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Abstract. In this paper, we propose two important improvements of an
existing approach for automatically segmenting the walls of retinal arter-
ies of healthy/pathological subjects in adaptive optics images. We illus-
trate the limits of the previous approach and propose to (i) modify the
pre-segmentation step, and (ii) embed additional information through
coupling energy terms in the parallel active contour model. The interest
of these new elements as well as the pre-segmentation step is then evalu-
ated against manual segmentations. They improve the robustness against
low contrasted walls and morphological deformations that occur along
vessels in case of pathologies. Noticeably, this strategy permits to obtain
a mean error of 13.4 % compared to an inter-physicians error of 17 %, for
the wall thickness which is the most sensitive measure used. Additionally,
this mean error is in the same range than for healthy subjects.

Keywords: Active contour model -+ Adaptive optics - Retina imaging

1 Introduction

Arterial hypertension and diabetes mainly and precociously affect the physiol-
ogy and the structure of retinal blood vessels of small diameter (i.e. less than
150pm). According to the Public Health Agency of Canada, these chronic dis-
eases affected 15 to 20% of the world’s adult population in 2009. Hypertensive
retinopathy (HR) and diabetic retinopathy (DR) are common ocular complica-
tions of the above diseases. The lesions caused by these complications include
diffuse or focal narrowing, or dilation of the vessel and of the wall. Although
HR and DR do not present early warning signs, they are predictive of end-
organ damage such as stroke or visual loss [1,4]. In [8], the authors estimate
that 98% of visual damages could be avoided if DR was treated in time. Accu-
rate measurements of walls are therefore necessary to better prevent the DR
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Fig.1. Examples of images acquired by the AO camera [9] and a detailed view of
them for an healthy subject (a),(b) and a pathological one (c),(d). The sizes below
each image are expressed in pixels.

and the complications of the HR. Fundus photographs and Doppler-based mea-
surements cannot however resolve the vessel walls due to their limited spatial
resolution. Adaptive Optics (AO) is a recent opto-electronic technology that
improves the resolution of fundus photographs. AO-based cameras permit to
visualize microstructures such as vascular walls [2], noninvasively. In the present
study, the rtx1 camera [9] is used to acquire 2D images by flood illumination at
10Hz using a 850nm LED light source with a pixel-resolution of 0.8m. These
images are registered and averaged to increase the signal-to-noise ratio [6]. In
the resulting images, blood vessels appear as dark elongated structures with a
bright linear axial reflection, over a textured background. Outer borders of walls
are however only visible along arteries and the present study will focus on them.
Parietal structures (arterial walls) appear as a gray line along both sides of the
lumen (blood column), with a thickness of about 15% of it [5] (see Figure 1).

Segmenting the artery walls in these images is a challenging problem. For
both pathological and healthy subjects, (i) the background of the related images
is highly textured, (ii) significant intensity changes can occur along axial reflec-
tions, (iii) the outer borders of walls are low contrasted, and (iv) some vessel
segments can be locally blurred due to the geometry of the retina. This problem
is by far more challenging for images from pathological cases since a large vari-
ability of morphological deformations can locally occur along arteries, which gen-
erally present a poor contrast on walls. Since AO-based fundus cameras remain
uncommon yet, only few papers have addressed this issue. Recently, an automatic
procedure was proposed where the walls are modeled as four curves approx-
imately parallel to a common reference line located near axial reflections [7].
Once the line is detected, the artery walls are pre-segmented using a tracking
procedure to cope with morphological deformations. Then, they are segmented
using an active contour model embedding a parallelism constraint to both con-
trol their distance to the reference line and improve the robustness against the
noise and lack of contrast. The accuracy of this approach on pathological cases
has however not been assessed.
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In this paper, we propose two important improvements to this approach: (i) a
piecewise constant estimation of the vessel diameter in the first stage of the pre-
segmentation, and (ii) coupled energy terms in the active contours model. The
purpose of these new elements is to improve the robustness against noise, low
contrasted walls and morphological deformations in case of pathologies, while
keeping a computational cost similar to the one of [7].

