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Abstract

In this paper we propose definitions of distances to
bipolar information. This notion is important to
find a solution that matches bipolar queries, to ex-
hibit recommendations satisfying preferences of an
agent while respecting her constraints, to find an
agreement between several agents. All these situ-
ations require to be able to compare candidate so-
lutions, via their distance to some bipolar informa-
tion, and several evaluation measures are proposed
as well. We base distances and their comparison on
mathematical morphology operators, in particular
dilations and skeleton by influence zones.

Keywords: Bipolar information, distance, math-
ematical morphology, dilation, SKIZ, comparison
and evaluation of solutions.

1. Introduction

Distance is an important component of problems
in databases (for queries for instance), information
systems, recommendation systems, etc. In this pa-
per we propose definitions of distances to bipolar
information. Indeed, bipolar information has be-
come a major research topic in contemporary infor-
mation processing [1, 2]. It has motivated work in
several directions both from theoretical aspects and
applicative perspectives (see for instance the papers
in [2]).

In several information processing situations, one
may have to assess the distance of an element (a can-
didate solution to a query for instance) to a bipolar
information (representing the query). A similar sit-
uation occurs if bipolar information represents pref-
erences (positive information) and constraints (neg-
ative information). Distances are then useful for
selecting solutions in various mono-agent and multi-
agent problems. For instance, in a recommendation
system, we may want to propose a solution to an
agent according to her desires and constraints. A
query can also be expressed in a bipolar form, and
then distances can be used to evaluate the match-
ing of an element of the database with the query. In
such situations, a natural choice is always to choose
among the candidates having a minimal distance
to the bipolar information. Ideally a good solution
should minimize the distance to the positive infor-
mation and maximize the distance to the negative

information (this idea is typically used in classifi-
cation, pattern recognition or query systems, based
on examples and counter-examples, see e.g. [3]). In
a multi-agent context, one typical problem is to
search for a good compromise between agents’ pref-
erences. If the agents are equally considered, a nat-
ural choice is to select a solution which is at equal
distance to all preferences, i.e. as close as possible to
all of them. If the agents are not equally considered,
we may want to satisfy as well as possible the agent
with the highest priority. If several solutions are
found to be equivalent, then a choice among them
can be performed using the information provided by
the second agent, and so forth. Such situations typ-
ically occur in recommendation systems for a group
of persons, or in negotiation.

Let us assume that bipolar information is repre-
sented by a pair (µ, ν), where µ represents the pos-
itive information and ν the negative information,
under a consistency constraint [1], which guarantees
that the positive information is compatible with the
constraints or rules expressed by the negative infor-
mation. From a formal point of view, bipolar in-
formation can be represented in different settings,
depending on the application domain, leading to
different forms of µ and ν, which are all mathe-
matically equivalent [2, 4].

In this paper, we want to define d(x, (µ, ν)) for x
belonging to a space S on which µ and ν are de-
fined (or d(ω, (ϕ, ψ)) for ω a given world, and ϕ
and ψ well-formed formulas representing the pref-
erences and what is forbidden or impossible in a
logical setting1). Note that x and ω are elements
(worlds) of the considered space, and are neither
bipolar nor fuzzy. This problem has not yet been
addressed, although it has numerous potential ap-
plications as suggested above. Once distances are
computed, they have often to be compared. Com-
parison can concern the distances of different ele-
ments to some bipolar information, or the distances
of one (or several) elements to several pieces of bipo-
lar information.

The proposed setting is within the framework of
mathematical morphology [5] on complete lattices
and its extensions to fuzzy sets (see e.g. [6, 7, 8, 9],
among others) and to bipolar fuzzy sets (see e.g. [4,
10, 11]), and exploits links between distances and
dilations. A short reminder on morphological dila-

1The consistency constraint is then expressed as ϕ∧ψ |= ⊥
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tions and erosions is presented in Section 2. Two
main contributions are detailed next: defining dis-
tances is addressed in Section 3, and comparing or
evaluating potential solutions via their distance to
the bipolar information is addressed in Section 4.

2. Dilation and erosion

Let (T ,�T ) be a complete lattice, ∨ the supremum
and ∧ the infimum2.

Definition 1 [5, 12] A dilation is an operator δ
on T which commutes with the supremum: ∀(xi) ∈
T , δ(∨ixi) = ∨iδ(xi). An erosion is an operator ε
on T which commutes with the infimum: ∀(xi) ∈
T , ε(∧ixi) = ∧iε(xi).

