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Abstract

Spatial relations are of great importance for image
understanding. In this paper we focus on the “sur-
round” relation. We propose to represent the re-
lation as a fuzzy set in the spatial domain, which
considers the imprecision of the relation itself, the
morphology of the reference object, and the distance
to the target object. This fuzzy set represents the
region which surrounds some reference objects. The
degree to which another object satisfies this relation
with respect to the reference object can then be de-
rived. The definition is illustrated on real objects
with complex shapes from satellite images.
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1. Introduction

Spatial relationships encode important structural
information and have shown to be useful in object
recognition and image interpretation tasks. The
aim of this paper is to propose a definition for the
spatial relation “surround”. This paper is motivated
by the importance of the “surround” relation in re-
mote sensing images, where for instance, we have
structures on the sea (boats, harbors) which are
surrounded by it. For such complex objects, exist-
ing definitions are not sufficient. Here we propose
new definitions that fit the intuition, and take into
account the shape of the objects as well as their
distance.

We say that the relation “A is surrounded by B”
is satisfied if A is able to see B in almost all the
directions. The notion of B being “in almost all”
directions with respect to A is by definition impre-
cise. It is imprecise in the sense that “almost all” is
not a well defined quantity. Moreover as highlighted
in [1, 2], the notion of being “in a direction ” from
another object is also imprecise. Thus, the fuzzy set
theory is appropriate for modeling this relation.

When modeling a fuzzy spatial relation two ques-
tions are raised [3]:

(i) to which degree is the relation satisfied between
two objects?

(if) which is the region of space where the relation
to a reference object is satisfied (to some de-
gree)?
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The manner in which the relation is modeled de-
pends on the question to be answered. To our
knowledge, most of the models which have been pro-
posed for the “surround” relation focus on answer-
ing the first question. These models are discussed in
Section 2. In this work we propose a new model for
the “surround” relation which focuses on answering
the second question. There are several advantages
of using a model that answers (ii) rather than one
which answers (i). For instance, if we need to find
the target objects which satisfy the relation with
respect to a reference object B, then we compute
the region once, and observe which are the objects
which are compatible with this region. While if we
use a model which answers (i), then it is necessary
to compute the relation between B and every ob-
ject in the image, which can have a higher compu-
tational cost. Another advantage is that it is pos-
sible to combine several spatial relations, which are
represented in the same manner by fusioning their
respective regions, as in [4].

In Section 2 we review some of the definitions pro-
posed in the literature for the “surround” relation.
Then, inspired by some of these works, we propose
a novel definition of fuzzy surround in Section 3.
The contributions are twofold: first we propose a
definition as a spatial fuzzy set (a fuzzy landscape),
which defines the degree of satisfaction of the rela-
tion to a reference object for each point of the space;
secondly, we propose to include several important
pieces of information in the definition, such as the
potential imprecision of the objects (i.e. dealing
with fuzzy sets), the distance to the target object,
and shape information. In Section 4 an example
with a complex shaped reference object illustrates
that the proposed definition provides adequate re-
sults, in accordance with intuition.

2. Related work

Three types of definitions for the relation “A is sur-
rounded by B” have been proposed in the litera-
ture. The relation can be first defined as the con-
junction of the degrees of primitive directional re-
lations [2, 5]. For instance, in the 2D case, the de-
gree to which “A surrounds by B” is equal to the
conjunction of the degrees of satisfaction of the rela-
tions “left of”, “right of”, “above” and “below” when



B is the reference object and A is the target object.
This definition is very strict since it requires that the
target object is in “all” the directions with respect
to the reference object. A more flexible relation,
accounting for partial surrounding situations, may
be better suited. The second type is the topological
surround of [6] which depends on the angular change
of the paths going from the points on the boundary
of A to the outside of the image (or spatial domain)
in order to not intersect B. This definition corre-
sponds to a crisp notion which is again not flexible
enough. Figure 1(a) shows a situation for which a
point is not topologically surrounded by an object
since there is a straight path (shown in red) from
the point to the outside of the image which does
not intersect B. Nonetheless we would like to have
a degree of satisfaction of the “surround” relation
which is greater than zero because p is able to see
B in several directions.

