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Abstract— Time and frequency information is essential to
feature extraction in a motor imagery BCI, in particular for
systems based on a few channels. In this paper, we propose
a novel time-frequency selection method based on a criterion
called Time-frequency Discrimination Factor (T FDF) to extract
discriminative event-related desynchronization (ERD) features
for BCI data classification. Compared to existing methods, the
proposed approach generates better classification performances
(mean kappa coefficient = 0.62) on experimental data from the
BCI competition IV dataset IIb, with only two bipolar channels.

I. INTRODUCTION

Brain-computer interface (BCI) systems capture subject’s
intentions by measuring his brain activities and then translate
them into commands to build a direct communication be-
tween brain and computer. Usually, brain activities are mea-
sured through electroencephalogram (EEG) because of its
low cost and high time resolution [1]. One of the most typical
brain activities that can be captured by EEG recording is the
band power modulation of sensorimotor rhythms, i.e. µ and
β rhythms, during motor imagery [2]. Existing studies show
that imaginary movements of different body parts can cause
the attenuation of sensorimotor rhythms, termed as event-
related desynchronization (ERD), at corresponding “active”
cortex areas; meanwhile, an enhancement of sensorimotor
rhythms called event-related synchronization (ERS) might be
observed at other “idling” areas [3]. Thus, motor imagery can
be identified by classifying ERD/ERS patterns, which gives
birth to motor imagery BCI [1]. However, the poor signal-
to-noise ratio (SNR) of raw EEG signals and the overlap of
different rhythms (e.g. α and µ rhythms) make it difficult
to extract discriminative features for BCI classification [4].
Although multi-channel recording with a large number of
electrodes (e.g. 64 or 128) and spatial filters can improve
the SNR and extract discriminative features from overlapping
signals [5], this setting reduces the portability and practica-
bility of BCI so that it represents a main drawback for final
users.

To solve this problem, several researchers proposed to
record motor imagery EEG data with only a few bipolar
electrodes placed around task-relevant sensorimotor areas of
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the brain [6], [7]. Bipolar recording is an EEG acquisition
technique that measures potential differences between two
electrodes. This can improve the SNR by eliminating com-
mon additive noise of both electrodes (for details, see [6]).
The positions of bipolar electrodes can be optimized algo-
rithmically or using prior knowledge on the spatial location
of brain activity during motor imagery (e.g. imagination of
right hand movement elicits ERD around left sensorimotor
areas). This allows reducing the number of electrodes while
improving classification performances.

Beside spatial information, time and frequency informa-
tion is also very important for classification, because motor
imagery elicits ERD/ERS in specific bands within specific
time segments instead of over all frequency bands in the
whole trial. In general, µ rhythm is in 8-12Hz band and β

rhythm in 18-25Hz band, but these rhythms can vary with
subjects. Thus, a number of algorithms were proposed to
find subject-specific frequency bands for extracting discrim-
inative features [8], [9], [10], [11], [12]. Most of them are
based on extensions of the common spatial pattern (CSP)
algorithm, such as filter bank CSP (FBCSP) [8], [9], sub-
band CSP (SBCSP) [11] and common spatio-spectral pattern
(CSSP) [10], which combine flexible frequency filtering tech-
niques with CSP to improve BCI performances. Among those
methods, FBCSP seems to be the most effective one, because
it yields the best BCI performances on multiple BCI compe-
tition data [8], [9]. Moreover, the robust FBCSP (RFBCSP),
which includes robust Minimum Covariance Determinant
(MCD) estimator in the algorithm, can be applied to motor
imagery BCI with only three bipolar channels. However,
RFBCSP involves mutual information (MI)-based feature
selection and MCD estimator, both of which needing tedious
iterative steps that greatly increase its complexity. Moreover,
this method used a fixed time segment (i.e. 0.5-2.5s after
cue on-set) of the EEG data for all subjects in the training
process, which ignores the potential individual difference in
optimal time segment selection.Although a recent work on
FBCSP has involved optimal temporal selection process [13],
it selected the time segment from only four different options
(0.5-2.5s, 1.0-3.0s, 1.5-3.5s and 0.5-3.5s) and did not led
to significant improvement on bipolar channel data (BCI
competition IV IIb) compared to previous results in [8].