Such operators are called algebraic dilation and ero-
sion. An important property is that they are in-
creasing with respect to �T .

Definition 2 An adjunction on (T ,�T ) is a pair
of operators (ε, δ) such that ∀(x, y) ∈ T 2, δ(x) �T

y ⇔ x �T ε(y).

If (ε, δ) is an adjunction, then ε is an algebraic ero-
sion and δ an algebraic dilation.

In the particular case of the lattice of subparts of
R

n or Z
n, denoted by S in the following, endowed

with inclusion as partial ordering, adding a property
of invariance under translation leads to the partic-
ular following forms (called morphological dilation
and erosion):

∀X ⊆ S, δB(X) = {x ∈ S | B̌x ∩X 6= ∅},

∀X ⊆ S, εB(X) = {x ∈ S | Bx ⊆ X},

where B is a subset of S called structuring element,
Bx denotes its translation at point x and B̌ its sym-
metrical with respect to the origin of space. Alter-
natively, B can be considered as a binary relation
between elements of S.

Definitions 1 and 2 are general and apply to
any complete lattice. Let us consider the lattice
(F ,�F ,

F∨,F∧, 0F , 1F) of fuzzy sets F defined on
some domain S. We identify fuzzy sets (elements
of F) and membership functions (functions from S
into [0, 1]) in the following.

Definition 3 [6, 7] The dilation of a fuzzy set µ
by a fuzzy structuring element ν (considered as a
binary relation) is defined as:

∀x ∈ S,Fδν(µ)(x) = F∨y∈St(ν(y, x), µ(x)),

where t is a t-norm. The erosion is defined from its
residual implication I as:

∀x ∈ S,Fεν(µ)(x) = F∧y∈SI(ν(x, y), µ(x)).

2The lattice is also denoted by (T ,�T ,∨,∧, 0T , 1T ),
where 0T and 1T are the smallest and largest elements.

Let us now consider the lattice of bipolar fuzzy
sets (B,�B,

B∧, B∨, 0B, 1B), where a bipolar fuzzy
set is defined by two membership functions µ and
ν, representing positive and negative information,
such that ∀x ∈ S, µ(x) + ν(x) ≤ 1.

Definition 4 [4, 10] Dilation and erosion of a
bipolar fuzzy set (µ, ν) by a bipolar fuzzy structur-
ing element (µB, νB) (relation on S × S) are then
defined as: ∀x ∈ S,

Bδ(µB ,νB)(µ, ν)(x) = B∨y∈S⊤((µB , νB)(y, x), (µ, ν)(y)),

Bε(µB ,νB)(µ, ν)(x) = B∧y∈SI((µB , νB)(x, y), (µ, ν)(y)),

where ⊤ is a bipolar t-norm, I its residual impli-
cation, and B∨ and B∧ are defined according to the
choice of �B (e.g. Pareto, lexicographic...).3

Details on bipolar connectives can be found in [13].
In propositional logics and its fuzzy or bipolar ex-

tensions, the equivalence between a formula ϕ and
its sets of models JϕK, up to the syntactic equiva-
lence, allows using the previous definitions on sets
or fuzzy sets of models, thus working at the se-
mantic level [14]. Dilation and erosion of a for-
mula are then defined via their models as follows:
Jδ(ϕ)K = δ(JϕK) and Jε(ϕ)K = ε(JϕK), or similar ex-
pressions for (ϕ, ψ) representing positive and nega-
tive information (since no confusion can occur, the
same notations are used for operations on formulas
and operations on sets of models).

Since the properties of morphological operators
are mostly derived from the algebraic framework of
complete lattices and residuated lattices when using
⊤ and I, dilations and erosions have the same prop-
erties in all the above settings. Details can be found
in the mentioned references. Among the important
ones, let us mention the increasingness of dilation
and erosion, the iterativity property (in particular
n dilations of size 1 are equivalent to one dilation of
size n, denoted δn, with δ0 = Id). Moreover in this
paper, we consider structuring elements such that
∀x ∈ S, (µB , νB)(x, x) = (1, 0) (i.e. the relation
defining the structuring element is strictly reflexive)
in order to have extensive dilations.

3. Defining distances to a bipolar

information

In this section we consider some bipolar informa-
tion, denoted by (µ, ν), defined over some space S.
These notations encompass different settings. In
particular in a logical framework, S will be a set
of worlds Ω and µ and ν will be membership func-
tions defining the (possibly fuzzy) sets of models
of formulas JϕK and JψK for positive and negative
information, respectively. In the following, we sug-
gest several ways to define the distance d(x, (µ, ν))
of an element x of S to the bipolar information.

