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Abstract—Fuzzy connected filters were recently introduced
as an extension of connected filters within the fuzzy set frame-
work. They rely on the representation of the image gray levels
by fuzzy quantities, which are suitable to represent imprecision
usually contained in images. No robust construction method of
these fuzzy images has been introduced so far. In this paper
we propose a generic method to fuzzify a crisp image in order
to explicitly take imprecision on grey levels into account. This
method is based on the conversion of statistical noise present in
an image, which cannot be directly represented by fuzzy sets,
into a denoising imprecision. The detectability of constant gray
level structures in these fuzzy images is also discussed.

I. INTRODUCTION

Connected filters are widely used in image processing.

For instance detection or segmentation of structures can be

achieved using the notion of flat zones [1]. Other kinds of

filters exist like thinnings [2] that can help for the same

task. These approaches rely on the extraction of connected

components from a gray scale image according to a criterion

on the gray levels within the input image. Thus, for flat

zone oriented filters, connected components must have a

constant gray level in the original image, while for thinnings

component pixels must have gray levels less or equal to a

given threshold.

Unfortunately, the behavior of these filters may be de-

graded when the input image is noisy or suffers from artifacts

due to its acquisition. In order to overcome these issues,

connected filters were recently extended into the fuzzy set

theory [3]. In this new framework, image intensities are

represented by fuzzy quantities leading to a fuzzy set defined

on the image domain for each gray level. Fuzzy connected

components are then extracted from these sets and filtered.

Obviously, the construction of such images is a key point

and has unfortunately not been conclusively investigated so

far. In this paper we propose a generic solution to address

this problem.

First, the context of fuzzy image filtering will be reminded.

Then, a new fuzzification scheme based on wavelet decompo-

sition is proposed. Finally, experiments illustrating the ability

of the new method to detect structures in noisy images are

commented.

II. THE FUZZY IMAGE FRAMEWORK

Fuzzy images are able to represent imprecision on gray

levels. In the most generic way, they are images whose

Serge Muller and Răzvan Iordache are with GE Healthcare, 283, rue de
la Minière, 78530 Buc, France ({serge.muller,razvan.iordache}@ge.com).

Isabelle Bloch is with TELECOM ParisTech (ENST) - CNRS UMR 5141,
46, rue Barrault, 75013 Paris, France (isabelle.bloch@enst.fr).

Giovanni Palma is both with GE Healthcare and TELECOM ParisTech
(giovanni.palma@ge.com).

This work was realized under CIFRE convention 20061165 (GE Health-
cate/Telecom ParisTech).

intensities are represented by fuzzy quantities. In this section,

we introduce these images and their filtering and we propose

principles that allow constructing them.

A. Mathematical introduction to fuzzy images

Fuzzy images can mathematically be seen as fuzzy sets

defined on Ω×G with Ω the image domain and G the set of

gray levels. The set of these fuzzy images is denoted by F
and for a fuzzy image F ∈ F , a pixel p ∈ Ω and a gray level

g ∈ G, F (p, g) represents the membership degree of some

equality/inequality about g at point p according to the nature

of F . The fuzzy quantity associated to a pixel of such a fuzzy

image is denoted by F (p, .). Additionally the spatial fuzzy

set associated to a gray level is written F (., g) ∈ S with S
the set of fuzzy sets defined on Ω. Adding properties to the

fuzzy quantities associated to each pixel may lead to changes

in the meaning of these images and of course to changes in

the properties of filters that can be defined on them. Two

major kinds of fuzzy images have been introduced so far.

The first one corresponds to fuzzy umbra images. The

pixels of these images are represented by fuzzy quantities

decreasing with respect to the gray level [3]:

Definition 2.1: A fuzzy image F ∈ F is a fuzzy umbra

image (FUI) if:

∀p ∈ Ω, ∀(g1, g2) ∈ G2 g1 ≤ g2 ⇒ F (p, g1) ≥ F (p, g2)

These images are fuzzy extensions of regular binary umbra

images. The semantics of a FUI F is the following: for a

given pixel p and a given gray level g, F (p, g) represents

the degree to which the image is greater or equal to g at

point p.
In the second type of fuzzy images, pixel values are fuzzy

numbers [4]:

Definition 2.2: A fuzzy image F ∈ F is a fuzzy number

image (FNI) if:

