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ABSTRACT

We present a new feature-aided tracking algorithm dedicated to the

task of tracking multiple and closely-spaced biological particles. We

propose a new function to score associations, based on kinetic mod-

els, and enriched with an additional feature. This feature is based on

adaptive profiles and the physical properties of the acquisition sys-

tem. A key property is that this feature definition allows to resolve

the challenging task of tracking particles that appear fused.

Results on simulations show improved performances over existing

methods both on tracking and on the resolution of fused particles.

Index Terms— particle tracking, feature-aided tracking, optical

transfer function, super-resolution

1. INTRODUCTION

Live video-microscopy combined with automatic particles tracking

is opening new ways to study and understand intracellular processes

by taking advantage of recent developments in particle tracking meth-

ods [1, 2]. The classical paradigm of particle tracking is a detec-

tion step followed by an association procedure between the mea-

surements set and the active tracks set. A scoring function is used to

validate association hypotheses coming from different models.

In the kinetic Bayesian approach the association score is based on

the kinetic likelihood of each association and additional event statis-

tics such as false measurement and new target birth. This is usually

achieved thanks to the definition of a state space of the targets [3]

and a Kalman filtering technique. It has been shown to give good

results in many biological applications because of its robustness to

noise and its capacity to take into account kinetic models of the tar-

gets’ motion [4]. In several practical cases however the kinetic like-

lihoods are very similar for many association hypotheses, especially

when the measurements are very close to each other and the targets

dynamics non discriminant. In such challenging cases, the perfor-

mance of Bayesian kinetic tracking quickly degrades.

A different class of tracking methods relies on the use of template
matching, where the association is performed by maximization of

the agreement between the targets templates and the current image.

While these methods give good results when targets profiles are dis-

criminant, they suffer from the lack of kinetic models when targets

are nearly similar or when the noise level is high.

These two ways of scoring an association hypothesis seem highly

complementary, which is why ideas of enriching the kinetic Bayesian
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approach with non kinetic data have emerged among the radar track-

ing community, namely feature aided tracking and classification aided
tracking [5, 6]. They have been shown to outperform pure kinetic or

pure template tracking.

For the tracking of biological targets, improvements were achieved

by the use of the area and mean intensity in a kinetic Kalman filter

(KAI) [1]. We will however show in Section 2 that KAI is not able

to handle several biological cases. We therefore present in Section 3

a new Bayesian tracking algorithm enriched with an additional fea-

ture. This feature is based on the acquisition system knowledge and

adaptive profiles (PA). A key property of this feature definition is

that it allows to resolve the challenging task of tracking particles
that appear fused as described in Section 4.

In Section 5 we validate the capacity of our algorithm to resolve

closely spaced targets, and quantitatively compare PA and KAI track-

ing results on simulated images.

2. BAYESIAN FEATURE ADAPTED TRACKING

In a Bayesian tracking algorithm the association score function be-

tween the set of measurements at time k: Z(k) = {zi(k)}i=1..mk ,

and the set of active tracks is classically chosen to be the likelihood

of the association given all past measurements P{Θ(k)|Zk}, where

Zk is the vector of measurements up to time k and Θ(k) is an ele-

ment of the set of feasible associations at time k: Ω(k). The follow-

ing derivation given in [3] is commonly used:

P{Θ(k)|Zk} =P{Θ(k)}1

c
p[Z(k)|Θ(k), Zk−1] (1)

=P{Θ(k)}1

c

mkY
j=1

p[zj(k)|θjtj (k), Zk−1] (2)

where c is constant across the association hypotheses. P{Θ(k)} is

the probability that the hypothesis Θ(k) is true and depends on data

such as the number of associations, false alarms and track births.

The first derivation step (1) is the foundation of the iterative scheme

and the second step (2) is achieved under the assumption of condi-

tional independence of measurement process for each target. Each

likelihood of individual association p[zj(k)|θjtj (k), Zk−1] between

measurement zj(k) and track tj is given by the kinetic model of the

track.