3We will use the same notations B∧ and B∨ in B and in
L = {(a, b) ∈ [0, 1]2 | a+ b ≤ 1}.
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The proposed definitions differ in the manner posi-
tive and negative parts of information are taken into
account. Their common feature is that they all rely
on mathematical morphology, which is an original
aspect. Other interesting definitions could be based
on the extension principle or other methods, but are
out of the scope of this paper.

3.1. Joint account of positive and negative

information

A first approach was proposed in [4, 15], where the
distance is defined from dilations of (µ, ν) consid-
ered jointly, as a whole. In the crisp case, the dis-
tance of a point x to a set X is obtained by the
minimal size of the dilation of X such that x is
included in the dilated set, where dilations are per-
formed using balls of a distance on S as structuring
elements. The extension to the bipolar case leads
to the following definition.

Definition 5 Let (µ, ν) ∈ B be the representation

of a bipolar information. Let Bδ
n

denote the dilation
of size n, as introduced in Section 2. In the discrete
case, the distance of any element x ∈ S to (µ, ν) is
defined as: d(x, (µ, ν))(0) = (µ, ν)(x), and ∀n ∈ N

∗,

d(x, (µ, ν))(n) = Bδn(µ, ν)(x) B∧N(Bδn−1(µ, ν))(x)

where N denotes a bipolar complementation. This
extends to the continuous case as: ∀n ∈ R

+∗,

d(x, (µ, ν))(n) =

B∧n′<n(Bδn(µ, ν)(x) B∧N(Bδn′

(µ, ν))(x)).

In this definition, positive and negative parts of in-
formation are taken into account simultaneously, in
a way that may depend on the chosen partial order-
ing. For instance, using Pareto ordering, the nega-
tive and positive parts play symmetrical roles, while
a priority is given to one of them (typically to the
negative part) if a lexicographic ordering is used.
Note that if no imprecision has to be taken into ac-
count (i.e. µ and ν take only values 0 and 1), then
these two orderings are equivalent. In this case,
the ordering does not make any difference in the
way positive and negative parts of information are
taken into account, and this should be performed
at a different level, in the morphological operations
and distance definitions.

Proposition 1 [4] The distance d(x, (µ, ν)) in
Definition 5 is a (fuzzy) bipolar number. It reduces
to a classical distance to a set or a fuzzy set if (µ, ν)
and (µB, νB) are not bipolar. It is strictly equal to
0 if and only if (µ, ν)(x) = (1, 0).

An example in the spatial domain can be found
in [4], and is reproduced in Figure 1. The results
are in agreement with what would be intuitively
expected. The positive part of the bipolar fuzzy

number is put towards higher values of distances
when the point is moved to the right of the ob-
ject. After a number n of dilations, the point com-
pletely belongs to the dilated object, and the value
to which the distance is equal to n′, with n′ > n,
becomes (0, 1) = 0B. Note that the indetermina-
tion in the membership or non-membership to the
object (which is truly bipolar in this example) is
also reflected in the distances.

Bipolar fuzzy object:
positive part negative part
Test points in red (numbered 1..5 from left to right)
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Figure 1: A bipolar fuzzy set (membership degrees
are encoded as grey levels) and the distances from
5 different points to it, represented as bipolar fuzzy
numbers (the positive part is shown in green and
the negative part in red).

3.2. Conditioning by the negative

information

We now propose a new definition, with an asym-
metric account of positive and negative informa-
tion. More precisely: for the positive information,
we keep the metric feature, expressed as dilations
while we propose to take the negative information
into account using only topology (via conditioning).
This results in the following definition. It is given in
the discrete case only. Extension to the continuous
case is straightforward, as for Definition 5.

Definition 6 Let (µ, ν) ∈ B be the representation
of a bipolar information. Let Fδn denote the di-
lation of size n, as introduced in Section 2. The
distance of any element x ∈ S to (µ, ν) is defined
as: d(x, (µ, ν))(0) = µ(x) ∧ c(ν)(x) and ∀n ∈ N

∗,

d(x, (µ, ν))(n) = Fδn(µ)(x) ∧ c(Fδn−1(µ))(x)∧c(ν)(x)

where c is a fuzzy complementation.

