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ABSTRACT 

 
We propose an OMR method based on fuzzy modeling of 
the information extracted from the scanned score and of 
musical rules. The aim is to disambiguate the recognition 
hypotheses output by the individual symbol analysis 
process. Fuzzy modeling allows to account for 
imprecision in symbol detection, for typewriting 
variations, and for flexibility of rules. Tests conducted on 
a hundred of music sheets result in a global recognition 
rate of 98.55%, and show good performances compared to 
SmartScore. 

 
1. INTRODUCTION 

 
Optical Music Recognition aims at reading automatically 
scanned scores. Although it has been an active research 
field since the 80’s, there are still a lot of  unsolved 
problems. Difficulties result from segmentation problems, 
printing imprecision, variability of typewriting [1]. The 
need of structural approaches is now recognized. 
Research has been conducted in this direction at the 
symbol level [2] or at a higher level and involves mostly 
local graphical musical rules [3,4]. Due to the limited 
work at the higher level, we concentrate on the 
introduction of local or non-local music writing rules, 
either graphical or syntactic. Another contribution of this 
paper is to solve ambiguities by accounting for sources of 
imprecision and uncertainty. Existing approaches are 
based on statistical methods [5], or graph-rewriting rules 
[4]. Here we rely on the fuzzy sets and possibility 
framework, since it is well adapted to the integration of 
flexible rules [6] and for dealing with spatial imprecision 
[7]. 

We first present an overview of the proposed 
recognition method (Section 2). The next two sections (3, 
4) expose the individual symbol analysis step and the 
fuzzy modeling. This paper focuses on the fuzzy 
modeling of symbol classes and graphical rules, that is the 
main contribution with respect to our previous work. We 
still refer to [8] for the syntactic part dealing with metric 

and tonality rules. The global decision algorithm is 
summarized in Section 5, and we conclude with 
experimental results in Section 6. 
 

2. SYSTEM OVERVIEW 
 
The inputs of the program are the binary image of a 
monophonic music sheet scanned at a resolution of 300 
dpi and some global information (clef, tonality, metric). 

The processing flow (Fig. 1) is divided into three 
main parts. The individual analysis process performs the 
segmentation of the objects and the correlation with 
symbol models stored in a reference base [9]. It provides 
for each pattern s some recognition hypotheses. Then, the 
fuzzy modeling part provides for each classification 
hypothesis a possibility degree of membership to the 
class. It also introduces a fuzzy representation of the 
common music writing rules by expressing graphical and 
syntactic compatibility degrees between the symbols. 
Finally, the decision process evaluates bar per bar all the 
hypotheses combinations and chooses the most consistent 
one. 

 
Figure 1: The global processing flow 

 
3. INDIVIDUAL SYMBOL ANALYSIS 

 
Individual symbol analysis is mainly based on pattern 
matching. We compute in a small search area around each 
segmented object s the normalized correlation scores 

y)(x,C k
s  between s and the models Mk of the reference 

base. Let us denote by Ck(s) the highest value obtained at 
the (xk,yk) coordinates: 
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These coordinates represent the position of the center of 
the musical symbol in the hypothesis of the class k. 

At most three recognition hypotheses are selected. A 
recognition hypothesis assigns the pattern s to a class k, if 
the associated correlation score is greater than the 
minimum threshold tm (0.3). We add also the possibility 
that there is no symbol (‘-‘ in Table 1) when the highest 
correlation score obtained for class k is less than the 
decision threshold td(k). These thresholds allow to take 
into account that some classes are more sensitive to 
typewriting variations (small value for td(k)) or have a 
higher probability of false detection (large value). 

Fig. 2 shows two bars, (a) and (b), and the 
recognition hypotheses superimposed on the original 
images. Table 1 indicates some of the associated 
correlation scores. 

  

  

Figure 2: Original images and recognition hypotheses 

(a) 2 3 8  (b) 2 9 11 

H1 - or  0.66  0.60  0.58  H1  0.62  0.58  0.59 
H2  0.43   0.48  H2  0.52  0.58  0.49 
H3  0.43   0.39  H3  0.50  0.55  0.45 
Table 1: Some hypotheses and correlation scores 
We can see the limits of the individual analysis: the 
correlation scores may be very ambiguous, and the 
highest does not always correspond to the right 
hypothesis.  
 

4. FUZZY MODEL 
 
Ambiguities result from segmentation defects and 
variations in typewriting. This section aims at modeling 
the information extracted from the score during the first 
analysis and the knowledge about music writing. Fuzzy 
sets and possibility theory offer a good framework for this 
aim. It allows us to deal with uncertainty concerning the 
shape and the location of the symbols, and to express 
musical rules that have different degrees of flexibility. 
 
