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Abstract

In this paper, we build upon previous work defining
explanatory relations based on mathematical mor-
phology operators on logical formulas in proposi-
tional logics. We propose to extend such relations
to the case where the set of models of a formula is
fuzzy, as a first step towards morphological fuzzy
abduction. The membership degrees may represent
degrees of satisfaction of the formula, preferences,
vague information for instance related to a partially
observed situation, imprecise knowledge, etc. The
proposed explanatory relations are based on succes-
sive fuzzy erosions of the set of models, condition-
ally to a theory, while the maximum membership
degree in the results remains higher than a thresh-
old. Two explanatory relations are proposed, one
based on the erosion of the conjunction of the the-
ory and the formula to be explained, and the other
based on the erosion of the theory, while remaining
consistent with the formula at least to some degree.
Extensions of the rationality postulates introduced
by Pino-Perez and Uzcategui are proposed. As in
the classical crisp case, we show that the second ex-
planatory relation exhibits stronger properties than
the first one.

Keywords: Propositional logic with fuzzy models,
fuzzy mathematical morphology, explanatory rela-
tions, fuzzy abduction.

1. Introduction

In this paper we focus on the approximate flavor of
abduction, considering it as an approximate reason-
ing process. We propose to make an explicit account
of imprecision and uncertainty related to this pro-
cess, via fuzzy representations, in logics where the
semantic part handles fuzzy sets of models.

Among the different ways to define abduction (see
e.g. [1] or [2, 3] for fuzzy abduction), we focus on the
search for minimal and consistent explanations of
an observation, relying on the axiomatic approach
proposed in [4]. Explicit explanatory relations sat-
isfying the rationality axioms identified in [4] have
been proposed in [5, 6], based on operators from
the mathematical morphology framework, in partic-
ular erosions. We extend this work by considering

fuzzy sets of models, and mathematical morphol-
ogy operators on them. This provides concrete and
explicit explanatory relations, which contrasts with
most works, where they are implicitly defined via a
set of axioms or properties. The proposed approach
enjoys interesting properties in terms of rationality
properties, and in terms of flexibility both in knowl-
edge representation and in the proposed explana-
tory relations. In particular it offers the possibility
of a tunable compromise between specialization and
generalization of the solution.

This paper is organized as follows. In Section 2
we specify the logic considered in this paper (i.e.
having fuzzy sets of models). Mathematical mor-
phology operators are then defined on these fuzzy
sets in Section 3. In particular morphological ero-
sions are detailed, since there are the basis of the
proposed explanatory relations. Two such relations
are proposed in Section 4, extending the work in [5]
to the fuzzy case. Rationality postulates, as pro-
posed in [4], are expressed in the considered fuzzy
context and the two explanatory relations are ex-
amined under their light in Section 5.

2. Propositional logics with fuzzy sets of

models

Definition 1 Let us denote by PS a finite set of
propositional symbols, and let a ∈ PS. We consider
a language generated by PS and the following con-
nectives: ϕ ::= a | ¬ϕ | (ϕ∧ϕ) | (ϕ∨ϕ) | (ϕ → ϕ) |
(ϕ ↔ ϕ) | (ϕ&ϕ) | ⊥

In this paper we consider a fuzzy version of propo-
sitional logic, by associating with any well formed
formula ϕ a set of models JϕK that is a fuzzy set,
i.e. JϕK ∈ F , where F denotes the set of fuzzy sub-
sets of the set of worlds. This can be achieved in
different ways. Here we suggest two simple ones by
considering different evaluation functions.

2.1. The basic fuzzy logic BL

BL is the basic fuzzy logic [7]. Let us consider an
evaluation function µ, assigning to each proposi-
tional variable a a truth value in µ(a) ∈ [0, 1], and a
continuous t-norm ⋆ with its residuum =⇒ . Then
we have:
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• µ(⊥)=0,
• µ(ϕ → ψ) = (µ(ϕ) =⇒ µ(ψ)),
• µ(ϕ&ψ) = (µ(ϕ) ⋆ µ(ψ)).

This extends to the other connectives by the follow-
ing equivalences:

• ϕ ∧ ψ ⇔ ϕ&(ϕ → ψ),
• ϕ ∨ ψ ⇔ ((ϕ → ψ) → ψ) ∧ ((ψ → ϕ) → ϕ),
• ¬ϕ ⇔ ϕ → ⊥,
• ϕ ↔ ψ ⇔ (ϕ → ψ)&(ψ → ϕ).

The truth function of ∧ is then the minimum and
the one of ∨ is the maximum, regardless of the
choice of the t-norm (and its residuum).

A world is defined as the set generated by a given
evaluation µ over the finite propositional variables.
That is ω = {(µ(ai)) | i ∈ {1, · · · , |PS|}} (it can be
considered as a point in a |PS|-dimensional space,
and this representation will be used in the illustra-
tive examples). Let us denote by M the set of all
possible truth evaluations µ, by Φ the set all well-
formed formulas generated by the language consid-
ered in Definition 1, and by Ω the set of all possible
worlds. Considering the semantic mapping defined
above, for each well-formed formula ϕ ∈ Φ a degree
of satisfaction µϕ(ω) is associated with each world
ω ∈ Ω (i.e. the degree to which ω |= ϕ). The set of
models of ϕ is then JϕK = {(ω, µϕ(ω)) | ω ∈ Ω}.

