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Abstract. This paper presents a novel framework for object detection in
videos that considers both structural and temporal information. Detec-
tion is performed by first applying low-level feature extraction techniques
in each frame of the video. Then, additional robustness is obtained by
considering the temporal stability of videos, using particle filters and
probability maps, which encode information about the expected location
of each object. Lastly, structural information of the scene is described
using graphs, which allows us to further improve the results. As a prac-
tical application, we evaluate our approach on table tennis sport videos
databases: the UCF101 table tennis shots and an in-house one. The
observed results indicate that the proposed approach is robust, show-
ing a high hit rate on the two databases.
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1 Introduction

Several works address the detection of each object as an individual task, i.e.
do not consider the possible relationships between objects. This approach is
appropriate for certain tasks, such as image retrieval [12] or detecting everything
that belongs to a given class [5]. It has also been applied for videos, in which
case the most common approach is the use of background subtraction methods
combined with a blob descriptor for people detection. Almajai et al. [1], for
example, use such a method to extract player blobs from tennis videos. The
blobs are then filtered by classifying 3DHOG descriptors.

However, individual detection is a difficult task, and often produces unde-
sirable results that could be avoided by considering more information, such as
the spatial relations. This approach has been explored lately for scene under-
standing in static images. The work of Choi et al. [4] shows that by detecting
multiple objects and considering their relationships it is possible to improve the
detection of each object as a whole. The idea of considering the global scene
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configuration has been receiving great attention in the field of more complex
activity recognition as well [7]. Wang et al. [14] encoded structural relations
using Markov Random Fields in order to perform player action detection in
tennis matches. Even though widely studied for action and activity recognition
tasks, this approach has not been well explored for the task of object detection
in videos. Perhaps the most similar field is that of multi-object tracking, where
the inclusion of structural information has been showing some very interesting
results [15].

In this work we present a framework for multiple object detection and track-
ing in videos using graphs and temporal information obtained from probabil-
ity maps to improve the tracker performance. The process starts by performing
detection in each frame of the video using classic low-level features, such as color
and motion data. Videos in general present several challenges, such as arbitrary
view-points, possibly moving camera, unstable, low-quality image (e.g., obtained
by a cell phone camera). Therefore, the results obtained from this step are usually
very noisy. In order to face these challenges, the temporal properties of the video
are used to filter undesired detections. This step is accomplished by obtaining
information from what is referred to as probability maps and also from trackers
implemented using particle filters. A structural approach is also employed, where
a graph is built using the detected objects. This allows the scene to be described
using higher-level information considering the relationships between the objects.

The contributions of this paper are twofold. First, we present a framework
that encodes structural and temporal information about the objects in videos
using graphs and trackers. Secondly, we explore the collected information to
improve object detection in videos that share a common structure.

In Sec. 2 we show how low-level features are used to obtain detection candi-
dates. In Sec. 3 the use of temporal information is explored to remove inconsis-
tent candidates. In Sec. 4 structural information is used to improve the detection.
Then, the results of the methods applied on table tennis videos are presented in
Sec. 5.

2 Low-Level Object Detection

The low-level detection is highly dependent on the type of video being analyzed.
However, in the proposed framework, the only requirement is that the chosen
detector produces several candidate detections, that must include the correct
ones. Note that different detectors can be used for the same task in order to
produce more candidates, if necessary. Examples of possible detectors include,
but are not limited to: background subtraction methods for moving objects,
HOG [5] for people, keypoints methods like SIFT [9] or keygraphs [11] for rigid
objects, parts-based detector [6] for multiview scenarios.

3 Temporal Consistency

Videos, as opposed to static images, provide a very important information in the
form of temporal consistency. In other words, it is expected that two consecutive
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frames do not present very large differences. This information can be used to
improve current results by relying on past information. In this work, temporal
consistency is considered by means of two approaches: probability maps and
object trackers.

3.1 Probability Maps

Probability maps encode the regions of the images where each object is more
likely to appear, assuming that videos are acquired from a single camera and
without cuts.

The maps are built online, while the video is being analyzed. For that rea-
son, the maps improve as longer video periods are considered. In order to build
the maps, it is assumed that, even though the detectors produce some errors,
they usually produce correct results. For each frame, detected object regions are
accumulated in a voting map, causing more frequent regions to receive higher
values. The probability map M t at instant t is obtained by:

M t = M t−1γ + It
B(1 − γ) (1)

where γ ∈ [0, 1] is a given temporal weighting factor and It
B is a binary image

whose non-zero pixels represent regions where an object was detected. This
updating method decreases the influence of older frames over time, thus cop-
ing with camera and object movements.

This approach is more suited for videos captured with a static camera. How-
ever, it may also be used on video that present not too abrupt movement by
first applying a camera stabilization method, such as in [10].