The rest of this paper is organized as follows. In Section 2, we briefly remind
the approach in [7] for segmenting arterial walls on healthy subjects. Afterwards,
we illustrate the limits of this approach and present the above new elements, in
Section 3. Finally, we evaluate in Section 4 the relevance of the pre-segmentation
step as well as these new elements, against manual segmentations.

2 An Approach for Segmenting Arterial Walls and Its
Limits

2.1 Description

In this section, we remind the strategy presented in [7] for segmenting walls of
retinal arteries. Let us consider one artery branch represented by a fixed curve
located on the axial reflection, resulting of an automatic segmentation process [7].
We denote this branch as the reference line V(s) = (z(s), y(s))?, parameterized
by s. The artery walls are modeled by Vi, V5 (inner) and Vs, Vj (outer), four
curves approximately parallel to the reference line V', defined by:

2(8) = S) — 02(8)N(s 1(s) < bs(s
Va(s) = V(s) + bs(s)n(s) such that {bz(s) < by(s), va, (1)
Vi(s) = V(s) — ba(s)n(s),

where n(s) is the normal vector to V and by(s) is the local distance (or half-
diameter) of any curve V} to V. In the above model, notice the direct correspon-
dence between the points of any curve Vj, to those of the reference line V. The
segmentation procedure amounts to compute the half-diameters {by, }x=1,... 4.
The artery walls are first pre-segmented. This is achieved by simultaneously
positioning the curves using a tracking procedure to cope with morphological
deformations. All along this pre-segmentation, it is assumed that the opposite
curves lie at the same distance from the reference line V' (i.e. by(s) = ba(s) =
bt (s) and bs(s) = ba(s) = b°*!(s), Vs) and that the wall thickness is constant
(i.e. b°®(s) — b (s) = cst, Vs). The reference line V and all the elements that
refer to it are discretized into m equally spaced points. The pre-segmentation is
based on a criterion to be maximized, defined for every i € {1,...,m} by:

- Dz’nt(bi’ i, ’I“)

+ D, i), (2)

where D" and I'™ respectively denote the mean local gradient and the mean
local intensity along inner curves while D®* denote the mean local gradient
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along outer curves. D™ [t and D®** are averaged over a small window of size
(2r + 1). The function G encourages inner and outer curves to be located near
large image gradients. Dividing by the mean intensity also favors inner curves
to be located in dark areas. The pre-segmentation aims at estimating inner and
outer half-diameters b™(s), b°**(s) and consists of the following steps:

1. Constant half-diameters b"*0 and b°**o along the artery, are estimated. This
is achieved by maximizing the mean of G(b?,b%,i) over (b%,b¢) € (RT x RT)
along the curves defined by the half-diameters b* and b°. We then denote by
e = (beto — pinto) the wall thickness estimated from the resulting curves.

2. The position i* maximizing (2) along the curves from Step 1 is determined.

3. Variable half-diameters b"!(s) and b°*!(s) = b"!(s) + & + e are estimated
using tracking by maximizing for any i € {i* + 1,...,m} and for j =7 — 1:

aG ™ (i), b (7) + &+ e,d) — (1 — a) (B (@) — 6™ ()2, ac(0,1], (3)

where « is a regularization parameter. The closer « is to zero, the more the
right term in (3) penalizes large local deviations of 6. The above scheme is
also applied to any i € {i* —1,...,1} and for j = i + 1. Once b"* has been
fixed for any error e, the optimal error e* is taken as the one that maximizes
the sum of (3) over any 7 € {2,...,m} and for j =i — 1 (see [7] for details).

Then, an active contour model (parallel snakes) is applied to accurately position
the curves found by the pre-segmentation. This model is an extension of [3] for
extracting four curves approximately parallel to a fixed reference line V. This is
achieved by minimizing

4 1 1
E(Vl,. oV, by, ,b4) = Z (/ P(Vk(s)) d8+/ gok(S)(b;C(s))2 dS), (4)
= \Jo

1 0

Ermage(Vi) R(Vi,bi)

where Erpqge is designed to attract the curves towards large image gradients
while R controls the variation of the half-diameter by (s), thus imposing a local
parallelism. The strength of this parallelism is controlled by the parameters
{@k k=1, 4: the larger these parameters are, the more strict the parallelism to
the reference line V is. It is worth noting that the assumptions made for the
pre-segmentation are fully relaxed, i.e. the four curves can now evolve indepen-
dently of each other. They are implicitly linked by the parallelism constraint
but no symmetry property w.r.t. the reference line V is imposed. The mini-
mization of (4) is obtained by solving the Euler-Lagrange equations w.r.t. the
half-diameters by. The resulting algorithm uses standard numerical approxima-
tion of derivatives and converges until some accuracy ¢ is reached.