2.2. Propositional logic with fuzzy

evaluation

Let us now consider the simple case where an eval-
uation function e assigns to each propositional vari-
able a a truth value e(a) ∈ {0, 1}. Then & (conjunc-
tion) and ∧ connectives coincide. Furthermore the
size of the set of worlds reduces to 2|PS| (instead of
[0, 1]|PS| as in the previous case). Fuzziness can be
considered at the reasoning level by defining a mem-
bership function µϕ over the crisp set Ω. This allows
for more flexibility by introducing prior knowledge
in the reasoning process while in the case of the logic
BL, such a flexibility is reduced to the choice of the
t-norm.

The membership function µϕ can be defined in
different ways. In this paper we first define crisp
subsets of Ω representing the coreKer (where mem-
bership values are equal to 1) and the support
Supp (where membership values are non zero) of
JϕK, with Ker(ϕ) ⊆ Supp(ϕ). Then for ω ∈
Supp(ϕ) \ Ker(ϕ), its membership is defined as a
value in ]0, 1[, for instance as a decreasing function
of a distance measure between ω and Ker(ϕ).

As previously, for each ω ∈ Ω, µϕ(ω) denotes the
degree to which ω |= ϕ. The set of models is defined
in the same way: JϕK = {(ω, µϕ(ω)) | ω ∈ Ω}.

2.3. Towards explanations

Once µϕ is defined for all well-formed formulas ϕ, all
what follows applies regarless of its definition. Let

us denote by � the usual partial ordering on fuzzy
sets or equivalently on their membership functions,
endowing (F ,�) with a complete lattice structure.
Supremum and infimum are denoted by ∨ and ∧,
respectively (max and min in the finite case).

In the following, we will mainly deal with the se-
mantic part of the logic, and define operators on F .
However, it is equivalent to reason on formulas (up
to the syntactic equivalence), using the following re-
lations:

• ⊢ ϕ ↔ ψ ⇔ ∀ω ∈ Ω, µϕ(ω) = µψ(ω);
• ⊢ ϕ → ψ ⇔ µϕ � µψ;
• Jϕ ∧ ψK = JϕK ∧ JψK (which justifies that the

same symbol ∧ is used for formulas and for the
fuzzy sets of models);

• Jϕ ∨ ψK = JϕK ∨ JψK.
• In the case of the logic BL: Jϕ&ψK = JϕK ⋆ JψK.

Let us now consider a background theory Σ (a
consistent set of formulas). Inferring an explana-
tion of an observation ϕ, i.e. performing abduction,
consists in finding a formula γ such that Σ∪{γ} ⊢ ϕ.
The aim of this paper is to define preferred expla-
nations, denoted ϕ ⊲ γ, when the set of models of
ϕ is fuzzy. We propose to define such explana-
tory relations from mathematical morphology op-
erators. The fact that ϕ holds under the theory Σ
(i.e. Σ ⊢ ϕ) is denoted by ⊢Σ ϕ. We look for ex-
planations such that Σ ∪ {γ} is consistent, and that
are preferred according to rationality postulates.

2.4. Examples

As a first example, let us consider a three-valued
language version of BL, with two propositional vari-
ables {a, b}, where a truth value in {0, 0.5, 1} is as-
signed to each variable. Let us take the Łukasiewicz
t-norm for & and its residual implication:

• µ(ϕ&ψ) = max{0, µ(ϕ) + µ(ψ) − 1},
• µ(ϕ → ψ) = min{1, 1 − µ(ϕ) + µ(ψ)}.

Their associated truth table is provided in Ta-
ble 1, along with the membership values of JϕK for
two examples of formulas: (a → b) ∨ (a&b) and
(a → b)∧(a&b). A graphical representation of a → b

is provided in Figure 1.

a b a → b a&b (a → b) ∨ (a&b) (a → b) ∧ (a&b)
0 0 1 0 1 0
0 0.5 1 0 1 0
0 1 1 0 1 0

0.5 0 0.5 0 0.5 0
0.5 0.5 1 0 1 0
0.5 1 1 0.5 1 0.5
1 0 0 0 0 0
1 0.5 0.5 0.5 0.5 0.5
1 1 1 1 1 1

Table 1: Three-valued Łukasiewicz logic.

As a second example, let us consider three propo-
sitional symbols (PS = {a, b, c}), crisply instanti-
ated. The elements of Ω are represented as the ver-
tices of a cube in Figure 1, and their membership
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degrees to the sets of models of formulas are rep-
resented using colors. For instance in this example
µϕ(abc) = 1, µϕ(¬abc) = µϕ(ab¬c) = µϕ(¬ab¬c) =
0.8, µϕ(a¬bc) = µϕ(¬a¬bc) = µϕ(a¬b¬c) = 0.4,
µϕ(¬a¬b¬c) = 0.

