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ABSTRACT

Particle detection and tracking methods generally assume a simplis-
tic image model that is rarely valid when imaging biological pro-
cesses in fluorescence microscopy. The tracking task may become
nearly impossible when complex biological structures are visible and
interfere with the signal of interest. To address this limitation we
have adapted a source separation technique based on sparsity prin-
ciples to the characteristics of fluorescent biological images. Since
it allows the discrimination of objects with different morphologies,
we present an approach to detect and track particles that exploits its
results. The tracking algorithm resolves particles that temporarily
aggregate by exploiting the proposed model of image. We prove in
a real case the ability of the method to track numerous particles in
a complex and dynamic background, something which was not fea-
sible until now, hence offering new tools to document interactions
between cellular compartments.

1. INTRODUCTION

Particle tracking has become a reference tool to study and understand
intracellular processes by taking advantage of recent developments
in live microscopy techniques. The classical paradigm of particle
tracking is a detection step, followed by a linking procedure. De-
tection procedures are generally either based on a filtering process,
such as wavelet detectors [1], or on a template matching, such as
Gaussian mixture fitting [2] (read [3] and references therein for a re-
view). Approaches relying on the Bayesian modeling of the tracking
have attracted lots of attention and are nowadays commonly used
[4, 5, 6]. Their principle is to estimate a statistical model of trajec-
tories in order to discriminate the most likely association between
tracks and detections. While Bayesian methods were primarily de-
signed to exploit the kinetics of targets, the image information has
been also introduced to improve the robustness of the association
procedure. Methods such as [4] and [5] have used the local intensity
as a feature, and more recently we have proposed in [7] to incorpo-
rate a more complete description of the image model in the associa-
tion score.
Generally, the underlying image model for the detection process and
the tracking step is assumed to be the addition of the targets intensi-
ties to a locally constant background and a random acquisition noise.
However the background assumption is rarely valid when imaging
biological systems in fluorescence microscopy. Both the intracellu-
lar and extracellular areas are very crowded environments and the
labeling is generally not strictly specific to the targets. Hence struc-
tures such as membranes or filaments emit photons which create a
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structured dynamic background. These structures corrupt the par-
ticle detection process since they can be misinterpreted as signals
of interest. The presence of such spurious detections may result in
false associations of tracks and creation of non existent trajectories.
Moreover the erroneous image model may corrupt the image infor-
mation incorporated into the tracking method.
In this paper we present an improved method that solves the issue of
a complex and dynamic background by integrating a Blind Source
Separation (BSS) technique. The proposed approach consist in a
detection step which uses the BSS results, followed by a tracking
procedure which proceeds by joint estimation of the kinetic models
of targets and the image model. Instead of using the original images,
the tracking algorithm processes images where the background has
been cancelled thanks to the BSS method. The BSS technique is
derived from the Morphological Component Analysis (MCA) algo-
rithm [8]. To adapt the MCA to the characteristics of fluorescent bio-
logical images, we modify it to incorporate different sparsity priors,
impose a positivity constraint and define appropriate representation
dictionaries for biological fluorescent images. We show that this al-
gorithm successfully separates sources with different morphologies
in microscopy images.
We detail in Section 2 the adaptations of the MCA algorithm to flu-
orescent biological images. In Section 3 we describe the detection
and tracking procedure. Particle tracking results in highly complex
background are given for plant cell images.