In this paper, we propose a time-frequency selection
method for extracting subject-specific ERD features for
further improving motor imagery EEG classification with
only a few bipolar electrodes. This method is based on
a proposed criterion called Time-frequency Discrimination
Factor (TFDF) to extract discriminative ERD features for the
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classification. Compared with the methods mentioned above,
the proposed method is different in the following ways: 1)
this method is neither based on CSP algorithm nor combined
with other complex algorithms (e.g. MI-based algorithms or
MCD estimator); 2) the subject-specific time-frequency area
is selected from more than one thousand possible areas by
a novel time-frequency selection criteria (TFDF), which can
further improve the classification performances on bipolar
recording BCI data; 3) this method can be applied on data
recorded with only two bipolar channels for binary-class
problems (e.g. a discrimination between imaginations of left
and right hand movements).

II. EXPERIMENTAL DATA

We used data of the BCI competition IV dataset IIb [7] in
this work. The dataset consists of two classes (left vs. right
hand) cue-driven motor imagery BCI data from 9 subjects.
The EEG data are recorded using 3 bipolar channels, i.e.
at positions C3, Cz and C4. For each subject, 5 sessions
are provided, including 3 training sessions and 2 evaluation
sessions. The first two training sessions consist of 240 single
trials (120 trials per session) without visual feedback. Each
trial starts with a fixation cross and a short acoustic warning
tone. Later a visual cue is given to guide the subject to
execute the corresponding imagination of hand movement
over a period of 4 seconds. The last training session (160
trials) and the two evaluation sessions (160 trials per session)
are recorded with visual feedback from 0.5 to 4.5s after the
cue on-set (for details, see [7]).

Many studies have shown that the electrode positions
approximately overlaying the hand representation areas i.e.
C3 (right hand) and C4 (left hand), usually generate the
best results of single-trial discrimination between imagina-
tions of left and right hand movements in non-CSP based
classification [3], [14], while Cz located at the functional
area related to foot movement mainly contributes to the best
discrimination between tasks involving imagination of foot
movement [3]. Thus, we only used C3 and C4 in this study
for improving the left v.s. right hand classification by using
the proposed method.

III. TIME-FREQUENCY ANALYSIS AND
SELECTION

A. Visualization of ERD/ERS in the Time-frequency Domain

The ERD/ERS patterns are usually expressed as percent-
age power decrease (ERD) or power increase (ERS) referring
to the 1-s interval before the warning tone (for details,
see [3]). The time-frequency maps of ERD/ERS for both
left (L) and right (R) hands in the bipolar channels C3 and
C4 were generated by the Biosig Toolbox using overlapping
2Hz bands (step = 1Hz) in the frequency range between 6
and 32Hz [15]. The obtained time-frequency maps are used
to show the significant ERD/ERS (t-percentile bootstrap,
α = 0.05) during the imaginations of right and left hand
movements in C3 and C4, and to validate the necessity
and effectiveness of the proposed time-frequency selection
method in feature extraction (see Section IV).

B. Subject-specific Time-frequency Selection

Firstly, the signals in both channels are divided into
EEG segments, in a series of overlapping time-frequency
areas {(ωm,τn)}M×N with different frequency bands ωm =
[ fm, fm +F−1],m = 1, ...,M, fm+1 = fm +Fs (F is the band-
width, Fs is the frequency step) and time intervals τn =
[tn, tn +T − 1],n = 1, ...,N, tm+1 = tm +Ts (T is the interval
width, Ts is the time step).

As ERD features for the BCI classification are often
measured by the logarithm of variance of band-pass filtered
EEG in a specific time interval, so called logarithmic band
power (BP) estimator [16], the overall BP of EEG segment
(K trials) in a time-frequency area (ωm,τn) for each condition
and each channel is estimated as follows.

Step 1: The variance of EEG segment in the time domain
for each trial i, i = 1, ...,K for each condition and each
channel is computed as:

v(i) =
1

T −1

tn+T−1

∑
j=tn

(xi j− x̄i)
2 (1)

where xi j the j-th sample in the time interval τn of the i-th
trial of the ωm-bandpass filtered EEG data, and x̄i is the mean
value over all samples of filtered EEG in the time interval
τn of the i-th trial.

Step 2: According to the existing literature, the overall BP
for each class (L, R) and each channel (C3, C4) is calculated
as the logarithm of median or mean of data variances over
trials. Here, we use medians instead of mean values in the
calculation, because outliers in the experimental data we used
were reported, e.g. in [8].
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where med(·), denotes the median of the data over all trails,
i = 1, ...,K, for each condition and each channel.

