disk scanning confocal microscopy imaging. In order to
detect GFP labeled vesicles we first applied wavelet-based tech-
nique [9] adapted to the low SNR condition (PSNR ≈ 5). From
these detections 111 trajectories were built by the proposed MHT
technique with a depth of 4. As shown in Figure 4, trajectories are
long and stop as soon as targets disappear, which reflects on the abil-
ity of the method to track vesicles during long times and to detect
their appearance/disappearance despite the high level of clutter: we
measured up to 25% of spurious detections. The trajectories show
motions that are diverse and changing, revealing the successful in-
tegration of the IMM filter in the algorithm. The processing of the
whole sequence of 150 images took only 18 seconds on a Mac pro
8-core 2.8 GHz thanks to the parallel computing implementation
that takes full advantage of the eight cores of the cpu. Result movies
are available on line at http://bioimageanalysis.org/2436/.
We provide in [10] performance assessment results with biological
data and comparisons with a number of reference particle tracking
algorithms. We show that the proposed MHT procedure provides

reliable tracks of hundreds of particles in a short time, which is im-
possible with other techniques due to the extremely noisy conditions.

Fig. 2. Fluorescent units tracking with the proposed MHT algorithm.
5. CONCLUSION

In this paper we have proposed a new MHT formulation in which
the robstness to spurious measurements is increased by the use of a
Markov model of target perceivability. A new MHT implementation
that exploits the tree structure of the potential tracks to take advan-
tage of recent parallel computing technologies has been presented.
The combination of track model with the algorithmic design makes
the MHT technique fast even for high density of targets in a cluttered
condition, as shown on a fluorescent microscopy example.
Future works will include both refinements of Markov states defini-
tion depending on optical properties of the targets and further imple-
mentation optimizations such as heuristic pruning and larger scale
parallel computing.
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