2. BLIND SOURCE SEPARATION FOR FLUORESCENSCE
MICROSCOPY IMAGES

Fig. 1. A GFP KOR1 protein labeled vacuoles membranes and small
compartments.
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2.1. MCA with positivity constraints

The aim of blind source separation techniques is to recover the set
of sources S = [sT

1 , ..., sT
n ] from the observation of their mixture:

Y = AS + N, (1)

where A is the mixture coefficients matrix, Y is the measured sig-
nal and N is the matrix containing measurement noise and model
error. While well known Independent Component Analysis methods
[9] rely on statistical principles, very recently some methods based
on morphological diversity and sparsity have emerged [8]. They re-
quire the definition of a dictionaries set such that each source can be
represented in a very sparse way in a given waveform dictionary of
the set and in a very non-sparse manner in every other. In the case of
noisy measurements, a signal si is said to be sparse in a waveform
dictionary Di if it can be represented from a very few dictionary el-
ements: si = αiDi, where most of the coefficients αi are nearly
zero.
The MCA algorithm [8] was primarily designed for the analysis of
natural images and astronomical data. It decomposes the signal Y in
a union of over-complete dictionaries using a modified block coor-
dinate relaxation method which minimizes iteratively the following
score function:

min
{αi}1...n

» nX
i=1

||αi||0 + λ||Y −
nX

i=1

αiDi||22
–
. (2)

The first term of the sum reflects a sparsity constraint while the sec-
ond term is the reconstruction error and introduces a data-driven con-
straint. The optimization algorithm proposed in [8] relies on an itera-
tive alternate projection and thresholding scheme: the representation
in a waveform dictionary is built while other sources are fixed.
In order to separate small particles, whose tracks are wanted, from
background in biological images, we propose to use the MCA al-
gorithm whereby particles are considered as one source and back-
ground structures as other sources. In fluorescence images a source
physically generates photons that may be captured by the sensor.
Hence a fundamental property of such images is the positivity of
sources: ∀i si > 0. Consequently we aim at finding the represen-
tation {αi}1...n that maximizes the MCA score (Eq. 2) under the
constraint: αiDi > 0. Following ideas in [10] we enforce positiv-
ity by replacing negative values of a reconstructed source αiDi by
zeros in the alternate MCA scheme. Enforcing the positivity con-
straint in the BSS procedure reduces negative representation errors
such as ringing artifacts and we therefore expect a better separation
of sources and an easier localization of particles.

2.2. Sparsity priors

The MCA score function is intricately related to a Maximum Like-
lihood formulation where the likelihood of the image representation
is written as:

p({αi}1...n|Y ) = p({αi}1...n)p(Y |{αi}1...n)p(Y )−1
(3)

Following the source mixture model (Eq. 1) we compute the im-
age conditional probability p(Y |{αi}1...n) as the probability of the
residual between the observed image and the sources mixture. The
residual should follow the same distribution as the noise N , hence
under the assumption of white and Gaussian noise with zero mean
and standard deviation σ we write:

p(Y |{αi}1...n) = (2πσ2)(−n/2) exp(−||Y −
nX

i=1

αiDi||22/2σ2).

(4)

Maximizing the representation log likelihood therefore results in:

max
{αi}1...n

ln(p({αi}1...n|Y ))

= max
{αi}1...n

»
ln(p({αi}1...n))− ||Y −

nX
i=1

αiDi||22/2σ2

–
. (5)

So by relating Equations 2 and 5 we deduce that minimizing the
MCA score function is similar to maximizing the representation log
likelihood, where:

p({αi}1...n) = β−1 exp(−β−1
nX

i=1

||αi||0), (6)

and: λ =
β

2σ2
.

The probabilistic distribution p({αi}1...n) defined above corre-
sponds to an exponentially distributed sparsity prior of mean β.
When the only prior is the mean sparsity β The Maximum Entropy
(MaxEnt) principle [11] dictates to choose a prior distribution of the
form Cr||α0||, with C and r fixed, which can be shown to tend to the
exponential distribution defined in Equation 6 when each ||αi||0 and
the size of the dictionaries exceed few hundreds. The exponential
implicit choice of p({αi}1...n) in the MCA is therefore supported
by the MaxEnt principle
In Equation 6 the expected sparsity is implicitly assumed equal for
each dictionary of representation. However, in particles tracking
applications we intend to separate particles, that are small, from
background structures that are generally bigger and a much more
complex signal. Hence in this case the sparsity of the source rep-
resenting particles is expected to be much lower than the sparsity
of sources containing other structures. In this case the standard
prior probabilistic distribution (Eq. 6) is not proper since we expect
very different sparsity values for sources. We therefore propose to
define as many prior distributions as the number of sources instead
of defining only one prior:

p(αi) = β−1
i exp(−β−1

i ||αi||0), (7)

for i = 1..n. Here βi is the expected sparsity for the coefficients
αi in the waveform dictionary Di. Following the ML formulation
(Eq. 5) of the MCA inverse problem we rewrite the original score
function:

min
{αi}1...n

» nX
i=1

λ−1
i ||αi||0 + ||Y −

nX
i=1

αiDi||22
–

(8)

where: λi =
βi

2σ2
, for i = 1..n.

Maximizing the proposed score function (Eq. 8) is still feasible with
the MCA iterative alternate projection and thresholding scheme by
each time replacing the parameter λ by λi, that corresponds to the
source currently processed.

2.3. Dictionaries set for biological images

In many fluorescence biological images small particles appear as
nearly Gaussian spots since the point spread function of the acqui-
sition system has a multidimensional Gaussian like shape [12]. We
therefore propose the Undecimated Discrete B3-Wavelet Transform
(UDWT) [13] as the waveform dictionary D1 for this source, since
it is built from nearly Gaussian functions. The dictionary D2, that
represents the background, must also be selected according to its
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morphology. The non isotropic background in fluorescence images
is often composed of linear structures, such as membranes and fil-
aments. The Discrete Curvelet Transform (DCvT) [14] represents
C2 smooth curves optimally in 2d, hence it is well indicated for rep-
resenting these signals. For images in which the background looks
like texture, the Discrete Cosine Transform (DCT) is an appropriate
dictionary because it models locally periodic signals in a sparse way.
These three dictionaries have very fast implementations of direct and
inverse transforms in 2d, which makes MCA computationally feasi-
ble.
An example of MCA capabilities when it is applied with an appro-
priate set of dictionaries is presented now. Figure 1 shows an im-
age of epidermal root cells of Arabidopsis plants. The seedlings
expressed the Green Fluorescent Protein (GFP) fused to the KOR-
RIGAN1 (KOR1) protein. In order to study KOR1 compartments
movements, a sequence of 20 images was acquired with a disk scan-
ning confocal microscope. We apply here the proposed MCA proce-
dure because signals of KOR1 proteins in compartments appear as
small isotropic spots superposed to signals of membranes of vac-
uoles. Two dictionaries were consequently selected: UDWT for
spots and DCvT for membranes. Here the DCT is useless because of
the lack of texture in these images. The separation of compartments
and membranes signals is very well achieved as shown in Figure 2.

Fig. 2. Source separation in a fluorescent image: a) original crop, b)
curvelet part α2D2, c) wavelet part α1D1.

3. PARTICLE TRACKING IN COMPLEX BIOLOGICAL
ENVIRONMENT

3.1. Particle localization

We propose to detect small particles by analyzing the wavelet coeffi-
cients resulting from the BSS technique presented above and then
follow them through time with a kinetic Bayesian tracking algo-
rithm. In the following we call this combined BSS-detection method
MCA-UDWT. One or few wavelet scale coefficients of the MCA are
selected according to the particles sizes. A binary mask of each slice
of the original image is obtained from the binarization of these co-
efficients by thresholding. The mask is used to obtain positions of
individual particles by connected components extraction. In the case
of the biological images presented in Section 2.1 the second wavelet
scale of the resulting from the MCA is analyzed since it corresponds
to the size of KOR1 compartments.