The idea of feature adapted tracking consists in introducing the fea-

ture information in the score function by splitting the measurement

vector Z(k) into a kinetic part Y (k) and a features related part S(k):

Z(k) = [Y (k) S(k)]. From Equation (2) and by considering the

features as some characteristics of each individual association, the

1796978-1-4244-1764-3/08/$25.00 ©2008 IEEE ICIP 2008

Authorized licensed use limited to: Telecom ParisTech. Downloaded on February 21, 2009 at 08:44 from IEEE Xplore.  Restrictions apply.



likelihoods of features and kinetic data can be written as:

p[zj(k)|θjtj (k), Zk−1] =p[sj(k)|yj(k), θjtj (k), Y k−1, Sk−1]

· p[yj(k)|θjtj (k), Y k−1, Sk−1] (3)

Equation (3) isolates the feature s(k) from the kinetic information

y(k), but a strong requirement of this decomposition is the knowl-

edge of the features distribution. This knowledge is critical because

the behavior of the score function depends directly on it and the

weight of the feature information is linked to its parameters.

In the standard Bayesian tracking of biological particles the first step

is objects detection which usually provides few feature measure-

ments such as area and intensity of targets. Both have been used

in the association score function by introducing them in the state

space model of a standard kinetic Kalman filter [1] using Equation

(3). While performance is good some drawbacks exist: A Gaussian

distribution has been chosen in [1], but little information supports

this assumption. The parameters of this distribution are not known

a priori so many trials are necessary to find values that seem appro-

priate, but with no guarantee on the proper behavior of the score

function.

In practice we have also observed behaviors of area and intensity that

cannot be taken into account by the state space model, which leads to

early tracks termination or erroneous tracks. In the next part we will

present a feature choice that avoids these drawbacks and limitations.

3. ADAPTIVE PROFILES AIDED TRACKING

3.1. Using profiles information

In optical imaging the Point Spread Function (PSF) of the acquisition

system gives the response from a Dirac point source, and its use in

building a feature is therefore very powerful: under the assumption

of a Dirac target the PSF synthesizes in a single function the usual

detection descriptors such as area and intensity. For sub-resolutive

targets it has been proved that the PSF of commonly used acquisi-

tion systems such as 2d and 3d Laser Scanning or Disk Scanning

microscopy, and 2d wide-field microscopy, can be almost perfectly

approximated by a Gaussian in 2d and two Gaussians in 3d [7]. This

model is very convenient because of its compactness and its analyti-

cal expression allowing the use of efficient optimization techniques.

Each target can thus be identified by its own set of parameters of

a Gaussian profile that depends on its size, the number of photons

it emits, its defocalization in 2d microscopy. We could try to use

the parameters of the Gaussian profile estimated in an image as a

feature in a kinetic-feature mixed Kalman filter, but this would still

suffer from the lack of knowledge of the dynamics of profile param-

eters distribution. We propose a method that exploits these profiles

information in what we think is a much more appropriate manner.

3.2. Residual image as a feature in scoring function

In many biological images an additive model of the images is suit-

able, it describes intensities at time k {Ith
k (x, y)}x,y as a super-

position of targets profiles {Pi,k}i, the stochastic acquisition noise

Nk(x, y) and a constant background value:

Ith
k (x, y) = Nk(x, y) + bk +

X
i

Pi,k(x, y) (4)

The center of each profile’s function is given by the tracking asso-

ciation hypothesis at time k: Θ(k). Therefore if this hypothesis is

true, the image model (4) would closely agree with the observed im-

age Iobs
k , and, on the contrary, if the association is false the observed

image would differ from the model. Under the assumption of true

association there is no difference between the image model and the

observed image (see Eq. 5). Therefore the residual between the ob-

served image, the profiles intensities and the background follows the

same distribution as the noise (Eq. 6):

Iobs
k (x, y) − Ith

k (x, y) = 0 (5)

Iobs
k (x, y) −

X
i

Pi,k(x, y) − bk = Nk(x, y) (6)

From this, and this is a key point of the method, we can estimate

the likelihood of an association hypothesis based on the likelihood

of the residual {Rk(x, y)}x,y defined as:

Rk(x, y) = Iobs
k (x, y) −

X
i

Pi,k(x, y) − bk (7)

because under the true association hypothesis, residual {Rk(x, y)}x,y

follows the distribution of the acquisition system noise, which is a

well defined property of many optical acquisition systems. Usually

it is described as being white, Gaussian, or Poisson, or a mixture of

both [8]. Next we will consider the white Gaussian case only, be-

cause we pre-process images with a Variance Stabilizing Transform

[8] which forces noise to follow a Gaussian distribution.