4.1. Symbol classes 
 
The correlation scores provide similarities between each 
analyzed symbol and models. Therefore we define the 

degree of possibility πk(s) that s belongs to class k as an 
increasing function of Ck(s): 

( ))s(Cf)s( k
kk =π     (2) 
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Figure 3: Possibility distribution of class k  
The shape of the possibility distribution for class k (Fig. 
3) is defined by two parameters: D (always 0.3), and Sk 
that is learnt from the individual analysis results: 

1)k(n
)k(m)k(n)k(t

S d
k +

+
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where n(k) is the number of objects having a correlation 
score with model Mk larger than the threshold value td(k), 
and m(k) is the average value of the scores. Because of 
typewriting variations, the reference model Mk may not 
match closely the objects of class k in the processed score. 
In this case, m(k) is close to td(k), and Sk also close to td(k); 
m(k) takes larger values otherwise, so that the possibility 
distribution is shifted to the right.  

The shape of the distribution πk does not need to be 
estimated very precisely [6]. It has experimentally proved 
to be robust. The most important is that it is not a binary 
function (there is no crisp threshold) and that it is 
increasing: the higher is the correlation score, the higher is 
the degree of possibility. 

Table 2 shows the results obtained for the two bars. 
Compared to Table 1, the possibility degrees present less 
ambiguity. It should be noticed that the classification rank 
may change: see for example object 9 in bar (b), for which 
the possibility of a flat is now eliminated. 

(a) 2 3 8  (b) 2 9 11 

H1 - or  0.17  0.44  0.30  H1  0.43  0.40  0.43 
H2  0.00   0.07  H2  0.20  0.00  0.00 
H3  0.00   0..00  H3  0.00  0.20  0.00 

Table 2: Some hypotheses and possibility degrees 
 
4.2. Graphical consistency 
 
Musical writing rules impose some compatibility of 
position between two successive objects. Due to possible 
imprecision in the score printing and in the segmentation, 
as well as to symbol density variations, these rules cannot 
be used in a crisp way, and are rather a matter of degree. 
 
4.2.1. Compatibility between accidental and note 
 
An accidental should be placed before a note and at the 
same height. The possibility degree that the object sn is an 
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accidental of class kn, and that a following nearby object 
sm (m>n) is a note of class km, is a function of the 
compatibility degree )s,s(C mn k

m
k
np  between both symbols: 
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where fl, and fh. are two functions defining the admissible 
values for ∆l and ∆h, the differences in horizontal and 
vertical position between sn and sm: 
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Figure 4: Accidental / note graphical compatibility 
This combination is a compromise between two criteria, 
excluding the cases where at least one is not satisfied at 
all. The chosen coefficients αl=0.2 and αh=0.8 express 
their relative importance. Using a degree between 0 and 1 
instead of a crisp threshold on each criterion allows us not 
to discard completely an accidental which is not exactly at 
the theoretically expected position. For object 2 in bar (a), 
we obtain a compatibility degree with the next note of 1.0 
in the hypothesis of a flat, and of 0.77 in the hypothesis of 
a sharp. These results rank correctly the flat before sharp 
and strengthen the right hypothesis H1. 
 
4.2.2. Compatibility between notes and augmentation dot 
 
During the first analysis process, augmentation dots are 
searched for in an area next to the note head [9]. The 
typical location is represented in light gray in Fig. 5a. But 
smaller or larger horizontal distances ∆l may occur. That 
is why the searching area has been extended to the black 
rectangle. A new compatibility degree has also been 
defined as a function of ∆l (Fig. 5b). It expresses that the 
typical distance is in the range of 1 to 2 staff spacing and 
that smaller or larger distances become less and less 
possible. 

(a)  (b) 

1.0

1 staff spacing
0.0

f  (     )ll

2.0 l2.50.5  
Figure 5: (a) Search area for an augmentation dot, 
(b) Note / augmentation dot graphical compatibility 
Some confusion may occur if a staccato dot above a note 
head is also in a searching area for an augmentation dot 
(see Fig. 7b). Therefore we define a compatibility degree 
between the hypothesis that sn is an augmentation dot and 
the hypothesis that a following object sm is a note, as a 
function of the horizontal and vertical differences between 
them (Fig. 6, Eq. (5)): 

( ) ( ) ( )[ ]hf,lfMaxs,sC hl
k
m

k
np mn ∆∆=   (5) 