Thus, the pattern difference (PD) between two conditions
(left vs. right hand) in time-frequency area (ωm,τn) at each
channel is expressed as:

PDC3 = BPL
C3−BPR

C3 (6)

PDC4 = BPL
C4−BPR

C4 (7)

Imaginations of left and right hand movement usually elicited
contrary contralateral dominance of ERD at C3 and C4 [3],
[14]. These task-spatial-related discriminative modulations
can be measured by discriminative force Fd(ωm,τn) to
estimate this positive contribution in a time-frequency area
(ωm,τn) for the classification:

Fd(ωm,τn) = |PDC3−PDC4|

=
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A large Fd(ωm,τn) indicates that large discriminative mod-
ulations occur in the time-frequency area (ωm,τn).

On the other hand, subjects are looking at the screen dur-
ing both motor imagery tasks, which can generate some non-
motor-imagery-related (i.e. visual related) common modula-
tions at C3 and C4 [5]. Meanwhile, neural activities at C3
and C4 may also affect each other due to volume conduction
effects. These possible negative effects in the time-frequency
area (ωm,τn) on the classification are estimated using a
blurring force Fb(ωm,τn):

Fb(ωm,τn) = |PDC3 +PDC4|

=

∣∣∣∣∣log
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med
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C3(i)
)
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))∣∣∣∣∣ (9)

A small Fb(ωm,τn) indicates that small common modula-
tions happen in the time-frequency area (ωm,τn).

We call the difference between Fd(ωm,τn) and Fb(ωm,τn)
Time-frequency Discrimination Factor, T FDF(ωm,τn), and
use it to evaluate the overall contribution of the data in the
time-frequency area (ωm,τn) from electrodes C3 and C4 for
the binary-class discrimination:

T FDF(ωm,τn) = Fd(ωm,τn)−Fb(ωm,τn) (10)

An ideal time-frequency area for classification should have
large discriminative modulations and small common modu-
lations, so that the optimal time-frequency area (ωopt ,τopt) is
estimated by seeking the maximum value of T FDF(ωm,τn)
among all time-frequency areas.

C. Data Elaboration, Feature Extraction and Classification

In this study, the sessions used for training are selected
based on the suggestions of winners in BCI competition
IV [17] in order to compare our results with theirs. For each
bipolar channel, 5th order butterworth filters are applied to
compute 19 successive 4Hz-wide frequency bands of signals:
8-12Hz, 9-13Hz, 10-14Hz, ..., 26-30Hz, and 15 successive
8Hz-wide frequency bands of signals: 8-16Hz, 9-17Hz, 10-
18Hz, ..., 22-30Hz (M = 34). Then 39 overlapping time
segments in each frequency band were obtained through 2s,
2.5s and 3s-wide sliding windows (13 segments for each
sliding window), respectively, with 0.2s-step moving from
0.5s after the cue on-set (N = 39). Those parameters are set
based on the experience from competitors reported in BCI
competition IV [17]. Therefore, there are 34× 39 = 1326
time-frequency areas for subject-specific selection. The BP
values are extracted from two channels of EEG in the
selected time-frequency area (ωopt ,τopt) as ERD features.
Then, Fisher’s linear discriminant analysis (LDA) was em-
ployed with these features for the classification as most BCI
classification works did [18].

IV. EXPERIMENTAL RESULTS AND DISCUSSION
Fig. 1 shows an example of time-frequency maps dis-

playing significant ERD (red) and ERS (blue) for a typical
subject (Subject 6) in BCI competition IV dataset IIb [7].
From Fig. 1, we can see that 1) imagination of left hand

movement elicits C4 dominant µ band ERD patterns while
that of right hand movement generates C3 dominant µ band
ERD patterns around 12Hz approximately during 0.5-5s after
cue on-set; 2) a background noise (generated by non-motor-
imagery-related activities) is widely observed in the time-
frequency map (e.g. in 15-30Hz, 1-4s) so that information
from those areas may deteriorate the classification results.
Based on these observations, we can conclude that 1) time-
frequency selection is necessary for extracting discriminative
ERD patterns for a good classification performance; 2)
common noise cannot be completely removed in all time-
frequency areas through bipolar recoding technique. Thus, a
subject-specific time-frequency selection method is required
to capture the ERD features in the two bipolar channels that
contain discriminative information.

Fig. 1. Time−frequency maps displaying significant ERD (red) and
ERS (blue) for Subject 6 (a typical example) in BCI competition IV IIb.
The areas in the rectangles are the time-frequency areas selected by the
proposed method. Imaginations of left and right hand movement elicited
contrary contralateral dominant ERD in the selected areas, which indicates
the effectiveness of the proposed method in time-frequency selection for
discrimination.