This definition provides a (fuzzy) number. The
negative part does not undergo any morphologi-
cal transformation, which is well suited when con-
straints are considered as strict.

It is interesting to note that successive dilations
provide a ranking of the elements x, from which a
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distance is derived. This defines a stratification of
S, based on the following rank function:

∀x ∈ S, r(x) = min{n ∈ N | x ∈ Fδn(µ) F∧c(ν)}.

This can be used to choose a solution satisfying an
agent’s preference. If the agent is ready to extend
her preferences (for instance to get an agreement
with another agent), then she may choose a higher
rank solution. An example of such a situation will
be provided in Section 4.2.

3.3. Relaxing the negative information

In the same line as above, with an asymmetric ac-
count of positive and negative information, but in
order to provide more flexibility in the way negative
information is considered, we propose to include a
metric feature for negative information too. The
idea is to erode the constraints, so that the condi-
tioning is less strict.

Definition 7 Let (µ, ν) ∈ B be the representation
of a bipolar information. Let Fδn denote the di-
lation of size n, as introduced in Section 2. The
distance of any element x ∈ S to (µ, ν) is defined
as: d(x, (µ, ν))(0) = µ(x) ∧ c(ν)(x) and ∀n ∈ N

∗,

d(x, (µ, ν))(n) = Fδn(µ)(x) ∧ c(Fδn−1(µ))(x)

∧ c(Fεk(ν))(x).

This definition provides an evaluation of the dis-
tance as a (fuzzy) number. The negative part of
the information can be eroded “at the same speed”
as the positive part is dilated (and then k = n in
Definition 7), or at a different speed. Typically we
may want to allow some limited flexibility and erode
constraints slower (for instance, we may erode the
negative information less rapidly than dilating the
positive information, e.g. k = n/2). This additional
flexibility allows the constraints to be relaxed, which
may lead to a potentially larger set of solutions in
problems such as negotiations or recommendation
systems.

3.4. Geodesic dilations

It may also be useful to guarantee that constraints
are satisfied at each step of the dilations. In the fol-
lowing definition, conditioning is then performed at
each dilation step, which corresponds to a geodesic
dilation in the discrete case, denoted δn

c(ν)(µ) and

computed as follows: δ0
c(ν)(µ) = µ∧ c(ν), δ1

c(ν)(µ) =

δ1(δ0
c(ν)(µ)) ∧ c(ν), · · · , δn

c(ν)(µ) = δ1(δn−1
c(ν) (µ)) ∧

c(ν), where δ1 denotes the dilation by an elementary
structuring element (of size 1).

Definition 8 Let (µ, ν) ∈ B be the representation
of a bipolar information. Let Fδn denote the di-
lation of size n, as introduced in Section 2. The
distance of any element x ∈ S to (µ, ν) is defined
as: d(x, (µ, ν))(0) = µ(x) ∧ c(ν)(x) and ∀n ∈ N

∗,

d(x, (µ, ν))(n) = Fδn
c(ν)(µ)(x) ∧ c(Fδn−1

c(ν) (µ))(x).

This definition provides an evaluation of the dis-
tance as a (fuzzy) number4. It guarantees that at
each step of dilation, constraints are satisfied. The
whole path from (µ, ν) to x can be followed while
avoiding ν. This is useful when agents are ready
to extend progressively their preferences, while fol-
lowing the path of successive potential solutions, all
satisfying the constraints.

The example in Figure 2 illustrates Defini-
tions 6 and 8. Conditioning at the end leads to
d(x, (µ, ν)) = d(y, (µ, ν)) (x and y are reached after
3 dilations), while computing a geodesic distance
(i.e. conditioning at each step of dilation) provides
different results (y is still reached after 3 dilations,
while 5 are needed to reach x).

µ

ν

µ

ν

x x

y y

Figure 2: Illustration of Definitions 6 (left) and 8
(right).

3.5. Separate account of positive and

negative information

Finally, instead of defining the distance as one num-
ber (whether it be crisp, fuzzy or bipolar), we pro-
pose to separate completely the positive and neg-
ative parts of the information, and define two dis-
tances, to each of them.

Definition 9 Let (µ, ν) ∈ B be the representation
of a bipolar information. The distance of any ele-
ment x ∈ S to (µ, ν) is defined as: d(x, (µ, ν)) =
(d(x, µ), d(x, ν)), where d(x, µ) and d(x, ν) are dis-
tances to sets or fuzzy sets.

