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Abstract. Spatial relations have proved to be of great importance in
computer vision and image understanding. One issue is their modeling in
the image domain, hence allowing for their integration in segmentation
and recognition algorithms. In this paper, we focus on the “along” spatial
relation. Based on a previous work in 2D, we propose extensions to 3D.
Starting from the inter-objects region, we demonstrate that the elonga-
tion of the interface between the objects and this region gives a good
evaluation of the alongness degree. We also integrate distance informa-
tion to take into account only close objects parts. Then we describe how
to define the alongness relation within the fuzzy set theory. Our method
gives a quantitative satisfaction degree of the relation, reliable for dif-
ferentiating spatial situations. An original example on the maxillofacial
area in Cone-Beam Computed Tomography (CBCT) illustrates how the
proposed approach could be used to recognize elongated structures.
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1 Introduction

Spatial relations have proved to be of great importance in numerous fields such
as psychology, cartography, linguistics, and computer science [4,8,9]. They are a
major concept in human reasoning for object perception, recognition, or mutual
comprehension [1]. In computer vision and image understanding, spatial relations
carry reliable information [6,11,15]. Many relations have been investigated in
the literature [2], and several applications have been proposed, for example in
brain segmentation [5]. However, while extension to 3D of simple relations is
straightforward, there is still work to do for complex relations.

The alongness relation is one of these complex relations, yet important. For
example, in dental practice, “along” is usually used to describe the position of
the mandibular canal with respect to the mandible. Since this canal contains the
very sensitive mental nerve, to avoid severe patient injury during surgery, such
as dysesthetia or neuropathic pain, dental surgeons have to identify its position.
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This type of relation is intrinsically vague and its definition can benefit from
fuzzy set based modeling [2,7]. To the best of our knowledge, only few works in
the literature have addressed the modeling of this relation [13,14]. In [13], in the
context of geographic information systems, the alongness is computed between
a line and an object. The relation is defined as the intersection length between
the line and a buffer zone around the object boundary, normalized by the length
of the boundary or the length of the line. In [14], the relation is considered as
an alongness degree. It is defined as the length of objects boundaries in contact
with the inter-objects region, normalized by the area of this region. A way to
introduce distance information is also shown, as well as methods to deal with
fuzzy objects. In this paper we propose to extend this approach to deal with 3D
(and possibly fuzzy) objects.

In Section 2 we present the general approach to define the along relation,
which is based on inter-objects region described in Section 3 and an elongation
measure, that we introduce in Section 4. The extension to fuzzy sets is then
presented in Section 5. Results are discussed in Section 6.

2 General Approach to Define “Along”

In this work, we consider that two objects A and B are related by an “along”
relation if at least one of them is elongated and A and B are side by side in the
direction of elongation. “Side by side” implicitly means that the two objects are
close to each other comparatively to their environment. Such conditions imply
a specific shape for the space between A and B which should be elongated. The
measure of elongation of the region between the objects can therefore be used
to define the along relation, as suggested in [14].

This approach requires a definition of “betweenness” to model the inter-
objects space. Another advantage is that the relation is symmetrical, considering
both objects equivalently, and gives the possibility to have a satisfaction degree
and not just a binary one, as already argued in [7]. Looking at the inter-objects
region allows us also to compute the relation only between parts of objects, based
on the distance between them. The global method to define alongness is then:

1. Compute the inter-objects region β.
2. Define the elongation of β.
3. Compute the degree of satisfaction of the relation.

3 Inter-Objects Region

Several methods exist for computing the region β between two compact objects
A and B [3]. We focus on the “visibility” method [3] which is able to deal with
difficult situations like concavities. It is based on admissible segments. A segment
]a, b[ is said admissible if a and b are in A and B respectively, and if the segment
is included in AC ∩ BC , where the superscript C denotes the complement of the
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object (note that this forces a and b to be on the boundaries of objects). The
region β can then be defined as:

β(A,B) = ∪{ ]a, b[ | a ∈ A, b ∈ B, ]a, b[ ⊆ AC ∩ BC}

This definition does not make any assumption on the space dimensionality,
and can be used directly in 3D. The two main limitations of this approach are
when one of the objects is much more extended than the other one (see [3] for a
definition dealing with such cases), and when the alongness relation is computed
between sets of disconnected objects. These cases will not be investigated in this
paper.