> >>

(0.5,1)

(0, 0.5)

(0,1)
(1,1)

(0.5, 0) (1, 0)

(0,0)

(0.5, 0.5) (1, 0.5)

membership degrees : 

¬a¬bc

¬abc abc

a¬bc

¬a¬b¬c a¬b¬c

ab¬c¬ab¬c

Figure 1: Graphical representation of the models
of a → b in BL (left) and µϕ in the second exam-
ple (right). Membership degrees are represented by
colors.

3. Fuzzy mathematical morphology on

fuzzy sets of models

The main idea is, as proposed in [5] for (crisp)
propositional logic, to define explanatory relations
from morphological operators, in particular ero-
sions. This allows on the one hand deriving ex-
plicit formulations of explanations, and on the other
hand defining formally the notion of preferred ex-
planation, based on some minimality principles. In
this section, we remind the basics of fuzzy math-
ematical morphology, expressed on F . More de-
tails on mathematical morphology and fuzzy math-
ematical morphology can be found e.g. in [8, 9, 10]
and [11, 12, 13, 14, 15, 16, 17], respectively.

3.1. Definitions and properties

The following definitions and properties are derived
from the general algebraic framework of mathemat-
ical morphology [18, 19].

Definition 2 In the complete lattice (F ,�), an
erosion ε is defined as an operator that commutes
with the infimum and a dilation δ as an operator
that commutes with the supremum, i.e. for any fam-
ily (ϕi) (with ∀i, JϕiK ∈ F):

ε(∧iJϕiK) = ∧iε(JϕiK), (1)

δ(∨iJϕiK) = ∨iε(JϕiK). (2)

Let δ be a dilation and ε an erosion, from (F ,�)
into (F ,�). These operators induce similar oper-
ations on formulas and δ(ϕ) and ε(ϕ) are defined
via their models as follows: Jδ(ϕ)K = δ(JϕK) and
Jε(ϕ)K = ε(JϕK) (since no confusion can occur, the
same notations are used for operations on formu-
las and operations on sets of models). We then
have for any family (ϕi): ⊢ ε(∧iϕi) ↔ ∧iε(ϕi) and
⊢ δ(∨iϕi) ↔ ∨iδ(ϕi).

The membership functions of Jδ(ϕ)K and Jε(ϕ)K
are denoted by µδ(ϕ) and µε(ϕ), respectively.

More specifically, particular forms of operators in-
volve a particular fuzzy set, called structuring ele-
ment. A structuring element can be defined equiv-
alently as a “neighborhood” V (ω) of each world,
or as a binary relation B(ω, ω′) between worlds,
with ∀(ω, ω′) ∈ Ω2, µV (ω)(ω

′) = µB(ω, ω′), i.e.
V (ω) = B(ω, .). In the following, without loss of
generality, we consider the structuring element as a
binary relation, i.e. a fuzzy set of Ω × Ω. The set
of structuring elements is denoted by B. Dilation is
then defined as a degree of intersection and erosion
as a degree of inclusion [12].

Definition 3 Let t be a t-norm and I its residual
implication. Let B ∈ B a structuring element, with
membership function µB (i.e. a fuzzy binary rela-
tion between worlds). The morphological erosion of
ϕ by B is defined as:

∀ω ∈ Ω, µεB(ϕ)(ω) =
∧

ω′∈Ω

I(µB(ω, ω′), µϕ(ω′)).

(3)
The morphological dilation of ϕ by B is defined as:

∀ω ∈ Ω, µδB(ϕ)(ω) =
∨

ω′∈Ω

t(µB(ω′, ω), µϕ(ω′)).

(4)

This definition extends the morpho-logic operators
introduced in [20]. The connectives can be chosen
as ⋆ for the conjunction and =⇒ for its resid-
ual implication, as in Section 2.1, which amounts
to rely on the structure of the residuated lattice
(F ,∨,∧, ⋆, =⇒ ,⊥,⊤).

Proposition 1 The operators introduced in Defini-
tion 3 are algebraic erosions and dilations, i.e. εB
commutes with the infimum and δB commutes with
the supremum.

In the particular case whereB is crisp, then Equa-
tions 3 and 4 become:

∀ω ∈ Ω, µεB(ϕ)(ω) =
∧

ω′∈Ω|B(ω,ω′)=1

µϕ(ω′). (5)

∀ω ∈ Ω, µδB(ϕ)(ω) =
∨

ω′∈Ω|B(ω′,ω)=1

µϕ(ω′). (6)

It has been proved in [13] that the conditions
on t and I (i.e. being a t-norm and its residual
implication) are required to have all usual prop-
erties of mathematical morphology (including ad-
junction and properties of the compositions εδ and
δε). However most properties also hold in the fuzzy
case with weaker assumptions on t and I. If du-
ality with respect to complementation is also re-
quired, then I should also be derived from the dual
t-conorm of t. Note that this additional condition
strongly reduces the possible choices for t and I,
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and only Łukasiewicz operators (up to a bijection
on the membership degree) can then be used.