2.2 Limits

The approach detailed in [7] has two important limitations. For some cases,
the pre-segmentation can fail to accurately position the curves close to artery
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walls. This situation is illustrated in the top row of Figure 2. The inner and
outer half-diameters are underestimated at Step 1 due to the local narrowing
of the artery. These poor estimations therefore prevent to perform the tracking
procedure from a good initial position found at Step 2. The tracking procedure
therefore fails to follow correctly morphological deformations. This suggests a
more robust way to estimate the half-diameters at Step 1.

For some cases, the parallel snake model can also fail to accurately position
the curves close to artery walls. This situation is illustrated in the bottom row of
Figure 2. Although the solution provided by the pre-segmentation is correct, the
positioning of the curves is inconsistent on an artery segment. Such a behavior is
due to a poor contrast on the outer borders of walls. This suggests to enforce the
regularity of the wall thickness along the arteries and also symmetry properties
w.r.t. the reference line, as wall thicknesses are generally similar on both sides.
Last but not least: the model (4) does not ensure that the constraints expressed
in (1) hold. This point must also be addressed to ensure the anatomical consis-
tency of the solution.

(c) 818 x 692 (d) 818 x 692

Fig. 2. Limits of the pre-segmentation (a,b) and the parallel snake model (c,d) for two
distinct pathological subjects. Pre-segmentations and segmentations are respectively
given in (a,c) and (b,d) columns, superimposed on the original image. Yellow arrows
point misplacements of curves. The green dashed line corresponds to the reference line
while the circle denotes the position from which the tracking procedure operates (see
Step 2). The size of the images are expressed in pixels.
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3 Improvements

3.1 Pre-segmentation

We propose a simple modification to overcome the difficulties outlined in
Section 2.2. Instead of estimating inner and outer half-diameters as constant
along vessels in Step 1, we propose to estimate them as piecewise constant. Then,
the initial estimates of the inner and outer half-diameters are those found at the
position maximizing (2) along the resulting piecewise constant curves (Step 2).
In such a manner, these new half-diameters estimates are less prone to morpho-
logical deformations while keeping a good robustness against intensity changes
along the artery walls. The robustness of the tracking process (Step 3) is there-
fore improved. In accordance to morphometric features, the piecewise constant
estimations are performed on vessel segments whose length is 50 pixels (~ 40um).

3.2 Coupled Parallel Snakes Model

To overcome the difficulties of the parallel snake model highlighted in Section 2.2,
we propose to modify the energy (4) (see Section 2.1) as follows

1

4

E(WVioo Vabi, oo b1) = D (Brmage(Ve) + ROV, Vi) ) + S(Vi, Vs, by, bg)
k=

+9

(‘/27‘/21ab27b4)+T(Vl7"'aV47b17"'ab4)7 (5)

where

S(V;,V},bi,bj):/o ¥i,5(5)(bj(s) — bi(s) — B7;)(bj(s) — bi(s) — Bi;)ds,

1
TVi,...,Va,by,...,by) = /0 A(s)(bs(s) — b1(s) — ba(s) + ba(s))?ds,

and A, 913, 2.4 are weighting parameters (independent of s in our application).
Notice that Ermage and R in (5) are the same as in (4). The term T controls the
wall thickness difference between b3(s) — b1 (s) and by(s) — ba(s), Vs. It reaches a
minimum for bs(s) —b1(s) = by(s) —ba(s), Vs. The larger the parameter A is, the
more identical the wall thickness on both sides of the reference line V' (s) is. The
main role of S is to control the variation of the wall thicknesses b3(s) —b1(s) and
bs(s) — ba(s), with respect to the initial estimate (b°*(s) — b (s)) found in the
pre-segmentation step. This term reaches a minimum when the wall thickness is
between 7 ; and 8} ;, for (i, j) = (1,3) or (i,5) = (2,4). The larger the weighting
parameters 77/1173 and o4 are, the closer the wall thicknesses bs(s) — b1(s) and
ba(s) — ba(s) are to (b°®t(s) — b(s)). Here, we set for any s