In this definition, where distances to µ and ν are
computed separately (see e.g. [16] for dilation-based
fuzzy distances), the evaluation is provided as two
(fuzzy) numbers, that can be interpreted as pros
and cons.

4. Comparison and evaluation of solutions

Once d(x, (µ, ν)) is defined and can be computed
for each x, we can compare the obtained values for
different elements x. This is the aim of this sec-
tion. We consider two typical problems where such
comparisons are useful:

4Note that geodesic distances are actually generalized dis-
tances since they can take infinite values (for instance if
ν(x) = 1, then d(x, (µ, ν)) is infinite with this definition).
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1. “mono-agent” situation: given one (µ, ν) defin-
ing preferences and constraints, find a best so-
lution that satisfies the preferences while re-
specting the constraints;

2. “multi-agent” situation: given a set
{(µi, νi), i ∈ I} of preferences and con-
straints expressed for |I| agents, find a solution
that satisfies as well as possible all agents’
preferences while respecting all constraints.

We propose several approaches to evaluate and com-
pare solutions in these two situations. In the follow-
ing, if no ambiguity can occur, superscripts indicat-
ing the underlying lattice are suppressed to simplify
equations.

4.1. Mono-agent case

We first consider the mono-agent situation, where
bipolar information is represented by (µ, ν) ∈ B.

Comparison of distances. In order to assess
whether x is better than x′, i.e. if x is closest to
(µ, ν) than x′ is, the simplest way is to compare
d(x, (µ, ν)) and d(x′, (µ, ν)). If distances are evalu-
ated as numbers, the comparison is direct. If they
are evaluated as fuzzy numbers or bipolar (fuzzy)
numbers, then the comparison can be performed by
computing the degree to which a distance is lower
than another one, thus defining a fuzzy number or a
bipolar number ∆<(d(x, (µ, ν)), d(x′ , (µ, ν))). This
has been defined in the fuzzy case in [17] and in the
bipolar fuzzy case in [4], either using dilations or
using the extension principle5. Let us describe the
most general case. Using dilations, the idea is that
a point x is closer than another one x′ to a bipo-
lar information (µ, ν) if less dilations of (µ, ν) are
needed to reach x than to reach x′.

Definition 10 Let (µ, ν) in B and two elements
x and x′ of S. The degree to which d(x, (µ, ν))
is stricly less than d(x′, (µ, ν)) is defined from di-
lations as: ∆dil

< (d(x, (µ, ν)) < d(x′, (µ, ν))) =
∨n∈NN(I(δn(µ, ν)(x), δn(µ, ν)(x′))), where I is a
bipolar implication. The degree to which d(x, (µ, ν))
is less or equal than d(x′, (µ, ν)) is defined from
dilations as: ∆dil

≤ (d(x, (µ, ν)) ≤ d(x′, (µ, ν))) =
∧n∈NI(δn(µ, ν)(x′), δn(µ, ν)(x)).

The degree to which d(x, (µ, ν)) is stricly less
than d(x′, (µ, ν)) is defined from the extension
principle as: ∆ext

< (d(x, (µ, ν)) < d(x′, (µ, ν))) =
∨n<n′⊤(d(x, (µ, ν))(n), d(x′, (µ, ν))(n′)), where ⊤
is a bipolar t-norm, and the degree to which it is
less or equal is defined in a similar way.

Proposition 2 We have ∆ext
< � ∆dil

< .

For the examples in Figure 1, we obtain for
instance: ∆ext

≤ [d(x1, (µ, ν)) ≤ d(x2, (µ, ν))] =

5In the fuzzy case, comparison could also be based on the
various existing methods in fuzzy sets and possibility theory
for comparing fuzzy numbers [18].

[0.69, 0.20] where xi denotes the ith point from
left to right in the figure. In this case, since x1

completely belongs to (µ, ν), the degree to which
its distance is less than the distance from x2 to
(µ, ν) is equal to [supa d

+(a), infa d
−(a)], where

d+ and d− denote the positive and negative parts
of d(x2, (µ, ν)). As another example, we have
∆ext

≤ [d(x5, (µ, ν)) ≤ d(x2, (µ, ν))] = [0.03, 0.85], re-
flecting that x5 is clearly not closer to the bipolar
fuzzy set (µ, ν) than x2.

Comparison of a distance and a model. We may
also want to evaluate a solution with respect to a
model, or a constraint (i.e. what we expect as a dis-
tance). This can be done by computing a similarity
between d and the model, or by pattern matching.