∀p ∈ Ω F (p, .) is a fuzzy number

Here the semantics for F (p, g), with p a given pixel and

g a given gray level, is the degree for the represented image

to have the gray value g at pixel p.
The definitions of these fuzzy images, illustrated in Fig-

ure 1(a) and 1(b), are suitable to understand what they

represent, but they unfortunately do not explain how to build

them. Actually, they can be built in several ways. First, we

can try to fuzzify the gray levels of a crisp image by applying

a template on the gray levels as explained in [4]. Such a

method is most of the time not suitable because images

usually contain noise, which cannot be modeled correctly

this way. Secondly, the imprecision of the acquisition system

can be modeled in order to deduce the imprecision present
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Fig. 1. Example of Fuzzy Umbra Image (a) and Fuzzy Number Image (b)
defined on a 1D space Ω.

in the images. Nonetheless, this can be highly application

dependent. Moreover, it does not solve the issue of statistical

noise. Actually, the definition of these images should be

altered in order to be able to express it, for instance by using

Fuzzy Random Variables [5]. Unfortunately, such a structure

would be more complex to handle and hardly usable. This

motivates a method to transform the noise component into

some imprecision that fuzzy images could represent.

B. Fuzzy connected filters

Fuzzy images were originally introduced in order to ex-

press connected filters into the fuzzy set framework. The

general expression of such filters relies on the definition of

an (hyper-)connectivity defined on fuzzy sets of S. Examples

of fuzzy connectivity are proposed in [6], [7] and [8]. We

denote H the set containing all the connected components

of S according to the chosen definition of connectivity.

Additionally, for a given fuzzy set ν ∈ S, H(ν) denotes

the set of the largest fuzzy connected components included

in ν.
In the context of detection of structures, fuzzy connected

filters are usually defined as follows:

∀F ∈ F ξ(F ) =
∨

g∈G

∨

{ν ∈ H(F (., g))/C(ν) = 1}

where C is a criterion equal to 1 if the fuzzy connected

component is compatible with the searched structure and

equal to 0 otherwise.

C. Fuzzy denoising based on the extension principle

In order to get rid of the noise in crisp images, denoising

approaches exist. Unfortunately, they are usually parameter

dependent, and do not provide exactly the original image

without noise. Most of the time we get a trade-off, accord-

ing to the choice of the tuned parameters, between noise

removing and keeping information present in the image.

Usually, the parameters are set once such that they optimize

some criterion modeling this compromise. Of course differ-

ent criteria would give different parameters with different

properties. For instance we may want to be sure of keeping

low contrasted structures at the expense of not removing all

the noise, or on the contrary having a noise free image even

if some structures are lost. In the case of detection, making a

decision at this step may result in a loss of information and

prevent the processing chain to give the right result. To avoid

this problem, we could try to keep as much information as

possible in order to make the decision later. Therefore, we

can associate membership degrees to all possible parameter

values in order to use the extension principle [9] leading

to fuzzy gray levels. This would allow us to get a fuzzy

image where the statistical noise component is transformed

into denoising imprecision. In that case, the fuzzy image is

completely suitable to represent it. This conversion step is a

key idea that will be used throughout this paper.

Let us define such an approach in a generic way. Let I be

the crisp image, Υγ a denosing filter and γ the parameter

of the denoising method. If we are able to associate a

membership degree µγ to each value of γ, we are able to

associate a membership degree to each possible gray level at

each pixel. The extension principle gives us:

∀I : Ω → G, ∀p ∈ Ω, ∀g ∈ G F (p, g) = sup
Υγ(I)(p)=g

µγ

The problem of such an approach is the need for the

computation of a large number of denoised images. For this

reason, we develop in this paper the extension of a wavelet

based denoising approach to the fuzzy set framework.

III. FUZZY WAVELET DENOISING

In this section we propose to detail the adaptation of a

wavelet based denoising approach in order to generate a

fuzzy image. First, we remind the principles of 1D wavelet

decomposition and denoising. Then, we detail a method to

model imprecision in this approach and show how to build

a fuzzy image.