Bla=Pra= =70 (s) = b"(s)), Big=Poa= 1+ (s) - b””(S()(S)),
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where 7 € [0,1]. Since the resulting curves found by the pre-segmentation lie at
the same distance from the reference line V', S also controls both the amount of
symmetry of the curves V7 / V5 and Vs / V; w.r.t the reference line V. The larger
the parameters 11 3 and 34 are, the more strict the symmetry is. Unlike (4),
(5) ensures that the constraints (1) hold as the parameters 11 3 and 12 4 tend to
+00. Notice that when the weighting parameters A, 11 3 and 15 4 are null, the
energy (5) becomes the same as (4). Finally, the energy (5) is minimized in the
same way as for (4).

4 Experimental Results

4.1 Data and Experimental Protocol

17 images from pathological subjects were manually segmented by 3 physicians.
These physicians have several years of experience in AO image interpretation.
Each physician segmented the images' two times, separated by several weeks
to diminish the memory effect between both segmentations. The images were
selected by the medical experts to ensure the representativeness of the quality
of the images and the vessel deformations encountered during clinical routine.
Let us denote by S; and S5 two distinct segmentations. To evaluate the accu-
racy of the segmentation S; w.r.t. the segmentation Sy, we choose to use the
same measures as the ones described in [7], i.e. the absolute relative difference
on the inner diameter §;,;, the outer diameter ., and the total walls thick-
ness ¢ (i-e. the difference between outer and inner diameters). For each image,
notice that these measures are expressed in percentages and are performed on
the intersection of all manual segmentations from medical experts for that image.
Then, we first estimate the intra-physician variability by computing the mean
and standard deviation of the above measures between the segmentations of the
same image, delineated by the same physician (see Table 1). Table 1 provides
the same statistics but for a unit displacement of one pixel all along a curve.
As shown in Table 1, the physician Physs has the smallest intra-physician
variability for two measures out of three. Because this physician produced the
most stable segmentations, we choose him as a reference and denote him as
Physges. Next, we pre-segment all images with either variable (VHDI) or con-
stant (CHDI) half-diameter estimations and using » = 10 (see Section 2.1). For
both pre-segmentations, half-diameters are estimated in a piecewise constant
manner, as proposed in Section 3.1. VHDI is for @ = 0.95 while CHDI is for
a = 0. From these pre-segmentations, parallel snakes (PS) and the coupled par-
allel snakes (CPS) models are applied (see Section 3.2). For both, we set ¢ = 0.05
and ¢ = 100, Vk € {1,...,4}. CPS is for v = 0.5 while PS is for ¢; 5 = 0,
2,4 = 0 and A = 0. The weighting parameters 1 3, 12 4 and A involved in the
CPS model have been optimized experimentally on a training set?, consisting
of eight images extracted from the database. The optimized values are the ones

! Bach segmentation consists of a single artery branch.
2 By convenience, we make the weighting parameters v 3 and 12,4 equal.
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Table 1. Overall intra-physician variability for inner diameter (ID), outer diameter
(OD) and wall thickness (WT). All measures are in percentages. The numbers in paren-

N. Lermé et al.

theses correspond to a unit displacement all along a curve.

Physi / Physi

Physs / Physa

Physs / Physs

1D

Z0E31(1.0£0.3)

17 E38 (1.0+£0.3)

I3E38 (1.1£0.3)

OD

33%28 (08+£22)

I1£35 (08L£02)

2.6 2.1 (0.8 £0.2)

WT

165 £15.6 (2.9 £0.9)

23.8+26.4 (3.4+1.3)

52 £12.3 (2.9 £038)

Table 2. Accuracy of pre-segmentations with variable (VHDI) and constant (CHDI)
half-diameters, parallel snakes (PS) and coupled parallel snakes (CPS), against manual
segmentations from Physgs for inner diameter (ID), outer diameter (OD) and walls
thickness (WT). The three first and last rows are respectively for training and test
sets. Mean and standard deviations are given in percentages. The mean error produced
by a unit displacement of a curve for dint, dext and ¢ over the whole database is
respectively 1.01%, 0.74% and 3.1%.