Similarity can be defined in many different ways,
and it is out of the scope of this paper to re-
view similarity measures between fuzzy or bipolar
numbers. As an example, let us mention the pos-
sible use of Definition 10 as ⊤(∆≤(d(x, (µ, ν)) ≤
d(x′, (µ, ν))),∆≤(d(x′, (µ, ν)) ≤ d(x, (µ, ν)))) where
⊤ is a bipolar t-norm.

A bipolar pattern matching can be defined from
a bipolar degree of inclusion of one bipolar fuzzy
set into the other, and from a bipolar degree of in-
tersection between them, as a direct extension of
fuzzy pattern matching. Let α and β be two bipo-
lar fuzzy sets (e.g. defined in R

+ if they represent
bipolar distances). A degree of inclusion of α in β is
defined as ∧xI(α(x), β(x)) where I is a bipolar im-
plication, and a degree of intersection is defined as
∨x⊤(α(x), β(x)) where ⊤ is a bipolar conjunction
(these notions are directly used for defining bipolar
erosions and dilations as in Section 2).

Case of separate distances. Let us now consider
Definition 9 where distances to µ and to ν are
evaluated separately. We then have to compare
(d(x, µ), d(x, ν)) and (d(x′, µ), d(x′, ν)). Typically
a good solution should correspond to a low value of
d(x, µ) and to a high value of d(x, ν). If distances
to µ and to ν are considered as evaluations of pros
and cons respectively, then the whole comparison
apparatus proposed in [19], where several orderings
enjoying good properties are proposed, can be used.
Note that this work applies mainly when evalua-
tions are provided as numbers. Extensions to fuzzy
numbers could however be derived. Interestingly,
here the bipolarity is not taken into account in the
computation of distances, but in the evaluation or
comparison of solutions.

4.2. Multi-agent case

We now move to the multi-agent case, where
we assume that each agent i (i ∈ I) expresses
preferences and constraints as (µi, νi) ∈ B. A
candidate solution x ∈ S is then evaluated as
a set {d(x, (µi, νi)), i ∈ I} or ({d(x, µi), i ∈
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I}, {d(x, νi), i ∈ I}). The aim of this section is to
provide ways to combine these evaluations and to
compare candidate solutions. If the pieces of bipo-
lar information representing the agents’ preferences
and constraints are consistent, then solutions can
be searched for in their conjunction. This will be
briefly addressed at the end of this section. If they
are not consistent, then some compromise has to
be found. This case is more interesting and some
solutions are proposed next.

Fusion. A first way to proceed is to combine the
agent’s preferences and constraints using a fusion
or aggregation operator, and then compute the dis-
tance to the result of the fusion. Similarly, the
distance evaluations can be combined using a fu-
sion operator. We then come up with the mono-
agent case, and we do not further investigate this
approach here.

Using influence zones and SKIZ. The skeleton by
influence zones (or SKIZ) is a powerful notion in
mathematical morphology [5] to define the best sep-
aration between objects. Let {Xj} be a set of dis-
joint objects. The influence zone of Xj is defined
as the set of points that are strictly closer to Xj

than to all other objects. The SKIZ (or generalized
Voronoi diagram) is the complement of the union
of influence zones (i.e. the set of points equidistant
of at least two objects). This notion has been ex-
tended to the fuzzy case in [17]. For the purpose of
this paper, this notion is interesting since it provides
the best compromise in the sense of distances, if all
agents are equally considered. Let us first propose
an extension of the SKIZ to the bipolar case.

Definition 11 Let (µi, νi) ∈ B, ∀i ∈ I. The influ-
ence zone of (µi, νi) is defined as a bipolar fuzzy set
as follows: ∀x ∈ S,

IZ(µi, νi)(x) = ∧j 6=i∆<(d(x, (µi, νi)) < d(x, (µj , νj)))

with ∆< as in Definition 10.
The SKIZ is defined as: SKIZ({(µi, νi), i ∈

I}) = N(∨i∈IIZ(µi, νi)), where N is a bipolar com-
plementation.

Proposition 3 As in the fuzzy case, a larger IZ is
obtained when using ∆dil

< than when using ∆ext
< .

Now, let us suggest several options using this no-
tion: (i) compute the SKIZ using d(x, (µ, ν)) as in
Definition 11; (ii) compute the SKIZ using only µ
(using its fuzzy version [17]) and then condition by
c(ν) to guarantee that the solutions satisfy the con-
straints; (iii) compute the SKIZ using the geodesic
dilations, i.e. using the distances in Definition 8;
(iv) compute the SKIZ using dilations and associ-
ated ranking as suggested in Section 3.2.