Figure 1: (a) In red a direct path from the point
to the outside of the image is shown, demonstrat-
ing that the topological surroundedness is not sat-
isfied. (b) In green the angular interval ¢ for which
ro(p, B) = 0. The visual surroundedness has a de-
gree of satisfaction less than 1 since ¢ > 0.

Finally, the third type deals with the angular cov-
erage. It is the closest to what we propose in this
paper. In the following we detail the different ap-
proaches used in this type of definitions.

In [6] Rosenfeld et al. define the visual surround-
edness, first for a point p “surrounded by” an ob-
ject B, and then for any two objects. Let p € S
be a point of the spatial domain & and B an object
B C S. Rosenfeld et al. first introduce the function
Te:

1 if 3b € B such that Z(pb, i@,) = 6,
To (pa B) = .
0 otherwise.

1)
where @ is the unitary vector in the direction of the
x-axis, and Z(pb, i,,) denotes the angle between the
segment [p, b] and the z-axis. The value of r¢(p, B)
is equal to one, if there exists a ray from p in the
direction € which intersects B. Then the degree to
which a point p is “surrounded by” an object B is
given by:

,uvisualisurround(pa B) = %

! /0 rop, B)IO (2)

This degree measures the portion of angular cover-
age of p by B. In Figure 1(b) the degree of satis-
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faction is pvisual_surround(p, B) = 1 — 5=, where ¢
is equal to the angular interval for which ry(p, B)
is equal to zero. The extension to see whether an
object A is surrounded by an object B is straight-

forward:

Mvisual_surround(Aa B) = min Mvisual__surrounds (pa B)
pEDA
(3)

The definition of visual surroundedness is in agree-
ment with the relation we want to define. If an ob-
ject A sees B in “almost all” directions, then there
is a large angular coverage of A by B and therefore
Mvisualisurround(Ay B) is hlg‘h

Another definition of “surround” was proposed
in [7]. To evaluate the degree to which an object A
is surrounded by B the maximum angle ¢ between
two tangent lines of B passing through a point of
A is computed (this angle is the same as the one
illustrated in green in Figure 1(b)). The degree of
satisfaction of the relation decreases as  gets larger.
So the membership function defining the surround
relation is expressed by:

cos? (529) ifo<p<m,
0 otherwise.

Msurrounds(sﬁ) = { (4)

Then the degree to which a region B surrounds a
region A is obtained by the center of gravity of the
compatibility distribution of the angle histogram
HB(A) [7] between A and B and psurrounds()-
This definition is also in agreement with the defi-
nition of surroundedness. A high satisfaction value
is obtained for the situation shown in Figure 1(b).

A definition based on angle calculation is pre-
sented in [8]. The normalized angle or force his-
togram H A(B) is computed. Then for every a-
cut HA(B), of HA(B) the angle z; is defined as
the largest angle interval which is not included in
HA(B),. The degree of surround for an a-cut is
given by a decreasing function of z;, and in [8] the
function max(0,1 — 2) is used. Finally, the degree
of surround is given by an integration over all the
a-cuts. This approach does not measure the angle
coverage, but it only observes the largest angular
interval which is not covered. For instance, if B is a
disconnected object composed of three points which
are arranged to form an equilateral triangle, and A
is just a point located in the center of the triangle,
then for every a-cut the angle 2 is equal to § and
the degree of surround is 0.67. This degree is not
in accordance with the definition of surroundedness
that we want to define, since B only sees A in very
few directions.