Since the proposed explanatory relations rely on
erosions using structuring elements, we remind here
only the main properties of these operators, that
will be used in the following (see [12, 13] for more
details on fuzzy mathematical morphology and its
properties):

Proposition 2 Let εB be an erosion on (F ,�) by a
structuring element B, defined from an implication
I as in Definition 3, and its equivalent on formulas.
The following properties hold:

• independence of the syntax (since definitions
are provided via the sets of models): if ⊢ ϕ ↔ ψ

then ⊢ εB(ϕ) ↔ εB(ψ) for any structuring ele-
ment B;

• compatibility with the binary case: if B and JϕK
are crisp, then the definitions are equivalent to
the ones originally proposed in the crisp case
in [20];

• increasingness with respect to ϕ: ∀(ϕ, ψ) ∈ Φ2,
if ⊢ ϕ → ψ (i.e. µϕ � µψ), then ∀B ∈ B,⊢
εB(ϕ) → εB(ψ) (i.e. µεB(ϕ) � µεB(ψ));

• decreasingness with respect to B: ∀(B,B′) ∈
B2, if µB � µ′

B, then ∀ϕ ∈ Φ,⊢ εB′(ϕ) →
εB(ϕ) (i.e. µε

B′ (ϕ) � µεB(ϕ)):
• anti-extensivity if B is reflexive: if ∀ω ∈

Ω, B(ω, ω) = 1, then ∀ϕ ∈ Φ,⊢ εB(ϕ) → ϕ

(i.e. µεB(ϕ) � µϕ);
• erosion does not commute with the supremum

and only an inclusion holds: ∀B ∈ B, ∀(ϕ, ψ) ∈
Φ2,⊢ εB(ϕ)∨εB(ψ) → εB(ϕ∨ψ) (i.e. µεB(ϕ) ∨
µεB(ψ) � µεB(ϕ∨ψ));

• iterativity property: ∀(B,B′) ∈
B2, ∀ϕ ∈ Φ,⊢ εB(ε′

B(ϕ)) ↔
εδB(B′)(ϕ), where µδB(B′)(ω, ω

′) =∨
ω′′∈Ω t(B

′(ω, ω′′), B(ω′′, ω′)) (t is a t-norm).

3.2. Examples

Let us consider the second example in Section 2.4.
We consider structuring elements built from
the Hamming distance dH between worlds, as
in [5, 20, 21] (dH(ω, ω′) is equal to the num-
ber of symbols instantiated differently in ω

and ω′). As a first example, we consider crisp
structuring elements defined as the balls of this
distance. A structuring element of size 1 is then
B such that µB(ω, ω′) = 1 if dH(ω, ω′) ≤ 1 and
µB(ω, ω′) = 0 otherwise. Denoting by εn the
erosion of size n, i.e. by a structuring element of
size n, we have µεn(ϕ)(ω) = ∧ω′|dH(ω,ω′)≤nµϕ(ω′),
and the iterativity property then simply writes:
⊢ εn(εn

′

(ϕ)) ↔ εn+n′

(ϕ). Note that B is reflexive
and the erosion is thus anti-extensive. An example
of erosion by B is illustrated in Figure 2 (left). Note
that since only the minimum operator is involved
in the computation of the membership values, this
computation can be done qualitatively and only an
ordering of the membership values (here colors) are

needed. Let us however detail this example with
numerical membership values. The initial formula ϕ
has the following fuzzy set of models: µϕ(abc) = 1,
µϕ(¬abc) = µϕ(ab¬c) = µϕ(¬ab¬c) = 0.8,
µϕ(a¬bc) = µϕ(¬a¬bc) = µϕ(a¬b¬c) = 0.4,
µϕ(¬a¬b¬c) = 0. The erosion by B has the
following fuzzy set of models: µεB(ϕ)(abc) =
µεB(ϕ)(¬abc) = µεB(ϕ)(ab¬c) = µεB(ϕ)(a¬bc) =
0.4, µεB(ϕ)(¬ab¬c) = µεB(ϕ)(¬a¬bc) =
µεB(ϕ)(a¬b¬c) = µεB(ϕ)(¬a¬b¬c) = 0.

Let us now consider a fuzzy structuring ele-
ment B′, with µB′(ω, ω′) = 1 if dH(ω, ω′) = 0,
µB′(ω, ω′) = 0.5 if dH(ω, ω′) = 1, and µB′(ω, ω′) =
0 otherwise. The result of the fuzzy erosion for the
same ϕ as in Figure 1 (right) is displayed in Figure 2
(right). A larger result is obtained, since µB′ � µB,
according to the decreasingness property of the ero-
sion with respect to the structuring element.

> >>membership degrees : 

¬a¬bc¬a¬bc

¬abc ¬abcabc abc

a¬bc a¬bc

¬a¬b¬c¬a¬b¬c a¬b¬c a¬b¬c

ab¬c ab¬c¬ab¬c¬ab¬c

Figure 2: Left: Erosion with a crisp structuring ele-
ment B (ball of radius 1 of the Hamming distance)
of the example in Figure 1 (right). Right: erosion
with a fuzzy structuring element B′.

3.3. Partial ordering on Ω

A natural partial ordering on Ω, with respect to a
formula ϕ (or a theory Σ as in the next section) and
a structuring element B can be defined from succes-
sive erosions. This relies on the fact that, assum-
ing that Ω is connected by B1, successive erosions
(if not equivalent to the identity mapping) lead at
some point to inconsistent formulas (with empty set
of models). Let us denote by B0 the trivial struc-
turing element, such that ∀ω ∈ Ω, µB0

(ω, ω) = 1
and ∀(ω, ω′) ∈ Ω2 | ω 6= ω′, µB(ω, ω′) = 0.