A. Wavelet decomposition

Wavelet analysis is a multi-resolution approach, which

relies on the following definition:

Definition 3.1: A multi-resolution analysis is a sequence

of nested, closed subspaces {Vj} ⊂ L2(R) verifying [10]:

∀j ∈ Z Vj ⊂ Vj+1

lim
j→∞

Vj =
⋃

j∈Z

Vj = L2(R)

lim
j→−∞

⋂

j∈Z

Vj = {0}

f(x) ∈ Vj ⇔ f(2x) ∈ Vj+1, j ∈ Z (scale invariance)

f(x) ∈ V0 ⇔ f(x+ k) ∈ V0, k ∈ Z (shift invariance)

∃φ(x) ∈ V0/{φ(x− k), k ∈ Z} is a stable basis for V0.

The first term means that for a given scale j, Vj is a

subspace of Vj+1, resulting in a loss of information when

projecting an element of Vj+1 onto Vj . The second term

means that with a large enough scale we can represent the

original signal. The third term means that when j tends

toward −∞, all information about the signal is lost. Fourth

and fifth terms imply that the same analysis can be done

independently of scale and origin. Finally the last term

is needed to deal with infinite dimensional vector spaces.

The function φ(x) is called a father function or scaling

function: basis functions of V0 are then shifted versions of



it. Stretching and normalizing it enables to produce basis

functions for the various Vj .

As we said, for a given scale j + 1, Vj+1 enables to

represent elements that Vj does not contain. For this reason

we need to introduce the orthogonal complement Wj of Vj

in Vj+1:

Vj+1 = Vj ⊕Wj

More practically, each Wj will be generated using a basis

composed of translations of a stretched mother function ψ,
which is also denominated by wavelet function.

In order to analyze a given function at various scales, it is

required to be able to express this function on the new basis.

This can be achieved using a filter bank as proposed in [11].

This decomposition relies on four filters h, g, h̃ and g̃. These
filters can be deduced from φ, ψ in the case of orthogonal

wavelets and from their dual functions in the case of a bi-

orthogonal wavelets. In both cases it allows us to reconstruct

perfectly the original signal.

Let sj+1 be the approximation of the original signal f in

Vj+1. This filter bank can be expressed mathematically using

the following expressions:

sj,k =
∑

l∈Z

h̃l−2ksj+1,l

where sj,k represents the coefficients of the approximation

of sj+1 in Vj ,

ωj,k =
∑

l∈Z

g̃l−2ksj+1,l

where ωj,k represents the details of sj+1 expressed in Wj .

The reconstruction part can be expressed as:

sj+1,l =
∑

k∈Z

hl−2ksj,k +
∑

k∈Z

gl−2kωj,k (1)

The extension of this theoretical material in 2D is usually

done by processing an image along the two orientations

successively [10].

B. Wavelet shrinkage

Once the image is decomposed on the wavelet basis, the

coefficients {ωj,k} can be modified in order to make changes

in the original image. Thanks to the properties of wavelet

decomposition, several denoising approaches based on the

suppression of small wavelet coefficients were proposed in

the literature [10]. A first approach consists in a keep or

kill strategy: large coefficients are kept while the others are

set to zero. This approach is known as hard-thresholding.

A second approach, which is more continuous, consists in

subtracting, respectively adding, a given constant to positive

coefficients, respectively negative ones, and to set to zero the

ones whose sign has changed. This approach is known as

soft-thresholding [12] and the transformation of a coefficient

ω is mathematically defined for a threshold λ as:
{

max(0, ω − λ) if ω ≥ 0
min(0, ω + λ) if ω < 0

Both approaches rely on a threshold λ and produce more

or less degraded/noisy images depending on this parame-

ter. Optimization techniques exist to automatically set this

threshold according to assumptions on the noise nature like

the universal threshold technique [13], Stein’s Unbiased Risk

Estimation (SURE) [14] or the Generalized Cross Valida-

tion (GCV) approach [15]. The two last ones rely on the

minimization of the mean square error between the denoised

image and what would be the noise free image. In this paper,

we will use the GCV approach, which assumes the image is

corrupted with Gaussian noise, for soft-thresholding in order

to derive our approach. Of course other techniques could be

used as well.

C. Fuzzy coefficients

The thresholds obtained with these techniques usually

correspond to a trade-off between the quantity of noise to

be removed and the quantity of details to be kept after the

processing. Our idea is that the choice we make at this stage

could be weakened by the introduction of imprecision on

this parameter. While crisp intervals are suitable to represent

this imprecision, fuzziness enables to cope with common

issues caused by the choice of crisp bounds. This motivates

a fuzzification process of the wavelet coefficients ωj .