The surround relations proposed in [6, 7] are
in agreement with the relation we want to define.
These definitions allow assessing the degree to which
the relation is satisfied between two objects (i.e. an-
swering the first question raised in introduction).
In the following section we concentrate on defining
a region of space, also known as fuzzy landscape,



where the relation is satisfied, thus answering the
second question. Moreover, in order to deal with
complex shapes, we propose as an additional con-
tribution to include information on the morphology
of the objects as well as their distance to the target
objects, which were not directly taken into account
in existing definitions.

3. Definition of surroundedness as a fuzzy
landscape

We first define the relation for a crisp reference ob-
ject, and then we extend it to the case of fuzzy ob-
jects.

3.1. Crisp reference object

Using the same idea as the visual surroundedness
of [6], we define the angular coverage of a point by
a region B. For every point p ¢ B the angular
coverage is equal to the total angular length of the
angular intervals for which p is able to see B, that
is:

(5)

The region representing “surrounded by B” can
then be defined as a fuzzy region of space whose
membership function is expressed as:

Nsurround(B) (p) = f(ocoverage (B) (p)) (6)

where f : [0,27] — [0,1], f(0) = 0 and f(27) =
1. The purpose of f is to define the membership
function defining the semantics of “almost all” for
the angular coverage.

Figure 2 shows some examples of this definition
of surroundedness applied to synthetic objects. In
these examples f was defined as:

2m
ocoverage(B)(p) = / Tg(p,B)d9
0

1 ifzz‘%”
f@)={F iff<e<iy (7)
0 ifox <3

(c) (d)

Figure 2: Fuzzy landscapes obtained with the def-
inition of Equation 6 when the blue object is used
as reference object. The brightest grey level corre-
sponds to the higher membership values. We note
grey levels “around” the objects which do not cor-
respond to the wanted property “to be surrounded
by” the object.

The results shown in Figure 2 are not in com-
plete agreement with the notion of angular coverage.
Some non zero membership areas appear around
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convex parts of objects, which is counter-intuitive
(see e.g. the convex object in Figure 2(b)), since a
convex object cannot surround another object.

On the other hand, one can interpret the sur-
round relation by considering that A is “surrounded
by” B, if there is a portion of the boundary of B
that goes around A. In [9] the linguistic aspects of
the relation “go around” are analyzed, which leads
to consider that a path C' “goes around” an object
A if A and C do not intersect, and if A intersects
the convex hull of C'. Consequently, the “surround”
relation should only take place when the reference
object has concavities. Moreover, the portion of
boundary belonging to the concavities is the one
which “goes around” the other object. As a result,
the angular coverage should be computed only us-
ing the points on the boundary of B which lie in
a concavity. A point lies in a concavity if it is in
OB\ 0CH(B), where CH(B) and OB are the con-
vex hull and boundary of B, respectively. A point
b that lies in a concavity sees p if the segment [p, b]
does not intersect B. Thus, to take into account the
concavities as well as the notion of visibility, we re-
define the function r¢(p, B) of [6] (Equation 1). We
only consider the segments which have an endpoint
in 9B\ OCH(B) and do not intersect B, using the
same idea as for the admissible segments of [6]:

1 if 3b € 9B\ OCH (B) such that
Z(pb, i) = 0 and [p,b[NB = 0,
0 otherwise.

f&(paB) -

(8)
Figure 3 shows an example of the angular interval
where r9(p, B) = 0 and 7g(p, B) = 0, labeled as
@ and @, respectively. We can see that ¢ < @,
and therefore it is necessary to add the notion of
visibility to penalize the points which are not really
seen by a concavity.

Figure 3: In orange the angular interval ¢ and ¢ for
which rg(p, B) =0 in (a) and 7g(p, B) = 0 in (b).