We now define an alternative to Equation (3) for deriving the likeli-

hood of an association where the feature likelihood is isolated at the

global association hypothesis level:

PPA{Θ(k)|Zk} =
1

c
p[S(k), Y (k)|Θ(k), Zk−1]P{Θ(k)}

=
1

c
p[S(k)|Y (k), Θ(k), Zk−1]

·p[Y (k)|Θ(k), Zk−1]P{Θ(k)} (8)

A feature does not characterize here a single association, but the

overall associations between tracks and targets. Equation (8) iso-

lates the feature contribution from the kinetic likelihood, and the lat-

ter can be decomposed in a product of kinetic likelihood of single

association in the very same way as described by the right hand side

of Equation (2).

If the acquisition frequency is sufficiently high we can approximate

the current profiles parameters by those estimated at previous times:

{Pi,k}i ≈ {Pi,k−1}i, which makes our approach adaptive to pro-

files variations. The feature-tracking procedure at time k can then be

summarized by the following:

1. Estimate profiles parameters of targets at time k − 1:

{Pi,k−1}i,

2. Build a set of kinetic feasible associations Ω(k) between

tracks and targets at time k and compute their likelihood

p[Y (k)|Θ(k), Zk−1] for each Θ(k) ∈ Ω(k),

3. For each hypothesis build the residual image at

time k: {Rk(x, y)}x,y based on estimated profiles

and hypothesis positions and compute its likelihood

p[S(k)|Y (k), Θ(k), Zk−1],

4. Compute the score of the association based on the kinetic and

feature data: PPA{Θ(k)|Zk}.
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3.3. Residual likelihood computation

In our applications the acquisition noise variance is not known a pri-

ori, we thus have to evaluate it from images. We have used the p-

value of the hypothesis test concerning the equality of variance of

two samples as our likelihood score of the residual {Rk(x, y)}x,y

because it allows us to take into account the variability of variances

estimations. For this, we test the equality of the variance of the resid-

ual σ2
r to the variance of the noise σ2

n:

j
H0 : σ2

r = σ2
n

H1 : σ2
r > σ2

n
, T =

σ2
r

σ2
n

∝ F (9)

The T statistics is Fisher distributed with degrees of freedom deter-

mined by the size of images used to estimate the two variances. If

the p-value is high the likelihood of Equality (6) and consequently

that of the true association are both high.

The weight of the feature information in PPA depends on the noise

level that is used to compute the T statistics, this is an implicit way

to take into account the confidence in intensity information.

4. NON-RESOLVED TARGETS SEPARATION

When the targets density increases, classical multi-targets tracking

algorithms performance dramatically degrades due to two main prob-

lems: first the probability of incorrect association increases, and sec-

ond the detection step results are less accurate. The latter occurs be-

cause overlaps of targets profiles are frequent and standard detection

procedures based on filtering and thresholding are not able to resolve

them. Nevertheless it has been shown that this resolution limit can

be broken when PSF information is fully exploited. For instance in

[9], with a goodness-of-fit bottom-up approach, the PSF information

is used to determine the number of targets in an image, even if they

are closely spaced.

The tracking procedure can help solving this detection problem, in-

deed when at a given time the number of measurements is lower

than the number of existing tracks, we could conclude that some tar-

gets were not detected in the image, but we also could suspect non-

resolved targets overlapping due to their proximity. We therefore

propose to introduce some fusion hypotheses in the set of feasible

association hypotheses Ω(k).

Fusion hypotheses are built by adding positions near pre-detected

ones given by each Θ(k) ∈ Ω(k), and then by least-square optimiza-

tion of the set of positions using the set of adaptive target profiles

{Pi,k}i. The number of fused particles in an aggregate is limited by

the number of active tracks for which its kinetic filter allows this as-

sociation. Each association hypothesis, whether it contains a fusion

or not, can be scored uniformly by the profile adapted function PPA,

with incorrect fusion events being naturally penalized by a low like-

lihood of the residuals {Rk(x, y)}x,y . The tracking procedure can

then proceed with the hypothesis selection step using scores given

by PPA.

5. RESULTS

We present here the validation of the PA score function and of the

fusion recovery procedure. It consists on various experiments on

synthetic data because these ones have the advantage of being com-

pletely controlled which allows an accurate study of the behavior

of the method and a systematic comparison to existing solutions.