Without a great loss of generality we can represent fuzzy

numbers using an LR representation, which is a special case

of LR fuzzy interval representation. Such fuzzy quantities

are represented using two functions L : R
+ → [0, 1], R :

R
+ → [0, 1] such that L(0) = R(0) = 1, L(1) = R(1) = 0

and ∀x > 1 L(x) = R(x) = 0. Additionally, four param-

eters (m1,m2, a, b) are required such that the membership

function for a fuzzy interval Q = (m1,m2, a, b)LR is given

by:







µQ(x) = L
(

m1−x
a

)

if x ≤ m1

µQ(x) = 1 if m1 < x < m2

µQ(x) = R
(

x−m2

b

)

if x ≥ m2

In the case of a fuzzy number, the parameters m1 and m2

are equal. This representation is illustrated in Figure 2.

0

1

m1 m2a b

L R

Fig. 2. LR representation of a fuzzy interval.

Back to the fuzzification of the wavelet coefficients, we

propose an approach, in the case of soft-thresholding, based

on the assumption that the most possible thresholded coeffi-

cient value is the one obtained with the GCV approach, and

its worst value is obtained for the original coefficient value



(i.e. λ = 0). This leads to the following fuzzification scheme:

µω(x) =















(max(ω − λ, 0),max(ω − λ, 0),
0, β(ω − max(ω − λ, 0)))LR if ω ≥ 0

(min(ω + λ, 0),min(ω + λ, 0),
β(min(ω + λ, 0) − ω), 0)LR otherwise

with β a parameter that allows us to tune the amount of

imprecision we want to introduce. Figure 3 illustrates this

fuzzification process. The core of the fuzzy coefficients,

which appear in gray in the figure, is obtained from the

optimal transfer function corresponding to the GCV method.

The slope of these numbers is more or less steep according

to the parameter β. When β = 1, the membership function

is vanishing exactly at the original coefficient value.

Output coefficient

Input coefficient

Identity TF

Optimal TF

λ

−λ

01

m
1
,
m

2

β
b b

Fig. 3. Fuzzification process of a wavelet coefficient. A membership degree
of 1 is associated to the coefficient value obtained for an optimal soft-
thresholding. The membership value decreases when the new coefficient
value gets closer to its original value. Identity TF and Optimal TF correspond
to the transfer functions obtained for λ = 0 and for λ given by the GCV
approach, respectively.

Because GCV is designed to suppress Gaussian noise, this

fuzzification scheme allows it to be converted into some

denoising imprecision on the wavelet coefficients. Let us

remark this imprecision can be expressed using fuzzy number

because semantics is not the same for this imprecision and

for stochastic noise.

D. Generation of a fuzzy image

The main remaining problem is the reconstruction stage

of the filter bank because the nature of some elements added

and multiplied in Equation 1 changes: wavelet coefficients

become fuzzy numbers. Nonetheless, the fuzzy set frame-

work enables to define a fuzzy arithmetic on fuzzy numbers.

Furthermore, using LR representations, common operators

can easily be formulated. Thus if we consider two fuzzy

intervals Q1 = (m,m′, a, b)LR and Q2 = (n, n′, c, d)LR,

we can express the fuzzy + operator as:

Q1 ⊕Q2 = (m+ n,m′ + n′, a+ c, b+ d)LR (2)

The product operator between a fuzzy number and a

positive crisp scalar is written:

α⊙Q1 = (αm,αm′, αa, αb)LR

while in the case of a negative scalar it is expressed as:

α⊙Q1 = (αm′, αm,−αb,−αa)RL

Because Equation 1 only needs these three definitions

in the case of fuzzy coefficients {sj,k} and {ωj,k}, this

expression can be rewritten as:

sj+1,l =
∑

k∈Z

⊕

hl−2k ⊙ sj,k +
∑

k∈Z

⊕

gl−2k ⊙ ωj, k (3)

with
∑⊕

the fuzzy counterpart of
∑

according to Equa-

tion 2.