CHDI CHDI+PS |[CHDI4CPS VHDI VHDI+PS |VHDI+CPS||Inter-physicians.
ID 88+7.3 6.6 +£6.8 6.7 £6.8 6.0 £4.8 5.8+ 4.3 5.8+ 4.5 4.5 £ 3.7
OD|| 82+6.9 8.2+8.1 7.6 +7.7 4.6 £4.3 3.4+3.1 3.3+3.0 3.7+£29
WT||19.5 + 16.2|32.3 + 33.7| 26.2 £ 27.7 {[16.3 + 13.9(15.5 + 12.7| 13.8 + 10.5 18.1 + 14.1
ID |[11.2 +£12.6{12.5 £ 17.3| 11.0 £ 13.6 5.7+4.8 6.3 +6.4 5.7+£5.2 4.9+22
OD|| 9.1+9.5 8.1£9.2 8.4+9.3 4.2 +3.2 3.8 £2.8 3.9+238 3.8£3.1
WT|[18.6 + 17.0{30.8 £ 41.2| 21.2 £ 20.7 |[16.6 + 14.5{14.6 £ 12.9| 13.4 £ 10.6 17.0 £ 13.1

that minimize the mean of the overall errors d;,; and d.z:. A test set is com-
posed of the nine remaining images. The optimized values are also applied in all
configurations that involve the CPS, in both training and test sets. This leads to
six distinct configurations: CHDI, VHDI, CHDI+PS, CHDI4+CPS, VHDI+PS
and VHDI+CPS. The accuracy of all of them is evaluated by computing the
mean and the standard deviation of §;s, dere and 0y w.r.t. the manual seg-
mentations from the physician Physgeys. The results are summarized in Table 2
and illustrated in Figure 3. The inter-physicians error is also given in Table 2: it
is estimated between the segmentations from the physicians Phys; and Physs
w.r.t. those from the physician Physgef.

4.2 Discussion

First, the overall mean error on d,,; is much larger than the overall mean errors
on ;¢ and de,:. Due to the size of the parietal structures, the measure d,,; is
indeed very sensitive to curves displacements. In Table 2, the accuracy for the
CPS model is almost the same between the training and test databases, meaning
a good generalization of the parameters ; 3, 124 and A.

The accuracy of CHDI is poor w.r.t. the inter-physician error, significantly
worse that the one obtained with VHDI. Although this accuracy is globally
improved when applying the PS or CPS models (CHDI+PS or CHDI+4CPS),
the final results are always worse than when relying on variable half-diameters
(VHDI), showing the importance of the tracking in the pre-segmentation.
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100 ym. . X ;
CHDI+CPS (7.82, 8.30, 21.49)
-1\& 2 " R

VHDI+CPS (5.83, 3.97, 10.36)

Fig. 3. Results for Subject 9 (half-top) and 7 (half-down) against manual segmenta-
tions from the physician Physg.s. Automatic and manual segmentations are respec-
tively drawn in cyan and red. The green dashed line is the reference line. The green
circles denote the position from which the tracking operates. The numbers below each
image are respectively for dint, deet and dw: (in percentages). For each subject and
each measure, the underlined numbers represent the configuration having the better
accuracy among all the other ones.

As mentioned previously, the accuracy provided by VHDI is much closer to
the inter-physician error than with CHDI. It is still improved with the application
of the PS model, except for d;,; on the test database, and, in average, it is
always improved after the application of the CPS model. The final mean errors
(VHDI+PS or VHDI+CPS) are close to the inter-physician errors for the internal
and external diameters and lower for the wall thickness measures, the most
sensitive ones. Overall, the VHDI4CPS flow reaches the best accuracy.