Proposition 3 Let ϕ be a formula such that ∃ω0 ∈
Ω, µϕ(ω0) = 0, and B a structuring element such
that B 6= B0. Then

∀ω ∈ Ω, ∃n ∈ N | µεn(ϕ)(ω) = 0,

where εn(ϕ) denotes the erosion of size n of ϕ by B
(i.e. n iterations of the erosion by B), and ε0(ϕ) is
the identity mapping.

Definition 4 Let us consider a formula ϕ such that
∃ω0 ∈ Ω, µϕ(ω0) = 0, and a structuring element B
such that B 6= B0. A rank function rϕ,B is defined
on Ω as:

∀ω ∈ Ω, rϕ,B(ω) = min{n ∈ N | µεn(ϕ)(ω) = 0}.

1i.e. ∀(ω, ω′) ∈ Ω, ∃(ωi)i=0...n | ω0 = ω, ωn = ω′, ∀i <

n, µB(ωi, ωi+1) > 0
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This rank function defines a stratification of Ω.
Note that rϕ,B(ω0) = 0. In order to take mem-
bership values into account, a further ordering at
each level of the stratification can be provided by
the values of µεk(ϕ)(ω), with k = rϕ,B(ω) − 1, i.e.
the last non zero value of ω during the successive
erosions.

Let us consider again the example in Figure 1
(right). Erosions of size 2 and 3 are illustrated
in Figure 3, and the corresponding stratification
is provided in Table 2. Note that using this bi-
nary structuring element B, the maximum rank is
at most equal to |PS|. In this example, at level
1 of the stratification, we can distinguish between
¬ab¬c which has a higher membership value to
Jε0(ϕ)K = JϕK than a¬b¬c and ¬a¬bc, which refines
the ordering.

> >>membership degrees : 

¬a¬bc¬a¬bc

¬abc ¬abcabc abc

a¬bc a¬bc

¬a¬b¬c¬a¬b¬c a¬b¬c a¬b¬c

ab¬c ab¬c¬ab¬c¬ab¬c

Figure 3: Successive erosions for the example in Fig-
ure 1 (right). ε1(ϕ) is shown in Figure 2 (left). Left:
ε2(ϕ). Right: ε3(ϕ).

rϕ,B ω

0 ¬a¬b¬c

1 ¬ab¬c

a¬b¬c, ¬a¬bc

2 ab¬c, ¬abc, a¬bc

3 abc

Table 2: Stratification of Ω for the example in Fig-
ures 2 (left) and 3.

4. Two explanatory relations

Relying on the morphological operations described
above, we now define explanatory relations and for-
mulas γ such that Σ ∪ {γ} ⊢ ϕ, where Σ is a back-
ground theory. As in [5, 6], we propose to exploit
erosions to define the “most central part” of a for-
mula. This is performed using successive erosions,
until a minimality criterion is reached. Two ex-
planatory relations are then derived:

• ϕ⊲ℓne γ: γ is a formula entailing the most cen-
tral part of Σ ∧ ϕ;

• ϕ ⊲
ℓc γ: a sequence converging towards the

most central part of Σ is defined by successive
erosions, and γ is a formula entailing the con-
junction of ϕ with the closest element of the
sequence which is consistent with ϕ.

Note that from a general abduction perspective, the
second approach matches the idea that the theory
should be modified as least as possible [1, 22].

In the crisp case, the first approach amounts to
erode Σ ∧ ϕ until it becomes inconsistent, and the

second one to erode Σ until it becomes inconsistent
with ϕ. Then the last erosion before these incon-
sistencies occur defines the set of preferred explana-
tions. In the fuzzy case, inconsistency may be too
strong and may lead to last erosions with very low
membership values (although non zero). Therefore
we suggest to replace the strict inconsistency by a
minimality criterion depending on a threshold value
α on the membership values in the following defi-
nitions. From now on, we assume that erosions are
anti-extensive, i.e. performed with a reflexive B.

Definition 5 The explanatory relation ⊲
ℓne is de-

fined as follows: given a threshold value α ∈ [0, 1],
for each formula ϕ, γ is a preferred explanation
of ϕ, denoted by ϕ ⊲

ℓne γ, if µγ � µεlα (Σ∧ϕ) (or

equivalently in syntactic form: ⊢Σ γ → εlα(Σ ∧ ϕ))
and ∃ω ∈ Ω | α < µγ(ω)(≤ µεlα (Σ∧ϕ)(ω)), with
lα = max{n ∈ N | ∃ω ∈ Ω, µεn(Σ∧ϕ)(ω) > α}.

Note that the strict consistency criterion is obtained
for α = 0.

An example is displayed in Figure 4. Let us as-
sume that colors correspond to membership degrees
1, 0.8, 0.4 and 0. The last erosion satisfying the
minimality criterion for any α < 0.4 has a support
restricted to abc, with a membership value 0.4, and
is obtained after two erosions. The preferred ex-
planations γ are such that α < µγ(abc) ≤ 0.4 and
∀ω 6= abc, µγ(ω) = 0. If a larger value of α is re-
quired (e.g. 0.4 ≤ α < 0.8), then the last erosion
satisfying the minimality criterion is obtained for
an erosion of size 1 and JγK should contain at least
abc with a degree in (α, 0.8]. For α ≥ 0.8, then the
last erosion is obtained for a size 0 (i.e. identity)
and JγK should contain at least abc with a degree in
(α, 1].