As a result, the angular coverage should be com-
puted using 7y:

/O " ro(p B)IO (9)

ecovera‘qeiCH (B) (p) =

Again the fuzzy landscape representing the re-
gion surrounded by B is obtained by applying
f(Ocoverage cH) to each point in S, where f has the
same properties as the function presented in Equa-



tion 6:

Msurround(B)(p) = f(ecoverage_CH (B)(p)) (10)
Figure 4 shows the fuzzy landscapes for the refer-
ence objects in Figure 2. These fuzzy landscapes
have high membership values for the points which
are in the interior of the concavities of the reference
object and lower ones for the points which are away
from the concavities. Clearly, there is no region of
space which satisfies the surrounded relation when
the reference object is convex (Figure 4(b))

a

Figure 4: Fuzzy landscapes obtained with Equation
10. The defect presented in Figure 2 no longer ex-
ists.

3.2. Evaluation of the relation between two
objects

The proposed method allows answering the second
type of question. Answering the first type of ques-
tion can then be derived from the fuzzy landscape.
The evaluation of to which degree an object “A is
surrounded by B” is done by comparing how well A
matches the region having a high membership value
in the fuzzy landscape, as in [5]. If A is a fuzzy
object, defined through a membership function w4
over §, we can use a comparison measure between
fuzzy sets, see [10] for a review of these measures.
For instance, we can use a necessity(N)/ possibility
(II) interval [11], where N is defined as an inclusion
degree using a t-conorm 7'

glofe]=

N(Aa Msurround(B)) = inf T(ﬂsurround(B)(p)a 1_,U/A (p))

peES
(11)
and II is defined as an intersection degree through
a t-norm t:

(A, ptsurround(B)) = sup t(thsurround(B)(p), pa(p))

peES

(12)
The degree N measures the degree of inclusion of A
in fsurround(B) and represents a pessimistic evalu-
ation. The degree II represents an optimistic eval-
uation and measures the degree of intersection be-
tween A and pgurround(B). Another possible mea-
sure [10] can be a satisfiability measure such as a
normalized intersection:

M(Aa Msurround(B)) =

Zpes t(tsurround(B)(p), pa(p))

Zpes MA(p)
(13)
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3.3. Considering the distance of target
object

The fuzzy landscape defined by Equation 10 is ade-
quate when the size of the target object is compara-
ble to the size of the concavity. However, when this
is not the case, the obtained fuzzy landscape is not
appropriate. For instance, if B is the reference ob-
ject in Figure 5(a), A; should have a high satisfac-
tion degree for the relation surrounded, since there
is a portion of the boundary of 9B\ 0C H (B) which
goes around the object and which is close to it. On
the contrary, intuitively, the object Ay should not
have a high satisfaction degree of the relation sur-
round. Even if there is a portion of the boundary of
OB\ OCH (B) which goes around the object, some of
the points belonging to this portion of boundary are
so “far” from As, that they are not considered visi-
ble from As. The interpretation of “far” and “near”
according to an object can depend on its intrinsic
characteristic, for instance on its size [12].

Figure 5: Ilustration of the fuzzy landscapes when
not considering the distance of the target object
and when considering it. (a) The reference ob-
ject is denoted by B, and two target objects by
A; and Ay, (b) psurround(B) using Equation 10.
(¢) surround(B, tin) using Equation 16.

The second and third columns of Table 1 show the
results of evaluating the satisfaction of the relation
“surround by” using Equation 10. Both the [N, II]
and the M measures give similar results for Ay and
Ay, although, intuitively, A; should better satisfy
the relation since it is more inside the concavity of
B (hence more surrounded).

Msu'rround(B) Nsur'round(B7 N/n)
Target Equation Equation
object 10 16

VIO | M NI | M
Al [1.0,1.0] 1.0 [1.0,1.0] 1.0
A2 [0.73,1.0] | 0.85 [0.21,0.64] | 0.48

Table 1: Evaluation of the surround relation using
Equations 10 and 16, for objects in Figure 5(a).