According to (5), the compatibility degree is high as soon 
as one of both criteria is well satisfied (Fig.7). 
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Figure 6: Dot / note graphical compatibility  
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Figure 7: Dot / note graphical compatibility (examples) 
 
4.2.3. Compatibility between any two symbols 
 
For any other pair of nearby symbols, we just express that 
they should not overlap. For that, we estimate the 
positions of the bounding box of each symbol (Fig. 8a), 
knowing the typical sizes of the two considered symbol 
classes. Let us denote by ∆l the difference between the 
right border of sn and the left border of sm, m>n. The 
admissible values for ∆l are defined by function f (Fig. 
8b). It allows negative values for ∆l in order to deal with 
imprecision on the symbol size and position, and with 
high symbol density. In the vertical direction, we must 
consider different configurations. For example, if sn is 
above sm, we compute the difference between the bottom 
border of sn and the upper border of sm. The admissible 
values for ∆h are again defined by f. The global 
compatibility is expressed as the maximum of both 
criteria: just one has to be satisfied. 

( ) ( ) ( )[ ]hf,lfMaxs,sC mn k
m

k
np ∆∆=    (6) 
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Figure 8: Graphical compatibility for any two symbols 
 
4.2.4. Fusion 
 
We have computed compatibility degrees between all pair 
of nearby symbols, according to their classes. In case of 
music sheets with high symbol density, there may be more 
than one nearby symbol before or after sn. Equation (7) 
defines the global graphical compatibility degree for 
object sn classified in class kn: 
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It is the product of two terms representing respectively the 
compatibility with the previous nearby objects, and with 
the next nearby objects. The use of the product t-norm, 
instead of the minimum for instance, makes this rule more 
precise. 
 

5. FUSION AND GLOBAL DECISION 
 
The global decision is made bar per bar. We consider all 
possible combinations of symbol hypotheses. The ones 
that include at least one zero graphical compatibility 
degree are impossible and thus immediately discarded. 
For the others, we compute the average of all possibility 
degrees (2), graphical compatibility degrees (7) and 
syntactic compatibility degrees [8]. The resulting 
coefficient conveys the symbol class consistency for the 
configuration. It is then multiplied by another possibility 
degree checking duration consistency [8], so that we get 
just one final possibility degree merging all criteria. The 
decision algorithm chooses finally the configuration that 
results in the highest final possibility degree, with priority 
to the ones that achieve the strict metric constraint 
(number of beats per bar). 
 

6. RESULTS AND CONCLUSION 
 
Tests of the proposed method have been conducted on a 
large database (100 music sheets, about 42500 symbols) 
coming from various composers and publishers. The 
average recognition rate is now 98.55% . It has been 
slightly increased with respect to the results in [8], 
although we have introduced more difficult scores, thanks 
to the improvements realized in the graphical modeling 
part. The latter has proved to be very efficient especially 
in case of high symbol density. 

Comparison between the results provided by our 
program (Fig. 9a, 10a) and those output by SmartScore 
3.2 Pro Demo [10](Fig. 9b, 10b), one of the most efficient 
commercial software, shows that the proposed method is 
able to solve problems for which SmartScore fails. 

(a) 

(b) 

Figure 9. (a) Results with our program: 0 error.  
    (b) Results with SmartScore: 9 errors 
For example, there are some confusions between staccato 
dots and duration dots with SmartScore (Fig. 9b), while 
we avoid this problem thanks to our graphical model. We 
can also point out that symbols touching each other are 
often not recognized with SmartScore (Fig. 9b), unlike 
our program that models such configurations. Symbol 9 in 

bar (b) is now correctly recognized as a natural, thanks to 
the fusion with the syntactic rules (Fig. 10a), while it is 
suppressed by SmartScore. Lastly, the models of symbol 
classes and syntactic consistency allow here to avoid the 
confusions made by SmartScore on the eight rest (Fig. 9b) 
and the half note (Fig. 10b). Examples were extracted 
from two music sheets. The global symbol recognition 
rate is 92.0% for SmartScore, 98.7%. for our program. 
85.3% of quavers get the correct length with SmartScore, 
99.3% with our method. 

 
(a)

 

(b)

Figure 10. (a) Results with our program: 0 error 
      (b) Results with SmartScore: 7 errors. 

These results show the interest of the proposed 
method, in particular the fuzzy modeling of symbol 
classes, that allows to deal with imprecision and variations 
of symbol shapes, and the fuzzy modeling of the graphical 
rules, expressed as compatibility degrees between 
symbols, that allows to deal with spatial imprecision and 
flexibility. 
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