> >>membership degrees : 

¬a¬bc¬a¬bc

¬abc ¬abcabc abc

a¬bc a¬bc

¬a¬b¬c¬a¬b¬c a¬b¬c a¬b¬c

ab¬c ab¬c¬ab¬c¬ab¬c

Figure 4: Left: models of Σ ∧ϕ. Right: last erosion
with a crisp structuring element B (ball of radius 1
of the Hamming distance) for α small enough (see
text).

Definition 6 The explanatory relation ⊲
ℓc is de-

fined as follows: given a threshold value α ∈ [0, 1],
for each formula ϕ, γ is a preferred explanation of
ϕ, denoted ϕ ⊲

ℓc γ, if µγ � µεlα (Σ)∧ϕ (or equiva-

lently in syntactic form: ⊢Σ γ → εlα(Σ) ∧ ϕ) and
∃ω ∈ Ω | α < µγ(ω), with lα = max{n ∈ N | ∃ω ∈
Ω, µεn(Σ)∧ϕ(ω) > α}.

Again the strict consistency criterion is obtained for
α = 0.

Let us illustrate this definition on the example in
Figure 5, where the models of Σ and its successive
erosions are shown.
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> >>membership degrees : 

¬a¬bc ¬a¬bc¬a¬bc

¬abc ¬abc¬abc abc abcabc

a¬bc a¬bca¬bc

¬a¬b¬c ¬a¬b¬c¬a¬b¬c a¬b¬c a¬b¬ca¬b¬c

ab¬c ab¬cab¬c ¬ab¬c ¬ab¬c¬ab¬c

Figure 5: Models of Σ and of its successive erosions
with a crisp structuring element B (ball of radius 1
of the Hamming distance).

Table 3 details the models of these erosions and
the conjunction with ϕ. The last consistent erosion
satisfying the minimality criterion for α < 0.4 is
obtained for an erosion of size 1, for 0.4 ≤ α < 0.8
for an erosion of size 0, and the minimality crite-
rion cannot be satisfied for α ≥ 0.8. For α < 0.4,
γ should satisfy α < µγ(a¬bc) ≤ 0.4 or α <

µγ(ab¬c) ≤ 0.4 and ∀ω ∈ Ω \ {a¬bc, ab¬c}, µγ(ω) =
0.

Let us now consider an example with non crisply
instantiated symbols, as in Section 2.4. Figure 6
illustrates the successive erosions of the formula
a → b with a binary structuring element such that
B(ω, ω′) = 1 if dH(ω, ω′) ≤ 0.5 and B(ω, ω′) = 0
otherwise. Let us consider that this formula is Σ∧ϕ.
Let us denote by ψ the formula that has a set of
models reduced to (0, 1), with membership value 0.5
(yellow dot on the last figure). Then the last ero-
sion satisfying the minimality criterion with α < 0.5
is ψ. Hence ϕ ⊲

ℓne γ is obtained for γ such that
α < µγ(0, 1) ≤ 0.5 and µγ(ω) = 0 elsewhere. Now
let us consider that a → b represents Σ, and let us
take ϕ = (b = 1). The last consistent erosion satis-
fying the minimality criterion to a degree α < 0.5 is
again ψ, and ψ ∧ ϕ = ψ. Hence ϕ⊲

ℓc γ is obtained
for γ such that α < µγ(0, 1) ≤ 0.5 and µγ(ω) = 0
elsewhere.

(1,0.5)

(0,1)

(0,0.5)

(0,0)

(0.5,1)

(0.5,0.5)

(0.5,0)

(1,1)

(1,0.5)

(1,0) (0,0)

(0,0.5)

(0,1)
(0.5,1)

(0.5,0.5)

(0.5,0) (1,0)

(1,1)

(0,1)

(0,0.5)

(0.5,0)

(0.5,0.5)

(0.5,1)
(1,1)

(1,0.5)

(1,0)(0,0) (0,0) (0.5,0) (1,0)

(1,0.5)

(1,1)
(0.5,1)(0,1)

(0,0.5) (0.5,0.5)

ε1(ϕ)

ε2(ϕ) ε3(ϕ)

ϕ = a → b

Figure 6: Successive erosions of a → b in the three-
valued logic BL. Membership values are represented
by colors (red = 1, yellow = 0.5, black =0).

Proposition 4 Definitions 5 and 6 are equivalent
to the ones proposed in the crisp case in [5] if JϕK is

crisp, and the erosions are performed with a crisp
structuring element.

Proposition 5 Considering the partial ordering
introduced in Definition 4, the explanations accord-
ing to ⊲

ℓc are obtained for the smallest rank such
that the minimality criterion depending on α is sat-
isfied.

The following notations will be used next: ϕ ⊲

γ ⇔ JγK � JExpl(ϕ)K ⇔ µγ � µExpl(ϕ) where
Expl(ϕ) denotes the preferred explanations of ϕ
(i.e. Expl(ϕ) = εlα(Σ∧ϕ) or Expl(ϕ) = εlα(Σ)∧ϕ).