These observations are confirmed by the results depicted in Figure 3. For both
subjects, VHDI+CPS reaches globally a better accuracy for two measures out of
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three. The interest of using variable half-diameters against constant ones in the
pre-segmentation step is clear. However, it is less obvious when comparing CPS
against PS. For Subject 9, VHDI+CPS shows a better accuracy than VHDI+PS
for d;n: and §,,¢. The coupling permitted indeed to correct the position of the top
inner curve. For Subject 7, the segmentation for VHDI+CPS is however a little
worse than for VHDI4PS. This reduced performance is due to a local asymmetry
w.r.t. the axial reflection. However, such asymmetries are very uncommon in
practice (including on the presented images). Also, when we evaluate the interest
of using either the energy terms S or T' (see (5)), we found that the latter has
a stronger impact on the accuracy than the former. Finally, we applied the
VHDI+CPS flow on the database of healthy subjects (the one used in the study
presented in [7]) and found an accuracy very close to the presented results, for all
measures. Finally, for a typical 600um long vessel branch, the processing time for
the pre-segmentation and the CPS model is respectively about 120 and 30 secs.
Future work will focus on a methodology for optimizing the parameterization of
the CPS model (i.e. the weighting parameters 11 3, ¥2 4 and \), according to the
type of image to be segmented, in order to better manage the uncommon cases.

References

1. Buus, N.H., Mathiassen, O.N., Fenger-Grgn, M., Praestholm, M.N.,; Sihm, I., Thybo,
N.K., Schroeder, A.P., Thygesen, K., Aalkjaer, C., Pedersen, O.L., Mulvany, M.J.,
Christensen, K.L.: Small artery structure during antihypertensive therapy is an
independent predictor of cardiovascular events in essential hypertension. Journal of
Hypertension 31(4), 791-797 (2013)

2. Chan, T.Y., Vannasdale, D.A., Burns, S.A.: The use of forward scatter to improve
retinal vascular imaging with an adaptive optics scanning laser ophthalmoscope.
Biomedical Optics Express 3(10), 2537-2549 (2012)

3. Ghorbel, I., Rossant, F., Bloch, 1., Paques, M.: Modeling a parallelism constraint in
active contours. Application to the segmentation of eye vessels and retinal layers.
In: International Conference on Image Processing (ICIP), pp. 445-448 (2011)

4. Heagerty, A.M., Aalkjeer, C., Bund, S.J., Korsgaard, N., Mulvany, M.J.: Small artery
structure in hypertension: Dual processes of remodeling and growth. Journal of
Hypertension 21, 391-397 (1993)

5. Koch, E.: Morphometric study of human retina arteriolars in high resolution imag-
ing. Master’s thesis, Universite Pierre et Marie Curie (2012)

6. Kulcsar, C., Le Besnerais, G., Odlund, E., Levecq, X.: Robust processing of images
sequences produced by an adaptive optics retinal camera. In: Optical Society of
America, Adaptive Optics: Methods, Analysis and Applications, p. OW3A.3 (2013)

7. Lerme, N., Rossant, F., Bloch, I., Paques, M., Koch, E.: Segmentation of retinal
arteries in adaptive optics images. In: International Conference on Pattern Recog-
nition (2014)

8. Taylor, H., Keeffe, J.: World blindness: A 21st century perspective. British Journal
of Ophtalmology 85(3), 261-266 (2001)

9. Viard, C., Nakashima, K., Lamory, B., Paques, M., Levecq, X., Chateau, N.: Imaging
microscopic structures in pathological retinas using a flood-illumination adaptive
optics retinal camera. In: Photonics West: Biomedical Optics (BiOS), vol. 7885, pp.
788 509+ (2011)



	Coupled Parallel Snakes for Segmenting Healthy and Pathological Retinal Arteries in Adaptive Optics Images
	1 Introduction
	2 An Approach for Segmenting Arterial Walls and Its Limits
	2.1 Description
	2.2 Limits

	3 Improvements
	3.1 Pre-segmentation
	3.2 Coupled Parallel Snakes Model

	4 Experimental Results
	4.1 Data and Experimental Protocol
	4.2 Discussion

	References