3.2 Object Tracking

This work employs particle filters with the ConDensation algorithm that is imple-
mented in OpenCV1. ConDensation uses factored sampling [8] on particle filters
models in order to track objects. The particle filter tracking consists in estimat-
ing the posterior distribution p(xt|z1:t) of a set of weighted particles {(xi

t, w
i
t)},

where xi
t is the state of particle i and wi

t its weight, computed from the observed
measurements z1:t until the instant t. The ConDensation approach computes
this distribution by generating a new set of n particles by sampling them, with
repositions, from the old ones. By assuming

∑n
j=1 wj

t = 1, the probability of
each particle i being chosen in this step is wi

t. Hence, more likely particles can
be sampled several times, while others may not be chosen at all. Then, for each
particle, a new state is predicted. The prediction phase involves two steps: drift
and diffusion. Drift is a deterministic step, which consists in applying the motion
dynamics for each particle. Diffusion, on the other hand, is random and it is used
to include noise in the model. The new state of a particle i can be expressed as:

xi
t+1 = Axi

t + Bu (2)

where A is the motion dynamics matrix and Bu is the noise term.
1 http://opencv.org/

http://opencv.org/
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Finally, for each particle i, its weight is computed by:

wi
t+1 =

p(xi
t+1|zt+1)

∑n
j=1 p(xj

t+1|zt+1)
(3)

In this work, the state of each particle is a 4-tuple (x, y, h, w) consisting of the
centroid (x, y) of the object bounding box as well as its height and width. As it
is assumed that the initial states of the objects are unknown, a set of trackers
TR = {tri} is kept, one for each object detected in image It at instant t. The set
TR is updated at each instant using a two-step approach. First, let b(.) be the
bounding box of an object and A(b(.)) be the area of b(.). For each object-tracker
pair (ot

k, trt−1
i ), the intersection ratio is computed:

r(ot
k, trt−1

i ) =
A(b(ot

k) ∩ b(trt−1
i ))

max{A(b(ot
k)), A(b(trt−1

i ))} (4)

After that, every pair such that r(ot
k, trt−1

i ) < τarea is removed and all the
remaining pairs are matched using a greedy approach. In order to match pairs
in which the bounding box size incorrectly changed abruptly, a second step is
performed by computing the distance d(ot

m, trt−1
n ) between every non-matched

object ot
m and tracker trt−1

n . Pairs are again filtered the same way as before.
Finally, a new tracker is created and associated to each object that was not
matched. In order to avoid that the number of trackers grow indefinitely, trackers
that are not matched on τwindow consecutive frames are deleted.

4 Structural Properties

Let Ol = (ol
1, o

l
2, ...o

l
m) be the set of detected objects using low-level features and

temporal consistency. The goal is to consider high-level information in order to
correct Ol. It is assumed that the low-level detector produces an over-detection,
i.e. all the desired objects are detected along with some possible misdetections.
Therefore, the correction aims at removing inconsistent objects, yielding the new
set Oh = (oh

1 , oh
2 , ...oh

n) where n ≤ m. Each object oh
i is assigned to a class ci ∈ Ω

where Ω = {ω1, ω2, ..., ωk} represents the set of classes, e.g. “person” or “car”.
It is assumed that there is a correlation between the behaviors of the objects.

Such information is encoded using attributed relational graphs (ARGs). In this
work, an ARG is a tuple G = (V, E ,ΣV ,ΣE , C) where v ∈ V represents one
object, and an edge eij = (vi, vj) ∈ E encodes the relationships between vi and
vj . ΣV and ΣE are the attributes of V and E , respectively. C is a k × k matrix
which specifies whether there is a relationship between classes ωi and ωj or not.
In other words, C is used to generate the set of edges E = {(vi, vj) | c(vi) =
l, c(vj) = m,Clm = 1}, where c(v) represents the class of vertex v.

By considering that the scenes always present a common set of objects
with a common spatial structure, the problem of improving object detection
can be reduced to a subgraph matching between the scene and model graphs.
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More precisely, let Hs be a subgraph of the scene graph Gs. The best Hs is
computed as:

arg max
Hs

s(Hs,Gm) (5)

where s(Hs,Gm) is a score function between both graphs, comparing attributes
of the two vertex sets and the two edge sets.

5 Results

5.1 Sample Application: Table Tennis Videos

We have chosen to work with table tennis videos, as an example where structural
information may be used mainly because of the presence of the table. This object
is very important to the game, as everything is organized around it. In that sense,
it can be used as a reference to obtain a better global understanding of the scene.

5.2 Object Detection

For this application, the selected objects to detect were the table and the players.
The table was detected by backprojection histogram matching [3] in HSV color
space. The color model for the table was learned by evaluating several samples
of tables. The players, on the other hand, were detected using a background
subtraction approach. However, instead of building a background model, motion
was detected by the absolute difference between every two consecutive frames.
Afterwards, player blobs were obtained by applying a morphological closing with
a large structuring element.