4 Elongation Measure

4.1 Common Definition

One common definition of elongation is to consider the inverse of compactness
[10] as:

e3D(β) =
S3(β)
V 2(β)

with S and V the area and volume of β, respectively. This definition is dimen-
sionless, admits a minimum equal to 36π for spherical shapes, and increases
for more elongated shapes. This definition is a good start since the measure is
invariant by translation, rotation and isotropic scaling. We can now define the
elongation degree as α1 = fa (e3D(β)) where fa is an increasing function, e.g.
1−e−ax

1+e−ax , with α ∈ [0, 1]. Normalizing the degree is important to compare different
degrees with various ranges. Another way to define the degree is to normalize
e3D by the value for a sphere. The degree is then in [1,+∞[.

4.2 Alongness Degree Based on Object Boundaries

The region β could however be elongated without A and B being along each
other. An additional constraint is that β is elongated in the direction of A and
B, which relies on the contact surface between A∪B and β [14]. However, in 3D,
if we just consider the total area of β in contact with the objects, it is impossible
to distinguish between two rectangular cuboids whose longest sides are facing
each other (Figure 1 (a) first case) and two cylinders whose bases are facing each
other (Figure 1 (a) second case) if the total areas of facing surfaces are equal for
example.

Therefore in 3D, the inter-objects region should be elongated in only one
direction. We propose the following new definition to include this constraint:

α2 = fa

(
(γASc

A(β) + γBSc
B(β))3

V (β)2

)
with γX = 1 − 2

√
Sc

X(β)π
P c

X(β)
(1)
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Fig. 1. Configurations possibly leading to the same elongation degree.

where Sc
X(β) is the frontier area between β and the object X, and P c

X(β) the
perimeter of this surface boundaries. γX is a measure of the elongatedness of
the contact surface. When it tends to a circular shape, γX will tend to zero as
the ratio will tend to 1 (equal to 1 in a perfect flat circle case, which is the less
elongated possible shape), and increases toward 1 if the shape is more elongated,
as the ratio will tend to zero. This definition takes into account the shape of both
objects separately.

4.3 Including Distance Information

In some situations such as the one depicted in Figure 1 (b), the distance between
the two objects can be meaningful: first configuration is closer to the intuitive
“along” relation than the second one, but the α2 score will not differentiate these
two cases if the area and the volume of β are the same.

As in [14], we use the function DAB(x) to include distance:

ν(β) =
∫

β

DAB(x)dx with DAB(x) = d(x,A) + d(x,B) (2)

where d(x,A) and d(x,B) are the distances from x to A and B respectively, and
ν is the β hyper-volume.

We can now define a new measure which includes this distance information
as:

α3 = fa

(
(γASc

A(β) + γBSc
B(β))2

ν(β)

)
(3)

One can note that exponents have changed to keep the degree dimensionless.
One drawback of this degree is the loss of invariance to isotropic scaling since
the distance involved in the definition is not normalized. This invariance could
be obtained by normalizing the distance by its maximum value.
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4.4 Using Distance to Take into Account Only Close Parts

We can examine the spatial relation only on parts of objects which are close to
each other, which may be useful depending on object shapes (e.g. if two coils
are next to one another, it is possible to tell if they are twisted in the same
orientation or not). We reduce β by thresholding it at a distance t to keep only
points which have a lower distance value, leading to βt. This threshold can create
holes so consistency should be ensured by either filling holes in each connected
component of βt or by looking for an optimal threshold around the initial one
which gives only non hollow connected components when they exist. The degrees
α4 and α5 are then defined by replacing β by βt in (1) and (3).

5 Extension to Fuzzy Objects

The inclusion of the segment in the complement of the fuzzy objects is now
modeled as a degree of inclusion [2] which can be expressed as:

μinc(]a, b[) = inf
x∈]a,b[

min[1 − μA(x), 1 − μB(x)]

where μA and μB are the membership functions of the two fuzzy sets (we identify
in this paper a fuzzy set with its membership function, to simplify notations).
Now β is the fuzzy set defined by [14]:

μβ(x) = sup{μinc(]a, b[) | a ∈ Supp(μA), b ∈ Supp(μB), x ∈]a, b[}
This definition implies that the degree is equal to 1 when the segment is fully
visible and equal to 0 if at least one of its points is not visible.