We compare the MCA-UDWT detection performance to those of
a standard method consisting in thresholding the second scale of
UDWT coefficients without BSS, and then extracting detections in a
similar way as described for MCA-UDWT. In Figure 3 the scale 2 of
MCA-UDWT and UDWT are depicted. It shows that there no longer
remains any linear structure in the second scale given by MCA-
UDWT filtering, which makes the detection process much more eas-
ier than in the second scale of UDWT which contains many linear

Fig. 3. (a) Original image. (b) 2nd scale of UDWT, (c) 2nd scale of
MCA-UDWT.
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Fig. 4. a) Detection performance based on MCA-UDWT (red) and
UDWT (dark blue). We note FD the number of false detections and
TD the number of true detections. b) and c) are the binary images
obtained by applying two different thresholds to the MCA-UDWT
second scale, while d) and e) are the binary images obtained by ap-
plying two different thresholds to the UDWT second scale. Corre-
sponding detection performance is indicated on the curves a).

residues.
corresponding binarized images clearly highlight this fact.
In order to assess quantitative results, an expert identified 303 spots
in the three first frames of the sequence corresponding to this crop.
Figure 4 represents the number of recovered detections and the num-
ber of false detections for various strategies of thresholding second
scales coefficients. It shows that MCA-UDWT always recovers a
higher number of targets than UDWT for a given number of false de-
tections. As shown by the corresponding binary images, when only
few detections are allowed the MCA-UDWT is more sensible than
UDWT, while when more false detections are allowed the MCA-
UWT detects some membranes.

3.2. Tracking of particles with joint kinetic and image estima-
tion

Once the detection step has been performed detections have to be
linked to build tracks. We adopt the unified Bayesian framework
proposed in [7] in which the targets motion and the image model
are combined in a joint likelihood of association. The kinetic infor-
mation is computed thanks to a Kalman filtering derived technique
and using multiple models of motion [15]. On the other hand the
appearance likelihood relies on the description of a statistical model
of image generation. Instead of using the original image model, we
propose to use the image model I , where the background has been
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cancelled thanks to the BSS results:

I = Y − α2D2 = s1 + N =
X

j=1..m

pj + N, (9)

where {pj}j=1..m is the set of intensity profiles of the m particles
found in the image. It is worth to note in Equation 9 that the acquisi-
tion noise N is not modified by the BSS process and the background
subtraction since the MCA models its presence. Hence the tracking
algorithm can use its probabilistic distribution to score the match
between the observed image and associations between tracks and
detections as done in [7].
In Figure 5a we show that the proposed tracking procedure is able
to track particles that interact with membranes, while no false tracks
originate from some spurious detections produced by the back-
ground. As originally proposed in [7] the appearance model is also
used to separate closely spaced targets that appear fused due to the
resolution limit thanks to the exploitation of the kinetic and image
information. In Figure 5b and c the recovery of the aggregation of
three particles is correctly processed despite the close proximity of
membranes.
These results are opening new perspectives for biological studies:
we are able to track particles in a very complex environment and
also to quantify interactions with background structures since each
separated image gives information about positions and dynamics of
a source.

Fig. 5. a) Tracking numerous particles in plant cells with the pro-
posed procedure. b) Detail of closely spaced particles, c) Recovery
of the aggregation of three particles. Targets profiles are represented
by green circles.

4. CONCLUSION

In order to address the issue of detecting and tracking particles in
a complex background, we have adapted a source separation to the
characteristics of fluorescent biological images. We have used the
MCA algorithm that is based on sparsity principles, but we mod-
ified it to incorporate different sparsity priors, impose a positivity
constraint and define appropriate representation dictionaries for bio-
logical fluorescent images. We showed that the proposed procedure
successfully separates sources with different morphologies in mi-
croscopy images. Consequently, we have proposed an approach to
detect and track particles that exploits the source separation results.
The tracking algorithm is able to resolve particles that temporarily

aggregate by exploiting the new model of image in which the back-
ground has been cancelled. Moreover, we proved in a real case the
ability of the method to track numerous particles in a complex and
dynamic background, something which was not feasible until now,
hence offering new tools to document interactions between cellular
compartments.
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