In order to include the “near” relation of the tar-
get object with respect to the reference object, the
measure of angular coverage should be modified.
Let p € A and « an angle in [0, 27[. Suppose that
there exists ¢ € 9B \ 0CH(B) which intersects the
ray emanating from p in the direction o. However,
if ¢ is not “near” p according to A, then it should be



considered as if there was no point in 0B\ 0CH (B)
in the direction .

Let u, be a function over Rt which represents
the “near” distance according to the target object.
It can defined as a trapezoid function, where the
parameters are adjusted according to the size of the
target object. If we want to evaluate the relation
for several target objects of comparable size, then
we can define u,, according to this size. As a result,
we define the function 7 (p, B, ui,) as:

pin(dE(p,q)) if 3¢ € 9B\ OCH(B)

1ol Bottn) and [p, q[NB =0,
0 otherwise.

(14)
The function 7g(p, B, un) is equal to the member-
ship value of the “near” relation of the point in B\
OCH (B) which lies on the ray emanating from p in
the direction 8. The point in 0B \ 0CH(B), which
satisfies this, is uniquely defined. Using 7 (p, B, 1)
we can define the angular coverage which takes into
account the size of the desired target object or ob-
jects, as well as considering the points of the convex
hull of the reference object B:

2
ecoverage_CH (Ba Mn)(p) = / f@ (pa B» Mn)da
0

(15)
Finally, the degree of surround is given by:

Msurround(Bv Mn)(p) = f(ecoverageiCH (B; ,un)(p))

(16)
Figure 5(c) shows the fuzzy landscape defined by
Equation 16. For this experiment we modeled p,,
as a trapezoid function:

1 ifx <d
pn(z) = ;;_ifl if di <2 <ds (17)
0 otherwise

The parameters di and de are associated with the
imprecision of defining the relation “near”. For in-
stance we can use a very restrictive function were:

dy
dy =

4ll1U€T(lg€

5laverage

where lgperage is equal to the average of the lengths
of the maximum diameter. In this particular case,
we have use lgperage = 25.3, and so dy = 101.2
and do = 126.5. We have chosen these parame-
ters just to illustrate the influence of considering
the distance when evaluating the “surround” rela-
tion. However, for a real application these param-
eters can be learned. The fuzzy landscape of Fig-
ure 5(c) has high membership values in the regions
where the concavities are small, and can go around
an object of the same size as Ay or A;. The last
two columns of Table 1 show the results of evaluat-
ing the satisfaction of the relation “surrounded by”

such that Z(pg, iz) = 0
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defined by Equation 16. Both the mean and the
necessity /possibility measures give results which fit
with the intuition, indicating that A; completely
satisfies the relation, while A, has a much lower
satisfaction, as expected.

Attaching the fuzzy landscape of surround to the
characteristics of the target object, such as size,
might seem restrictive, since one of the advantages
of computing a fuzzy landscape is that one has to
compute the landscape only once, and then it can
be used to evaluate the relation for several objects.
However, other advantages of the fuzzy landscape,
such as determining the region of space where it is
possible to find a particular target object that satis-
fies the relation, continue to be valid. Other appli-
cations, such as evaluating the relation for several
objects of similar size can also be envisaged.

3.4. Extension to fuzzy objects

When B is a fuzzy object with membership up, the
function 7 (p, B, ) and the notion of angular cov-
erage should be adapted. When B is a fuzzy set,
its convex hull is also a fuzzy set. The a-cuts of a
fuzzy set u are nested, as well as their convex hulls.
So, the convex hull of a fuzzy set can be defined as
the convex hull of its a-cuts [13]:

(CH(pB))a = CH((1B)a)- (20)
Then the notion of angular coverage
Ocoverage. cu(Bypn)(p) is  directly  extended

by replacing 0B \ OCH(B) by the fuzzy set
kop\ocH(p) defined as:

popocu ) () =t [pan(p), c(pocus) ()], (21)

where c¢ is a fuzzy complementation, ¢ a t-norm and
wop represents the fuzzy boundary of pp, which
can be computed as in [14] by using mathematical
morphology. For instance, the membership function
of the internal boundary of a fuzzy set px is defined
as:

pox (p) = t[Dv, (c(px))(p), ux (x)],  (22)

where V. is a fuzzy structuring element representing
the notion of neighborhood between two points.