Reconstructing completely a fuzzy image from this expres-

sion provides a fuzzy number image. Because the set of gray

levels G is not continuous, sampling the fuzzy gray levels on

this set may result in pixels where no gray levels have a

membership degree equal to one. Clearly in that case we do

not have a fuzzy number image. To overcome this limitation

a last step consisting in dilating the continuous fuzzy gray

levels can be done: we subtract, respectively add, s
2 to m1,

respectively m2, with s the sampling step. This enables to

ensure the core of the fuzzy gray level is large enough to

have one gray level with a membership degree of 1 after the

sampling. In the case we want a fuzzy umbra image, we can

arbitrarily force the decreasingness with respect to the gray

level from a fuzzy number image according to Definition 2.1.

E. Amount of fuzziness

As explained earlier, the parameter β introduced in the

fuzzification process allows us to tune the amount of im-

precision we introduce in the final fuzzy image. In order

to quantify it, we need a measure like the fuzziness degree

(fuzzy entropy) introduced in [16]. Because wavelet coeffi-

cients are real numbers in our context we use a continuous

version of the measure:

G(µ) = −

∫ ∞

−∞

µ(x) log2(µ(x))
+(1 − µ(x)) log2(1 − µ(x))dx

Theorem 3.1: ∀β ∈ R
+, for fuzzy intervals Qβ =

(m1,m2, βa, βb)LR, we have G(µQβ ) = βG(µQ1 ).
Proof: By definition, we have:

G(µQβ ) = −
∫ m1

−∞
R(m1−x

βa
) log2 R(m1−x

βa
)dx

−
∫ m2

m1

1 log(1)dx

−
∫ ∞

m2

L(x−m2

βb
) log2 L(x−m2

βb
)dx

−
∫ m1

−∞
(1 −R(m1−x

βa
)) log2(1 −R(m1−x

βa
))dx

−
∫ m2

m1

0 log(0)dx

−
∫ ∞

m2

(1 −R(x−m2

βb
)) log2(1 −R(x−m2

βb
))dx

the second and fifth terms are null, and the other terms are

stretched versions of the integration of R and L on [0, 1],
which leads to:

G(µQβ ) = −βa
∫ 1

0 R(x) log2(R(x))dx

−βb
∫ 1

0 L(x) log2(L(x))dx

−βa
∫ 1

0
(1 −R(x)) log2(1 −R(x))dx

−βb
∫ 1

0 (1 − L(x)) log2(1 − L(x))dx

Thus we have G(µQβ ) = βG(µQ1 ).



Let us define the degree of fuzziness of a fuzzy image, or

fuzziness amount per pixel (fapp):

Definition 3.2: Let F be a fuzzy image:

fapp(F ) =
1

|Ω|

∑

p∈Ω

G(F (p, .))

We can finally introduce a last theorem:

Theorem 3.2: Let I be a crisp image, β ∈ R
+ and F β be

the fuzzified version of I using parameter β, we have:

fapp(F β) = βfapp(F 1)

Proof: Let I be a crisp image. Using Equation 3

and the definitions of ⊕ and ⊙, there exist {Qγ
i =

(mi
1,m

i
2, γa

i, γbi)} defined for γ ∈ R
+ such that ∀β ∈ R

+

the fuzzified image F β verifies: ∀pi ∈ Ω F β(pi, .) = Qβ
i .

Thus using Theorem 3.1, we can deduce that G(F β(pi, .)) =
G(Qβ

i ) = βG(Q1
i ) = βG(F 1(pi, .)).

Finally, using Definition 3.2 we can conclude that Theo-

rem 3.2 is verified.

This theorem is useful because if we want to construct

several images {F β} that have given fapp values, we only

need to produce one fuzzy image F 1, and then deduce the

set of β needed. Furthermore, for any β, F β can directly

be computed from F 1 because β is multiplying parameters

ai and bi of the fuzzy numbers in the reconstructed fuzzy

image.

IV. RESULTS

In order to assess the robustness of the method, it was

tested on synthetic images degraded with Gaussian noise or

Poisson noise. The original image is composed of twenty five

disks lying on a constant background as shown in Figure 4.

The gray levels of the disks from top left to bottom right

are decreasing starting from the intensity of the background

minus one. This leads to disks with an increasing contrast

to noise ratio. Without noise, this image allows us to extract

all the disks using a strict definition of flat zones in addition

to a criterion on the size of the disks. In this experiment,

the capability to extract the same zones in presence of noise

using a FNI and the definition of fuzzy flat zones is evaluated.