Let us illustrate the last option on a non-fuzzy
bipolar example (Figure 3). In this case, the in-
fluence zones are simply expressed as IZ(µi, νi) =

{x ∈ S | ∀j 6= i, ri(x) < rj(x)}, where ri is the rank
function introduced in Section 3.2, derived from the
dilation of µi, conditioned by νi.

µ1

µ

x

ν

ν2

2

ν1

Figure 3: Successive conditional dilations (lead-
ing to ranking). The element x is a good com-
promise between agent preferences, respecting their
constraints.

Proposition 4 If we interpret distances to the
agents’ preferences (conditionally to the negative in-
formation) as a utility function, the obtained solu-
tions are then Pareto optimal, in the sense that an
agent cannot increase its utility without decreasing
the one of the other.

This approach corresponds to negotiation situa-
tions where the agents are equally ready to extend
their preferences in order to get a solution that leads
to the same degree of satisfaction (measured by the
rank) for all agents.

Using successive rankings. Here the agents are not
equally considered, but they are ordered, by some
priorities. Finding a solution satisfying the agents’
preferences while respecting the constraints of each
agent and the priority between them can be per-
formed in successive steps: finding the best solution
for one agent; rank further these solutions accord-
ing to the preferences and constraints of the next
one; etc.

An example is illustrated in Figure 4. Two agents
have preferences and constraints represented (here
in a 2D domain) by (µ1, ν1) and (µ2, ν2) (crisp bipo-
lar here). Considering first agent 1, from succes-
sive dilations of µ1 conditionally to ν1, x is the
preferred solution among the four displayed points,
while y, z, t are all equivalent, and worse than x.
Now considering agent 2, x should be excluded since
it does not satisfy the constraints ν2, and y, z, t can
be further ranked according to their distance to µ2:
t is better than y which is better than z.

Separate evaluations. If the distances to µ and ν
are evaluated separately (Definition 9), for a ∈ S we
define a set of pros A+ = {d(a, µi), i ∈ I} and a set
of cons A− = {d(a, νi), i ∈ I}. Similarly for b ∈ S
we define B+ and B−. The problem then amounts
to compare A = (A+, A−) and B = (B+, B−).
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Figure 4: Successive rankings, according to agent 1
and then to agent 2.

Again one of the methods in [19] can be applied,
either directly if evaluations are provided as num-
bers, or based on their extensions to fuzzy numbers.

Consistent preferences. Let us now briefly men-
tion the case where agents’ preferences are consis-
tent. In the case where ∧iµi 6= ∅, a few addi-
tional possibilities can be proposed: (i) compute
the last non empty erosion of the conjunction, as
suggested in [20] for abductive reasoning, (ii) com-
pute a median set, that can be defined as the SKIZ
of (µ1, ν1) ∧ (µ2, ν2) and N((µ1, ν1) ∨ (µ2, ν2)) for
two agents [17, 21]. This provides a larger set of so-
lutions than just considering the conjunction, that
takes a more fair account of each agent’s prefer-
ences (see example in [21] for mediation in a logi-
cal framework); (iii) use the Discri order of [19]: if
there is no imprecision, all solutions in the conjunc-
tion are equivalent; (iv) ranking in the conjunction
as a function of the distance to ∨iνi. Note that by
construction, ∧iµi has no intersection with the νi

so any solution in the conjunction satisfies the con-
straints. The suggestions above allow refining this
set of solutions.

4.3. Examples in propositional logics

In this section we detail a simple example to illus-
trate the interest of some of our proposals, when
bipolar information is expressed in a logical frame-
work. Examples showing the interest of bipo-
lar modeling in a logical setting, in particular for
combining agents’ preferences, can be found e.g.
in [4, 22].

Let us consider three propositional symbols
(PS = {a, b, c}). The elements of Ω are represented
as the vertices of a cube in the following figures.
Figure 5 illustrates the dilation of two agents’ pref-
erences (here Jϕ1K = {¬a¬bc} and Jϕ2K = {ab¬c})
to find an agreement between them, conditionally
to the constraints (Jψ1K = Jψ2K = {¬abc, a¬bc}).
The elementary structuring element is defined as a
ball of radius 1 of the Hamming distance between
worlds. While the initial preferences do not contain
any common model, after two dilations potential
solutions have models in {a¬b¬c,¬ab¬c,¬a¬b¬c}.