Now the function 7g(p, B, 1) is adapted to the
case of a fuzzy object B as follows:

fe(povun) =

max t | un(de(p,q)), )
. N (10 (AP, ), hop\ocH(B)(9)
Hinclusion ([pa q[a BC)] )

(23)

where t is a t-norm, fiinciusion corresponds to the de-
gree of inclusion (for instance the one used in Equa-
tion 11). For every ¢ € S, for which the segment
[p, ¢] makes an angle 6 with the horizontal axis, we
take the value which better satisfies conjunctively
the three conditions used for the definition of this



function in the crisp case. The first condition refers
to the fact that p and ¢ should be “near” accord-
ing to the function p,. The second one establishes
that g should belong to B and finally the third one
states that the segment [p, g[ should be included in
the fuzzy complement of B. When B is crisp, Equa-
tions 23 and 14 give the same result.

To extend the definition in Equation 10, where
the distance to the target object is not taken into
account, the function 79 (p, B) is changed to:

f@ (pa B) =
t [nap\ocu(B)(9); tine([p; af, B)] -
(24)

max
{qeS14(py,tiz)=0}

As for the aforementioned case, this function rep-
resents the conjunction of the two conditions which
define 7 (p, B) in the crisp case.

3.5. Properties

The fuzzy landscape obtained by the definition of
surround that does not take into account the dis-
tance to the object (Equation 10) is always larger
than the one obtained with the definition that
takes into account the distance to the object (Equa-
tion 16). More specifically, for every x € S and p,,
we have ,usurround(B)(z) > ,usurround(B; ,Ltn)(SC)
Moreover, the equality is obtained when u, is the
constant function equal to 1. Therefore, the defini-
tion of surround of Equation 10 is a particular case
of the definition of Equation 16. Therefore all the
properties that are satisfied by psurround(B, ftn), are
also satisfied by psurround(B)-

The proposed surround relation is invariant with
respect to rigid geometrical transformations (trans-
lation and rotation). It is invariant with respect to
scale if and only if u, is invariant with respect to
scale.

The definition of surround is increasing with re-
spect to fu,. For every pin1, fina such that pn1(z) <
tn2(x) for every & € S, then pisurround (B, in1)(z) <
,U/surround(Bv Mn2) (:C) .

3.6. Computational complexity

Assume that the image is a square with sides equal
to VN and N the number of points. Let N be
the number of points in the reference object and
Ny the length of the core of u,. The complexity of
computing the convex hull is O(Nglog Ng)!. The
complexity of computing the function 7¢(p, B) of
Equation 9 is of the order of N2. Therefore the
complexity of computing pisurround(B) defined by
Equation 10 is O(Np log N + N?).

The complexity of computing fisyrround(B, tn)
defined by Equation 16 is O(Nglog Ng + NyN),
since the complexity of computing the function
7o(p, B, p) is of the order of NyN.

1We assume that the g-hull algorithm is used for comput-
ing the convex hull [15].
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4. Tllustrative example

In this section we present an example to illustrate
the defined relation. We consider an example in
satellite images, and objects with complex shapes.
As a reference object, we consider the sea, which
exhibits several concavities, shown in Figure 6(b).
This reference object is a fuzzy region, where the
white pixels represent the points of space with a
high membership value, while the black ones rep-
resent the points with low membership value. The
target objects are the boats shown in Figure 6(c).
The sizes of the target objects are comparable,
therefore the relation can be evaluated by using the
same fuzzy landscape for all objects.

"

Membership value
o ° o
2 b %

°
S

o

o

50 100 150 200
Distance (m)

— unl — ur'\Z “nz — unA

Figure 7: Membership functions for p,.