For a 3D fuzzy set μ, area and volume are defined as integrals of the gradient
magnitude and their membership function as:

S(μ) =
∫
Supp(μ)

|∇μ(x)|dx V (μ) =
∫
Supp(μ)

μ(x)dx

which are direct extensions of definitions in [12]. To define the surface where the
β region and an object μ are in contact, we now take the intersection of the
support of the object and β. The frontier is then:

Fμ = ( Supp(μ) ∩ Supp(μβ) ) leading to Sc
μ =

∫
Fμ

|∇μ(x)|dx (4)

Equation (1) becomes:

Fα2 = fa

(
(Sc

μA
(μβ) + Sc

μB
(μβ))3

V (μβ)2

)
(5)

To add the distance information, we propose to consider the minimal length
between the supports of each point rather than the length of admissible segments
[14] as:

DμAμB
(x) = inf{||−→ab|| | a ∈ Supp(μA), b ∈ Supp(μB), x ∈]a, b[}
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Equation (2) is then modified by weighting DμAμB
(x) by μβ(x) [14]:

ν(μβ) =
∫
Supp(μβ)

μβ(x)DμAμB
(x) dx (6)

A degree Fα3 is defined by replacing the volume in (5) by (6). Using a distance
threshold as suggested for α4 and α5 would result in a loss of the fuzzy nature of
the area, so to avoid this, we use a decreasing function g : R −→ [0, 1] of DμAμB

.
βt becomes a fuzzy set:

μβt
(x) = μβ(x)g(DμAμB

(x)) = μβ(x)(1 − fa1(DμAμB
(x)))

where fa1 is the same kind of function as fa, i.e. a normalizing function. In order
to obtain the frontier of βt, one can simply replace β by βt in (4). To define Fα4

and Fα5, β is replaced by βt in Fα2 and Fα3 respectively. Table 1 summarizes
the proposed definition.

Table 1. Summary of proposed degrees.

Degree Formula Description

α1 fa

(
S3(β)

V 2(β)

)
Inverse of compactness. Ranges from 0 for
spherical shapes and tends towards 1 for vessel-
like shapes

α2 fa

(
(γASc

A(β)+γBSc
B(β))3

V (β)2

)
Ratio taking into account only interface areas
between β and the objects. The areas are
weighted by an elongation score favoring elon-
gated interfaces.

α3 fa

(
(γASc

A(β)+γBSc
B(β))2

ν(β)

)
Same as α2 but the volume is weighted by the
absolute minimal distance to the objects.

α4 fa

(
(γASc

A(βt)+γBSc
B(βt))

3

V (βt)2

)
Same as α2 with a thresholded β on the dis-
tance to take into account only close parts of
objects.

α5 fa

(
(γASc

A(βt)+γBSc
B(βt))

2

ν(βt)

)
Same as α3 with a thresholded β on the dis-
tance to take into account only close parts of
objects.

Fα2 - Fα5 Fuzzy versions of α2 - α5. Objects and β are
fuzzy.

6 Experimental Results

The method has been tested with anonymized in-house clinical data. There were
acquired in a dental context using 3D cone-beam computed tomography with
isotropic voxels, 150 μm long on each dimension. Typical acquired volumes cover
the region from the nose bottom to the chin, and from the lips to the temporo-
mandibular joint. The main goal is to identify the mandibular canal which is
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Fig. 2. Manually segmented objects of the maxillofacial area; Mandibular canals are
in green, mandibular floors in red and the tooth 36 in blue.

a tubular structure running from the temporo-mandibular joint to the mental
foramen through the mandible. An example image is depicted in Figure 2 (a)
and (b). This is an original applicative context of spatial relations.

The proposed degrees of alongness have been evaluated on four structures,
segmented manually from 3 patients: the left (LMC) and right mandibular canals
(RMC), the tooth 36 (the first left-sided mandibular molar in dental classifica-
tion, noted 36 after) and the left mandibular “floor” (which corresponds to the
mandible bottom where the cortical bone is plain, noted LMF, and RMF for the
right one, see Figure 2 (c,d)). The alongness degree using each αi, i = 1, ..., 5,
is computed for each pair of structures. We expect the highest result between
the MF and MC, for each side, as they are two elongated structures in the same
direction. Comparing 36 to LMF or LMC should also show significant degrees
since the tooth is being along an elongated structure. The other cases should
have low degrees. A segmentation example is depicted in Figure 2 (c) and (d).
Results can be seen in Figure 3. For the three patients, bar colors differentiate the
patient ID (one color each). It can be seen that α1 shows high degrees for almost
all structure pairs except for the left mandibular canal and the floor, which
may appear counter intuitive. This can be explained by the distance between
structures giving an elongated β as discussed in Section 4.2. As predicted, this
version does not fit for our purpose, and is no longer considered. In α2 results one
can observe that the degree is high when comparing the same-sided mandibular
canal and the floor, which corresponds well to the intuition, and to a less extent
when comparing the tooth to the canal or to the floor, which still makes sense
even if the tooth is not an elongated structure. For the other comparisons, the
degree is very low (<0.08). This degree appears to differentiate very well the
variety of situations. Adding distance information as a distance map does not
change much in these cases as α3 shows a similar profile as α2. However, using
a threshold based on distance seems to be useful. It can be seen in α4 that
taking only the closest parts of the objects could reveal different profiles (e.g.
LMF vs 36 for patients 1 and 3). This can be useful for complex-shaped objects
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Fig. 3. Results obtained for crisp objects.

and/or investigating only small parts of objects. Nonetheless this version keeps
significant degrees, and we can see that the highest degree is still obtained for
the mandibular canal with respect to its mandibular floor. We observe the same
behavior with α5. Thresholds for these tests have been heuristically selected as
the median of the distance values range.