5.3 Graph Description

In this example, we set Ω = {player, table} and C =
[

0 1
1 0

]

, indicating that only

the relation between table and player is considered. The videos represent singles
matches (one player on each side of the table), hence the model graph Gm is a
path of 3 vertices. From the rules of the game, it is known the ball trajectory
must include the table. It is also known that from a top view of the game, the
ball follows a nearly linear path from one player to another. Therefore, if the
players are represented by the points p1 and p2 and the table by t, it is expected
that the internal angle of the vectors

−→
tp1 and

−→
tp2 is as close to π as possible.

One common misdetection is to consider other moving objects or people as
players. Therefore, the player probability map MP is used in order to take into
account if the player candidate is in a player zone. By taking everything into
consideration, the score function is defined as:

s(Hs,Gm) = i(Hs,Gm)

⎡

⎣θ(
−→
tp1,

−→
tp2)

π
+ α

n∑

j=1

μ(bj ,MP )

⎤

⎦ (6)
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Table 1. Detection statistics on both databases. The first two rows represent the sum
of detected objects along the whole video, while the third one is the ground truth.

Local UCF101

Table Players Table Players

Detected 378 749 706 541

Hit 374 661 208 346

Expected 378 756 394 394

Hit / Expected 0.99 0.87 0.53 0.88

Hit / Detected 0.99 0.88 0.29 0.64

where

• i(Hs,Gm) = 1 if the graphs are isomorph, 0 otherwise;
• θ(

−→
tp1,

−→
tp2) is the internal angle function between the two vectors;

• μ(bj ,MP ) is a relevance function, weighted by a given α, of bounding box
bj belonging to a player zone in player probability map MP . This function
is defined as:

∑
x,y∈bj

MP (x,y)
w(bj)h(bj)

, where w(bj) and h(bj) are the width and
height of bj . In this work α is experimentally chosen as 2.

5.4 Databases

The results were obtained from tests performed on two databases: one local
database created for this research featuring two videos of amateur table tennis
matches under different points of view and another with some videos from the
UCF101 [13] table tennis shots. The results were evaluated by considering the
hit rate of the detection given by the proposed method. As the videos are not
annotated, the evaluation is performed manually by sampling one frame every 30,
or around one frame per second, in each of the videos. A detection was considered
a hit when min

{
bi(o)
bd(o) ,

bi(o)
br(o)

}
≥ 0.5, where bd(o) is the detected bounding box

returned by the proposed method of object o, br(o) is the real bounding box, or
the smallest box that contains o, and bi(o) = bd(o) ∩ br(o).

LocalDatabase. The local database consists of two videos recorded using a fixed
camera of an amateur game viewed from two different points of view. The results
in Table 1 show that the detector provided very good results on this database.
Figure 1 shows some images of the observed results. As evidenced by the results,
the table detector is robust to scale changes caused by the perspective, as well as
different lighting conditions. The detector usually presents good results, finding
the whole table, with just a few failures of partial detections. The players are also
usually correctly detected, even under varying conditions of movement.

UCF101 Table Tennis Shots. This database is composed of 15 types of
videos, which remained after removing videos where the table color was not blue.
As these videos do not present real matches and only one player, the structural
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Fig. 1. Detection results for both databases. The first row shows the results for the local
database, while the second for UCF101. The method works well even under changes of
perspective and challenging lighting conditions. Even when only one player is detected
and the structural properties are not used, the player and table are correctly detected
among the possible candidates.

descriptor cannot be used, which means that an increase in the number of false
positives is expected. The main interest of this database is therefore to check if
the correct detection is also present among the false ones. If that is the case, then
the correct detection could be found by using the structural descriptor later.

Some results are shown in Fig. 1 and are summarized in Table 1. As it can
be seen, the players can be robustly detected even under the several changes
present in this database. The table detector, on the other hand, was more highly
affected by the changes. This is caused mainly by the large variety of table colors,
as well as the very different lighting, which sometimes caused light reflections
or shadows. It is worth noting that the tests were performed using only a single
general color model, as opposed to learning a different model for each video,
which would improve the results. Nonetheless, the detector showed satisfactory
results detecting the table in more than half of the time, even under these condi-
tions. As already mentioned, without the structural descriptor, sometimes other
misdetections were present among the results, but the most important point is
that the method finds the correct one.

6 Conclusion

We presented a framework to detect objects in videos. The detectors combine
extraction of low-level features, temporal consistency and structural properties in
order to obtain more robust results. They were tested on two databases contain-
ing table tennis videos: one created for this project and the challenging UCF101
table tennis shots, showing an average accuracy of over 75% for both table and
player detection.

As future works, we intend to improve the detection of the table indepen-
dently of its color. This could be done by using color quantization to segment the
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image and by searching for the region between [2] the players. Another ongoing
research includes the use of action recognition in order to add more information
to the process. This would work both ways, because the detection could benefit
from information about the actions, as well as the action recognition step could
be improved by better detection results.
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#2012-09741-0, #2011/50761-2, CNPq, CAPES and NAP eScience - PRP - USP.
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