Figure 6 illustrates an example where constraints
are not strict and can be eroded. Models of ϕ are

φ φ1 ψ   = ψ12 2

¬a¬bc ¬a¬bc

¬abc ¬abcabc abc

a¬bc a¬bc

¬a¬b¬c ¬a¬b¬ca¬b¬c a¬b¬c

ab¬c ab¬c¬ab¬c ¬ab¬c

Figure 5: Left: ϕ1, ϕ2, ψ1 = ψ2. Right: δ2(ϕ1) ∧
¬ψ1, δ2(ϕ2) ∧ ¬ψ2.

circled in green and models of ψ in red. We have
Jδ(ϕ) ∧ ¬ε(ψ)K = {¬a¬bc, a¬bc,¬abc,¬a¬b¬c}.
Note that a¬b¬c cannot be reached by geodesic di-
lations of ϕ conditionally to ψ, while it is reached by
a dilation of size 2 if ψ is eroded. The ranking also
reflects this situation, and it can change if we accept
to relax the constraints by eroding ψ. The ranking
is useful for partial ordering of solutions, retrieval
as a ranked list, stratified recommendation systems
(recommended choices are partially ordered), etc.

¬a¬bc ¬a¬bc

¬abc ¬abcabc abc

a¬bc a¬bc

¬a¬b¬c ¬a¬b¬ca¬b¬c a¬b¬c

ab¬c ab¬c¬ab¬c ¬ab¬c

Figure 6: δ(ϕ) ∧ ¬ε(ψ).

Let us finally consider an example in the fuzzy
case, illustrated in Figure 7. Here the sets of models
are fuzzy subsets of Ω. Membership degrees to these
sets of models are represented using colors. Table 1
provides the values of successive conditional dila-
tions and distances to (ϕ, ψ) (which are then fuzzy
numbers) for the elements of Ω.

bipolar values: =(1,0) =(0.5,0) =(0,0) =(0,0.5) =(0.5,0.5) =(0,1)

¬a¬bc ¬a¬bc

¬abc ¬abcabc abc

a¬bc a¬bc

¬a¬b¬c ¬a¬b¬ca¬b¬c a¬b¬c

ab¬c ab¬c¬ab¬c ¬ab¬c

Figure 7: Left: (ϕ, ψ). Right: dilation of size 1 of
ϕ conditionally to ψ (see Table 1).

5. Conclusion

We proposed several ways to define distances to
bipolar information, and methods for evaluating
and comparing potential solutions according to
these distances. Applications for decision making
in mono- or multi-agent contexts are suggested, for
information retrieval, queries in databases, negotia-
tions. Future work aims at investigating more prop-
erties of the proposed definitions of distances and of
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abc ¬abc a¬bc ab¬c ¬a¬bc ¬ab¬c a¬b¬c ¬a¬b¬c
ϕ 0 0 0.5 0 1 0 0 0.5
ψ 0.5 1 0.5 0 0 0 0 0

δ1
c(ψ)

(ϕ) 0.5 0 0.5 0 1 0.5 0.5 1

δ2
c(ψ)

(ϕ) 0.5 0 0.5 0.5 1 1 1 1

δ3
c(ψ)

(ϕ) 0.5 0 0.5 1 1 1 1 1

δ4
c(ψ)

(ϕ) 0.5 0 0.5 1 1 1 1 1

d(0) = δ0
c(ψ)

(ϕ) 0 0 0.5 0 1 0 0 0.5

d(1) = δ1
c(ψ)

(ϕ) ∧ c(δ0
c(ψ)

(ϕ)) 0.5 0 0.5 0 0 0.5 0.5 0.5

d(2) = δ2
c(ψ)

(ϕ) ∧ c(δ1
c(ψ)

(ϕ)) 0.5 0 0.5 0.5 0 0.5 0.5 0

d(3) = δ3
c(ψ)

(ϕ) ∧ c(δ2
c(ψ)

(ϕ)) 0.5 0 0.5 0.5 0 0 0 0

d(4) = δ4
c(ψ)

(ϕ) ∧ c(δ3
c(ψ)

(ϕ)) 0.5 0 0.5 0 0 0 0 0

Table 1: Values of conditional dilations and fuzzy distances d(n) = d(ω, (ϕ, ψ))(n) for the example in Figure 7.

the comparison methods, and at exploring the sug-
gested applications as well as new ones, including
the choice of the most appropriate definition.
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