To observe the influence of the distance rela-
tion involved in the computation of psyrround, We
used different membership functions to represent
the “near” notion, as illustrated in Figure 7. There
are four membership functions representing differ-
ent degrees of permissiveness of “near”. The func-
tion gy is very strict. The functions p,o and pns
are more in accordance with the size of the tar-
get objects, since the average lengths of the ob-
ject’s main directions is l4perage = 10.3. Finally,
Ling is a constant membership function equal to one,
which gives a fuzzy landscape equivalent to the one
in Equation 10.

The corresponding fuzzy landscapes are shown in
Figure 8 and the evaluation for the target objects
is shown in Table 2. The fuzzy landscape of Fig-
ure 8(a) is very restrictive, and it is not well adapted
to evaluate the relation for the selected target ob-
jects. It represents a situation where the target ob-
jects should be very small, and the reference object
must be almost touching them. This fuzzy land-
scape does not allow us to cope with the imprecision
linked to the segmentation of the reference object.
The restrictions imposed by the function “near” are
not appropriate for the situation. For instance, in
the evaluation of the yellow boat (6), the large in-
terval [N, II] exhibits an ignorance with respect to
the satisfaction of the relation. Nonetheless, there
is no ambiguity that this boat is surrounded by the
sea.

The second and third landscapes (Figures 8(b)



Figure 6: Reference and target objects used to evaluate the relation surround. (a) Original image. (b) Ref-
erence object: the sea (white region). (c) Target objects. (d) Target objects superimposed on the original

image.

()

Figure 8: Fuzzy landscapes representing the relation surround for different distance membership functions
shown in Figure 7. (a) Using pin1. (b) Using pina. (¢) Using pins. (d) Using png.

and 8(c)) are more suitable for evaluating the re-
lation. We obtain high satisfaction degrees for all
the boats, except the green (5) and the orange (3)
ones, as expected. The satisfaction values obtained
for this relation are in better accordance with the
intuition. The intervals [N, II] are shorter, showing
less ambiguity in the satisfaction of the relation for
these target objects. Moreover, the fuzzy landscape
of Figure 8(b) corresponds to pu,, obtained using the
parameters of Equations 18 and 19. This suggests
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that these parameters are an appropriate choice.

The last fuzzy landscape (Figure 8(d)) is very
permissive. According to the first property listed
in Section 3.5, this fuzzy landscape corresponds to
the case where the size of the targets is not taken
into account. The results obtained for this situa-
tion are not really significant, since a high satisfac-
tion degree M is obtained for all the target objects,
while, intuitively, the green (5) and orange (3) boats
should have a low satisfaction value.



/J'sur'round(Bv /J'nl) ;U'su'rround(By /J'TLQ) ;U'su'rround(Bv :U'TL3) /J'Sur'round(Bv /J'n4)
Target Objects Figure 8(a) Figure 8(b) Figure 8(c) Figure 8(d)
Figure 6(c) NI | M NI [ M NI [ M NI | M
I (red) 0.4, 1] 0.75 0.4, 1] 0.91 0.4, 1] 0.91 0.4, 1] 0.91
2 (pink) (0.29,0.83] | 0.54 || [0.5,090] | 0.72 || [0.5,1] 0.94 [0.5,1] 0.95
3 (orange) [0, 0] 0.00 [0,0] 0.00 || [0,0.28] | 0.09 0.68,0.90] | 0.81
4 (purple) (0.6, 1] 0.98 [0.6,1] 098 || [0.6,1] 0.98 0.6, 1] 0.98
5 (green) [0, 0] 0.00 [0, 0] 0.00 [0, 0] 0.00 (0.82,0.89] | 0.86
6 (yellow) (0.37,1] | 0.78 0.7,1] 094 || [0.7,1] 0.96 0.7, 1] 0.96
7 (blue) 06,1 | 0.94 06,1 | 094 || [0.6,1] | 094 (0.6,1] | 094
8 (cyan) 0.7, 1] 0.96 0.7, 1] 096 || [0.7,1] 0.96 0.7, 1] 0.96

Table 2:

Results obtained for the target objects shown in Figure 6(c) with respect to the reference objects of

Figure 6(b), using the membership function distance of Figure 7.