A. Experiments

In each case, the degraded image is decomposed on a

Daubechies wavelets basis [17] using four scales. Then the

wavelet coefficients are fuzzified in order to generate a fuzzy

number image using the method described in the previous

section. In order to extract the disks, the fuzzy image is then

processed by the following connected filter:

∀F ∈ F ξ(F ) =
∨

g∈G

∨

{ν ∈ H(ν)/(a1 < A(ν) < a2)} (4)

with A a fuzzy area measure, a1 and a2 two constants that

enclose the area of disks in the original image.

This filter can be seen as producing a fuzzy set resulting

from the aggregation of the detected fuzzy connected com-

ponents corresponding to the different disks. An example

of this detection in the image of Figure 4(b) is given in

(a) (b)

(c) (d)

Fig. 4. (a) Original image composed of 25 synthetic disks of different
contrast values. (b) The same image with Gaussian noise (standard deviation
equal to 16.5). (c) The same image with Poisson noise. (d) Result of the
detection in the image (b) for a fapp equal to 5.

Figure 4(d). Ideally, this set is equal to one within the disks

and equal to 0 in the background. Thus for each disk we

compute a similarity measure [18] with the crisp set equal

to one in the considered disk and equal to 0 elsewhere in

order to evaluate the quality of the detection. Doing this

for each disk enables to assess how the method behaves for

different CNR values. Obviously, the fuzziness amount in

the image plays an important role in the ability to detect

structures. Using Theorem 3.2, the former similarities of

detected disks can easily be evaluated for various fapp values

without reconstructing a fuzzy image at each time.

B. Gaussian noise

Figure 5 illustrates the detection capability of the approach

for the image of Figure 4(b), which contains Gaussian noise.

We observe that for any CNR value, there is an optimal

fuzziness amount per pixel value for the detection of the

corresponding disk. Too small values of fapp do not allow

reconnecting disks while too large values tend to merge the

disk in the background resulting in a non detection. A second

key point is that the optimal values of fapp depend on the

contrast to noise ratio of the disk. Thus there is no way to

fuzzify an image such that all structures of different contrast

can be extracted optimally. The optimal fapp values are closer

to 0 for lower CNR values than for higher ones. Nonetheless,

in the case of detection, compromises can be found. Indeed,

if we choose a fapp optimizing the detection of a contrasted

enough structure, the detection of higher contrast structures

can be good enough: in most applications, an imperfect mask

of the structure is suitable for further processing such as

segmentation.
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Fig. 5. Evolution of the similarity between the disks present in the image
of Figure 4(a) and their detection using Equation 4 in the image corrupted
with Gaussian noise of Figure 4(b). The similarities are given according
to their CNR and the amount of fuzziness (fapp) introduced in the fuzzy
image.

C. Poisson Noise

In the case of an image containing Poisson noise, the

wavelet denoising approach we propose in this paper can-

not be directly applied because the GCV method proposed

in [10] assumes that the input image in corrupted with

Gaussian noise. Nonetheless, as proposed in [19] we can

pre-process the crisp image with a transfer function in order

to get data with a distribution closer to the Gaussian.
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Fig. 6. Evolution of the similarity between the disks present in the image
of Figure 4(a) and their detection using Equation 4 in the image corrupted
with Poisson noise of Figure 4(c). The similarities are given according to
their CNR and the amount of fuzziness (fapp) introduced in the fuzzy image.

The evolution of the detectability for this noise config-

uration is different from the Gaussian case as illustrated

in Figure 6. Here, low fapp values allow to retrieve high

contrasted disks first. This result is coherent with the fact

that in the proposed synthetic image, the background has a

higher intensity compared to the disks, therefore disks are

demonstrating less noise. Actually, due to the nature of the

noise, when the contrast increases the noise in the disks

decreases, making their detection requiring less fuzziness.

Finally, conclusions drawn in the Gaussian case about fapp

optimal values and their dependence on the contrast are still

valid.

V. CONCLUSION

In this paper we addressed the problem of fuzzy image

construction. Our approach is generic and relies on the

conversion of statistical noise present in the input image

into an imprecision on gray levels that can be obtained

with a denoising approach. We focused on the description

of a wavelet decomposition and showed how to fuzzify the

wavelet coefficients in order to produce a fuzzy number

image.

We also discussed the impact of fuzzification on the

detectability of structures in a synthetic image. We showed

that for Gaussian and Poisson noises, the optimal amount

of fuzziness to be introduced in the image depends on the

contrast to noise ratio of the target structure.
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