We nevertheless tried to reproduce with fidelity the conditions of a

common biological experiment. In order to simulate a typical acqui-

sition of 2d images with a confocal laser scanning microscope we

used a realistic PSF model (given in [7]) for the non paraxial case

(numerical aperture of 0.5), a pixel size of 100 nm and an emission

wavelength of 388 nm, which are common imaging settings for bio-

logical studies. Assuming targets as Dirac sources, then differences

of profiles are due to variations of focalization and photo emission

between targets. Acquisition time length is 25 seconds, with an ac-

quisition frequency of 4 frames per second.

We use a standard Bayesian tracking procedure using an Interacting

Multiple Models (IMM) filter and a minimal set of decision rules for

track confirmation and termination in order to compare score func-

tions (PA and KAI) performances and to investigate the ability to

recover fusion events.

5.1. Fusion event recovery

The capacity of the algorithm to recover fusion events is first eval-

uated. For this we simulated a simple fusion between two particles

by setting the distance between the two targets to 100 nm at a given

time. This distance is two times less than the Rayleigh resolution

limit defined by the PSF, which makes targets to appear fused to a

simple thresholding detection technique. In order to isolate the fu-

sion event from other interactions between the particles we have set

their mode of motion as being a superposition of diffusive move-

ments (0.8μm/s) and perpendicular directed (2μm/s) movements.

We have generated 200 simulations for various Signal to Noise Ra-
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Fig. 1. Fusion events recovery. (a) Separation of two closely spaced

targets in an image with SNR =20. (b) Fusion recovery performance

of proposed tracking algorithm and super resolution algorithm.

tio (SNR) values, the results of the number of fusion recoveries un-

der these conditions are presented in Figure 1. Unfortunately perfor-

mance under lower SNR is difficult to analyse because results of pre

detection become very poor. This graph also shows the number of

fusion events recovered by the super-resolutive detection algorithm

introduced [9], it is striking to see that whatever the SNR condition

we have tested the PA tracking algorithm recovers nearly 100% of

the fusion events, while the super-resolution algorithm most of the

time detects only one target.

The superior performance of the tracking algorithm shows that when

information made available by the tracking procedure, such as ki-

netic models, is combined with profiles information that is specifi-

cally estimated for each target in our method, the resolution limit is
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clearly beaten. This is a major benefit of the use of PA score func-

tion: it combines in an unified score the overall information avail-

able.

5.2. High density environment

We have simulated a high density environment by placing 25 targets

in a small area, the particles movements are observed for 25 s, they

all have a Brownian motion whose diffusion coefficient is obtained

by a small random perturbation of the reference diffusion coefficient:

1.6 μm/s. See Figure 2. Profiles are given by random perturbations

of the reference PSF. The task of tracking these particles is especially

Fig. 2. High density environment simulation. Recovered tracks by

tracking algorithm using PA score are in blue, lost tracks are in red.

KAI PA

number of complete tracks 109/250 180/250

mean track length 71.64/100 85.6/100

Table 1. Tracking results for closely spaced tracks.

difficult, first because the density of targets is high, which makes fu-

sion events and possible false associations numerous, and second

because Brownian kinetics are low informative. Tracking results on

100 simulations are presented in Table 1, it shows poor performances

of the classical method with the KAI score, while PA score signif-

icantly outperformed it, which shows in a realistic environment the

benefits of the proposed approach.

6. CONCLUSION

We have proposed a new way to combine in a unified framework two

classical tracking approaches: kinetic Bayesian tracking and profiles

matching tracking. We have been able to take advantages of the clas-

sical feature-aided tracking, and to avoid the major drawbacks of the

intensity-and-area-aided tracking in biological images. The use of

the PA score function in any tracking scheme is made easy because

there is no extra parameter to tune and no special procedure of deci-

sion. In particular the weighting of residual information and kinetic

model in PPA is implicit.

On top of this the very challenging problem of non resolved targets

due to close proximity is also solved thanks to the use of informa-

tions given both by profiles and by past events and kinetic models.

These additional hypotheses of association are taken into account

thanks to our choice of a function that scores in an unified manner

’simple’ hypotheses and ’fused’ hypotheses with no additional deci-

sion procedure.

Since these desirable properties have been confirmed and show a su-

perior performance over KAI score function on synthetic data, we

have started an extensive study on real biological data. Extension to

3D will be addressed and studies of mixed score functions behavior

will be investigated further.
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