In this example we showed the influence of the no-
tion of “near” introduced in the definition of Equa-
tion 16. We demonstrated the limitations of using
very strict or loose functions. The examples in Fig-
ures 8(b) and 8(c) show fuzzy landscapes which are

[4] I. Bloch, T. Géraud, and H. Maitre. Representation
and Fusion of Heterogeneous Fuzzy Information in
the 3D Space for Model-Based Structural Recogni-
tion - Application to 3D Brain Imaging. Artificial
Intelligence, 148(1-2):141-175, August 2003.

in accordance with the situation. These two situa- [5] L Bloch' On fuzz}.’ dlStar.lC,eS and their use in 1mage
. e, e . e processing under imprecision. Pattern Recognition,
tions exhibit similar results, showing the flexibility 32(11):1873-1895, 1999
m t'he Choice Of”the function used to r.epresent the [6] A. Rosenfeld and R. Klette. Degree of adjacency
notion of “near”. Moreover, this function could be or surroundedness. Pattern Recognition, 18(2):169—
learned as in [16]. This would allow an automated 177, 1985.
use of this approach. [7] K. Miyajima and A. Ralescu. Spatial organization
in 2d images. In Third IEEE Conference on Fuzzy
. Systems, FUZZ-IEEE 199/, pages 100105, 1994.
5. Conclusion [8] P. Matsakis and S. Andréfouet. The fuzzy line be-
tween among and surround. In IEEFE International
In this paper we have presented a fuzzy definition Conference on Fuzzy Systems, FUZZ-IEEE 2002,
of the relation “surround”. We first presented a def- volume 2, pages 1596-1601, 2002.
inition that only considered the morphology of the [9] Y. Mathet. Etude de l’expression en la”gu? de
reference objects. However, we saw that this defi- ! espace e? du dei’?a‘cemmt : A”al?b"e lmg“@”q@’
nition is not adapted to evaluate the relation when mOdehs,atw” COgmtw.e et l?ur e.ngerzmentatzon Ln-
. formatique. PhD thesis, Université de CAEN, 2000.
the target objects are much smaller than the con- . o
o . [10] B. Bouchon-Meunier, M. Rifqi, and S. Bothorel.
cavities and far from them. Therefore, the defini- . .
. ; Towards general measures of comparison of objects.
tion was adapted to take into account the shape of Fuzzy Sets and Systems, 84(2):143-153, 1996.
the reference object, as well as the size of the tar- [11] D. Dubois, H. Prade, aI;d C. Testemale;. Weighted
get objects and their distance to the concavities of fuzzy pattern matching. Fuzzy Sets and Systems,
the reference object. The proposed definition has 28(3):313-331, 1988.
nice geometric properties, it is in accordance with [12] D. Hernandez, E. Clementini, and P. Di Felice.
the intuition and is modeled as a fuzzy landscape Qualitative distances. In A. Frank and W. Kuhn,
which has shown interesting properties for image editors, Spatial Information Theory - Proceedings
interpretation. of COSIT 95, pages 45-57, 1995.
. . . [13] I. Bloch, O. Colliot, and R. Cesar. On the Ternary
Results on real objects with complex shapes il- . . .
lustrate the int t of th d h d Spatial Relation Between. IEEFE Transactions on

ustrate the interest ol the p.ropose apprgac., an Systems, Man, and Cybernetics SMC-B, 36(2):312—

could then be further exploited for satellite image 327, April 2006.

interpretation. [14] I. Bloch. Spatial reasoning under imprecision using
fuzzy set theory, formal logics and mathematical
morphology. International Journal of Approzimate
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