Let us now illustrate the fuzzy case. To simulate a fuzzy segmentation of
objects, manually segmented structures were considered as the core (μ(x) = 1),
and points were added with decreasing membership values from 1 to 0 accord-
ing to the distance to the core (with 0 at 1.5mm distance). We are interested
by fuzziness since it allows us to take into account inter-individual morphology
variability, and potential imprecision in the segmentation, which may lead to
overlapping structures (which is sometimes the case for MC and MF). Results
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Fig. 4. Results obtained for fuzzy objects.

using Fα2 to Fα5 are shown in Figure 4. Fα2 displays the same profile as α2,
with the highest degree for the MC/MF case, and quite high degrees for the
LMF/36 and LMC/36 cases. Adding distance weighting does not give different
results as can be seen with Fα3. For Fα4 and Fα5, using the distance informa-
tion allows us to pick only close structures and to perform a local analysis. For
these tests, the normalizing function for βt is the same as the one for normaliz-
ing the elongation degree (with the parameter a equal to 0.05). Fuzziness allows
getting similar degrees when comparing teeth to an elongated structure, while
the crisp version is much more sensitive to the tooth position and orientation.

From these results, we decided to select α2 and Fα2 as the best versions,
since they are suited for the selected set of objects. Another advantage of select-
ing these versions is their lower computation cost, since the distance map does
not add useful information in our cases. However for other applications, using
thresholded versions of β (as α4) should not be discarded.

The next step was to test the selected version on more data to ensure its
robustness. To do so, we included three more patient data, and we also segmented
the right mandibular floor to verify the behavior for two elongated structures.
The results are summarized in Figure 5.

These results confirm the first tests, sorting correctly the situations depend-
ing on their spatial arrangement, and indicating a good robustness with respect to
anatomical variability. Hence, we can propose a classification for the degree as fol-
lows: between 0 to 0.1 means that the two structures are not linked by an alongness
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Fig. 5. Mean results obtained for the two selected degrees (α2 and Fα2) on 6 patients.
First columns set is α2 and second is Fα2. Standard deviation is shown as error bars

relation, from 0.1 to 0.6 the two structures share a close spatial link with at least
one of the structures being elongated, and from 0.6 to 1 the structures can be said
to be along each other. Obviously, comparing two degrees inside a same “class” is
still meaningful, as a 0.5 degree means higher relationship than a 0.3 degree. In the
same way, a 0.58 degree should not be discarded if one look for strong alongness
link just because it does not fall into the best “class”.

7 Conclusion

In this paper we presented the extension of the “along” spatial relation to 3D,
for crisp objects as well as for fuzzy ones, by a two-step process, based on the
“between” spatial relation and elongation computation. Several versions are pro-
posed including information such as distance, locality, or object direction, to be
able to cope with a wide range of situations, and their performance is tested
on clinical cases. Best versions for our precise identification goal are selected for
extended tests showing good spatial configuration distinction and a satisfaction
degree that can be actually used for comparisons between cases. The measure
seems to be robust, but this should be further validated on larger data sets.
The measures are invariant by translation and rotation, and most of them by
isotropic scaling. The fact that the framework is split into two steps allows easy
changes in the methods for computing the inter-objects region or the alongness
degree. This paper does not investigate the case of set of disconnected objects
which could be meaningful (think of row of trees being along a road for example),
since the visibility approach is not designed for, nor the case of very unbalanced
object sizes. Maybe the first case could be approached by considering a set of
objects as a whole, and looking at its convex hull for example, or by taking a
more suited β definition. For the second case, one could make use of the exten-
sion of the visibility method, called “myopic vision” and described in [3], which
is able to restrain the inter-objects region to the locality of the smallest object.
From an application point of view, this work aims to be a tool for automatic
segmentation of mandibular canal based on dental cast to help dentists avoiding
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post surgery traumas, but could also be applied to other fields like structure
identification in geographic information system or vessel-like pattern recogni-
tion works. Future work aims to develop other spatial relations representing the
maxillofacial region, in order to create a conceptual model, able to guide precise
segmentation and recognition, for dental applications.
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