Table I lists the optimal frequency band ωopt and time
interval τopt of the time-frequency areas selected from the
training data by the proposed method for each subject. For
example, the optimal frequency band of Subject 6 is 10-
14Hz and the optimal time segment is 0.7-2.7s, which is
slightly different from the general µ band (8-12Hz) and the
suggested time segment (0.5-2.5s) in the literature [8]. From
Fig. 1, we can see that this time-frequency area contains
the discriminate ERD patterns of two classes: imaginations
of left hand and right hand movements elicited contrary
contralateral ERD dominance in the selected areas, which
indicates the effectiveness of the proposed method in time-
frequency selection for discrimination. The optimal time
segments and frequency bands for capturing discriminate
ERD patterns vary with different subjects (see Table I), so
that it is necessary to use subject-specific time-frequency area
in the classification.

In the classification, the EEG signals in the subject-
specific time-frequency area (ωopt ,τopt) from all training
trials are used for training, then the ωopt -bandpass filtered
EEGs segments with the same time length of τopt (i.e. T )
are obtained from each entire single-trial of testing data via a
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TABLE I
FREQUENCY BAND ωopt AND TIME INTERVAL τopt SELECTED BY THE

T FDF VALUES FOR ALL THE SUBJECTS.

Subjects
1 2 3 4 5 6 7 8 9

ωopt(Hz) 10-14 11-15 9-13 8-12 26-30 10-14 11-15 10-14 22-26
τopt(s) 2.9-4.9 2.7-5.2 0.5-2.5 0.9-2.9 0.7-3.2 0.7-2.7 1.1-3.1 0.9-2.9 0.9-2.9

0.2s step sliding window to generate continuous classification
outputs. According to the BCI competition requirement, the
classification performance is measured by kappa coefficient
κ value [19]. Table II provides the mean performance over
the two independent evaluation sessions obtained by our
method, and comparisons with the three best submissions
of the BCI competition IV on this dataset [17]. Our method
generates the best mean kappa value (κ̄ = 0.62) among all
methods on these data. To further analyze the results, the
paired-sample t-test was employed to reveal the statistically
significant difference between the performances of different
methods. Although improvements of kappa values compared
to 1st winner (κ̄ = 0.60, p = 0.12), who used RFBCSP [8]
and 2nd winner(κ̄ = 0.58, p = 0.18), who applied com-
mon spatial subspace decomposition (CSSD) on multiply
frequency bands [17], are not statistically significant, our
method outperforms the 1st winner in 6 out of 9 subjects
(except subjects 4, 7 and 8), and the 2nd winner in 6 out
of 9 subjects (except subjects 4, 7 and 9). For this dataset,
our results are always better than the 3rd placed one (κ̄ =
0.46, p < 0.01), who employed classical CSP with spectrally
filtered neural time series prediction preprocessing (NTSPP)
signals [17]. As all of their works have used all three bipolar
channels (C3, Cz and C4) provided by the dataset, our
method not only generated better mean performances but
also used less channels than them, which shows the interest
of our method in feature extraction and electrode reduction.

TABLE II
COMPARISON OF THE CLASSIFICATION PERFORMANCES BETWEEN THE

PROPOSED T FDF METHOD AND OTHER METHODS.

Subjects
1 2 3 4 5 6 7 8 9 Mean

T FDF 0.44 0.24 0.25 0.93 0.86 0.70 0.55 0.85 0.75 0.62
RFBCSP(1st ) 0.40 0.21 0.22 0.95 0.86 0.61 0.56 0.85 0.74 0.60
CSSD (2nd) 0.42 0.21 0.14 0.94 0.71 0.62 0.61 0.84 0.78 0.58

CSP+NTSPP(3rd) 0.19 0.12 0.12 0.77 0.57 0.49 0.38 0.85 0.61 0.46

V. CONCLUSION

Previous state of the art has highlighted the need for
user-specific parametrization in the preprocessing steps of
motor imagery BCI, especially in term of frequency band
adaptation. This contribution, through the proposition of a
novel algorithm and a new criterion, emphasizes that the
calibration in the temporal domain is also relevant. The
results show that our approach yields better average perfor-
mance using only two bipolar channels and a simple LDA
classifier compared to those obtained by existing methods on

the BCI competition dataset IIb. However, this conclusion
has to be confirmed on more datasets; and a deeper study of
the differences with respect to existing methods should be
conducted. In the future, we will also extend this method to
multi-class problems.
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