5. Rationality postulates

In this section, we consider the rationality postu-
lates introduced by Pino-Perez and Uzcategui in [4].
It has been shown in [5] that all of them hold in the
crisp case for ⊲

ℓc , while for ⊲
ℓne most of them

hold and for a few of them only weaker forms are
satisfied.

In the present context, these rationality postu-
lates are expressed in Table 4. Both syntactic and
semantic expressions are provided.

The intended meaning and motivation for these
postulates can be found in [4].

Proposition 6 The explanatory relation ⊲
ℓc de-

rived from fuzzy erosions with any structuring ele-
ment B satisfies all rationality postulates of Table 4.

Proposition 7 The explanatory relation ⊲
ℓne de-

rived from fuzzy erosions with any structuring ele-
ment B satisfies LLEΣ, RLEΣ, E-Reflexivity, E-ConΣ,
ROR, RS. It does not satisfy E-CM, E-C-Cut,
E-R-Cut, LOR, E-DR.

Let us provide a counter-example for E-CM. We
consider as before a simple example with three
propositional symbols, and a binary structuring el-
ement such that B(ω, ω′) = 1 ⇔ dH(ω, ω′) ≤ 1. In
Table 5, the membership functions for each ω ∈ Ω
to the fuzzy sets of models of formulas and their ero-
sions are provided. The last erosion is εlα(Σ ∧ϕ) =
ε2(Σ ∧ ϕ) for α < 0.5. The preferred explanations
of ϕ are γ such that α < µγ(¬abc) ≤ 0.5 and
∀ω ∈ Ω \ {¬abc}, µγ(ω) = 0. The last erosion of
Σ ∧ ϕ ∧ ϕ′ is εlα(Σ ∧ ϕ ∧ ϕ′) = ε1(Σ ∧ ϕ ∧ ϕ′) for
α < 0.5. We have γ ⊢Σ ϕ

′, but γ is not an explana-
tion of ϕ ∧ ϕ′ since JγK ∧ Jεlα(Σ ∧ ϕ ∧ ϕ′)K = ∅.

Let us now provide a counter-example for E-C-Cut

for ⊲
ℓne . The details are in Table 6. The last

erosions for Σ ∧ϕ and Σ ∧ϕ′ are obtained for a size
2, for α < 0.5. The one for Σ∧ϕ∧ϕ′ is obtained for
a size 1. Let ϕ ∧ ϕ′

⊲
ℓneγ with α < µγ(a¬bc) ≤ 0.5,

α < µγ(ab¬c) ≤ 0.5 and µγ(ω) = 0 for all other ω.
All preferred explanations of ϕ verify α < µδ(abc) ≤
0.5 and ∀ω 6= abc, µδ(ω) = 0, and δ ⊢Σ ϕ

′. But γ is
not a preferred explanation of ϕ.

As suggested in [5] for the crisp case, let us intro-
duce weaker versions of E-CM and E-C-Cut. Their
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abc ¬abc a¬bc ab¬c ¬a¬bc ¬ab¬c a¬b¬c ¬a¬b¬c

Σ 1 0.8 0.8 0.8 0.4 0.8 0.4 0
ε1(Σ) 0.8 0.4 0.4 0.4 0 0 0 0
ε2(Σ) 0.4 0 0 0 0 0 0 0

ϕ 0 0 0.8 1 0 0 1 0

Σ ∧ ϕ 0 0 0.8 0.8 0 0 0.4 0
ε1(Σ) ∧ ϕ 0 0 0.4 0.4 0 0 0 0
ε2(Σ) ∧ ϕ 0 0 0 0 0 0 0 0

Table 3: Illustration of the computation of ⊲
ℓc .

LLEΣ:
⊢Σ ϕ ↔ ϕ′ ; ϕ ⊲ γ

ϕ′ ⊲ γ

JϕK = Jϕ′K ; µγ � µExpl(ϕ)

µγ � µExpl(ϕ′)

RLEΣ:
⊢Σ γ ↔ γ′ ; ϕ ⊲ γ

ϕ ⊲ γ′

JγK = Jγ′K ; µγ � µExpl(ϕ)

µγ′ � µExpl(ϕ)

E-Reflexivity:
ϕ ⊲ γ

γ ⊲ γ

µγ � µExpl(ϕ)

µγ � µExpl(γ)

E-ConΣ: 6⊢Σ ¬ϕ iff there is γ such that ϕ ⊲ γ JϕK 6= ∅ iff there is γ such that µγ � µExpl(ϕ)

E-CM:
ϕ ⊲ γ ; γ ⊢Σ ϕ′

(ϕ ∧ ϕ′) ⊲ γ

µγ � µExpl(ϕ) ; µγ � µϕ′

µγ � µExpl(ϕ∧ϕ′)

E-C-Cut:
(ϕ ∧ ϕ′) ⊲ γ ; ∀δ [if ϕ ⊲ δ then δ ⊢Σ ϕ′ ]

ϕ ⊲ γ

µγ � µExpl(ϕ∧ϕ′) ; ∀δ [if µδ � µExpl(ϕ) then µδ � µ′

ϕ ]

µγ � µExpl(ϕ)

E-R-Cut:
(ϕ ∧ ϕ′) ⊲ γ ; ∃δ [ϕ ⊲ δ and δ ⊢Σ ϕ′]

ϕ ⊲ γ

µγ � µExpl(ϕ∧ϕ′) ; ∃δ [µδ � µExpl(ϕ) and µδ � µ′

ϕ ]

µγ � µExpl(ϕ)

RS:
ϕ ⊲ γ ; γ′ ⊢Σ γ ; γ′ 6⊢Σ ⊥

ϕ ⊲ γ′

µγ � µExpl(ϕ) ; µγ′ � µγ ; Jγ′K 6= ∅

µγ′ � µExpl(ϕ)

ROR:
ϕ ⊲ γ ; ϕ ⊲ γ′

ϕ ⊲ (γ ∨ γ′)

µγ � µExpl(ϕ) ; µγ′ � µExpl(ϕ)

µγ∨γ′ � µExpl(ϕ)

LOR:
ϕ ⊲ γ ; ϕ′

⊲ γ

(ϕ ∨ ϕ′) ⊲ γ

µγ � µExpl(ϕ) ; µγ � µExpl(ϕ′)

µγ � µExpl(ϕ∨ϕ′)

E-DR:
ϕ ⊲ γ ; ϕ′

⊲ γ′

(ϕ ∨ ϕ′) ⊲ γ or (ϕ ∨ ϕ′) ⊲ γ′

µγ � µExpl(ϕ) ; µγ′ � µExpl(ϕ′)

µγ � µExpl(ϕ∨ϕ′) or µγ′ � µExpl(ϕ∨ϕ′)

Table 4: Rationality postulates expressed in syntactic and semantic forms.

abc ¬abc a¬bc ab¬c ¬a¬bc ¬ab¬c a¬b¬c ¬a¬b¬c

Σ ∧ ϕ 1 1 0.8 0.8 0.8 0.8 0 0.5
ε1(Σ ∧ ϕ) 0.8 0.8 0 0 0.5 0.5 0 0
ε2(Σ ∧ ϕ) 0 0.5 0 0 0 0 0 0

ϕ′ 0 1 1 1 1 1 1 1
Σ ∧ ϕ ∧ ϕ′ 0 1 0.8 0.8 0.8 0.8 0 0.5
ε1(Σ ∧ ϕ ∧ ϕ′) 0 0 0 0 0.5 0.5 0 0

Table 5: Counter-example illustrating that ⊲
ℓne does not satisfy E-CM.

abc ¬abc a¬bc ab¬c ¬a¬bc ¬ab¬c a¬b¬c ¬a¬b¬c

Σ ∧ ϕ 1 1 0.8 0.8 0.8 0.8 0.5 0
ε1(Σ ∧ ϕ) 0.8 0.8 0.5 0.5 0 0 0 0
ε2(Σ ∧ ϕ) 0.5 0 0 0 0 0 0 0

Σ ∧ ϕ′ 0.5 0 0.8 0.8 0.5 0.5 1 0.8
ε1(Σ ∧ ϕ′) 0 0 0.5 0.5 0 0 0.8 0.5
ε2(Σ ∧ ϕ′) 0 0 0 0 0 0 0.5 0

Σ ∧ ϕ ∧ ϕ′ 0.5 0 0.8 0.8 0.5 0.5 0.5 0
ε1(Σ ∧ ϕ ∧ ϕ′) 0 0 0.5 0.5 0 0 0 0

Table 6: Counter-example illustrating that ⊲
ℓne does not satisfy E-C-Cut.
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E-W-CM:
ϕ ⊲ γ ; ϕ′

⊲ γ

(ϕ ∧ ϕ′) ⊲ γ

µγ � µExpl(ϕ) ; µγ � µExpl(ϕ′)

µγ � µExpl(ϕ∧ϕ′)

E-W-C-Cut:
(ϕ ∧ ϕ′) ⊲ γ ; ∀δ [if ϕ ⊲ δ then ϕ′

⊲ δ ]

ϕ ⊲ γ

µγ � µExpl(ϕ∧ϕ′) ; ∀δ [if µδ � µExpl(ϕ) then µδ � µExpl(ϕ′) ]

µγ � µExpl(ϕ)

Table 7: Weak forms of some rationality postulates, expressed in syntactic and semantic forms.

syntactic and semantic expressions are given in Ta-
ble 7. A weak version of E-R-Cut can be defined in
a similar way.

Proposition 8 The explanatory relation ⊲
ℓne de-

rived from fuzzy erosions with any structuring ele-
ment B satisfies E-W-CM and E-W-C-Cut.

6. Conclusion

New explanatory relations have been proposed for
knowledge representation based on logics with fuzzy
sets of models, thus accounting with the approxi-
mate nature of abductive reasoning. The algebraic
properties of the involved mathematical morphol-
ogy operators lead to good properties of the pro-
posed relations in terms of rationality properties.
Future work aims at further developing examples,
at investigating the potential role of α for balanc-
ing specialization and generalization of the solution,
and at extending the formalism to other types of
fuzzy logics.
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