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Abstract— This paper presents a novel stochastic level set
method for the longitudinal tracking of lung tumors in com-
puted tomography (CT). The proposed model addresses the
limitations of registration based and segmentation based meth-
ods for longitudinal tumor tracking. It combines the advantages
of each approach using a new probabilistic framework, namely
Chance-Constrained Programming (CCP). Lung tumors can
shrink or grow over time, which can be reflected in large
changes of shape, appearance and volume in CT images.
Traditional level set methods with a priori knowledge about
shape are not suitable since the tumors are undergoing random
and large changes in shape. Our CCP level set model allows
to introduce a flexible prior to track structures with a highly
variable shape by permitting a constraint violation of the prior
up to a specified probability level. The chance constraints are
computed from two given points by the user or from segmented
tumors from a reference image. The reference image can be one
of the images studied or an external template. We present a
numerical scheme to approximate the solution of the proposed
model and apply it to track lung tumors in CT. Finally, we
compare our approach with a Bayesian level set. The CCP
level set model gives the best results: it is more coherent with
the manual segmentation.

I. INTRODUCTION

In this work we aim to estimate longitudinal tumor vol-

umes to compute accurately the change in tumor volume.

Among the large number of methods for estimating tumor

change or tumor tracking, the following three approaches are

most popular: (1) Analyzing the difference of images: this

approach consists in analyzing the registration error between

two images. One image is considered as the reference image

and the second one is registered toward this reference. The

difference between the registered image and the reference

image allows detecting tumor changes [7], [5]; (2) Analyzing

the deformation field: as in the previous approach the regis-

tration of the images to a common reference is required.

However, in this approach instead of working with the

registration, the deformation field is analyzed to define tumor

changes [12], [10]; (3) Sequential segmentation: this is the

standard method to detect tumor change. The segmentation

of the tumors is followed by a comparison of the segmented

data to evaluate the tumor changes over time [6], [9].The two

first approaches have the limitations inherent to registration

methods. Indeed, spatial normalization of images in the
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presence of pathologies is still a very challenging problem.

The registration algorithms are often based on the assumption

of topological equivalence between the fixed and the mobile

images. The presence of tumors in one image and not in the

second one violates this assumption. Furthermore, the use of

non-rigid registration can deform the tumor so much that the

changes in the tumor cannot be detected in the difference

map of images. The third approach is hampered by the

difficulty to extract accurate target volumes. The estimation

of tumor volume is still a very challenging problem.

While there are many studies of longitudinal tumor or

lesion tracking in brain diseases such as Multiple Sclerosis

(MS), there are few studies related to lung tumors. The lack

of longitudinal tracking studies of lung tumors is due to the

complexity of the deformation that the lung is undergoing

during respiration, and the difference between the physical

properties of the tumors and the lung tissue. Furthermore,

the significant change of the tumor shape and appearance

during long periods makes longitudinal tracking of lung

tumors more challenging. In longitudinal tracking of lung

tumors much effort has been dedicated to the development

of techniques for segmentation, a follow up of the segmented

data through time is then performed to detect tumor changes.

In this paper we introduce a method for the longitudinal

tracking of tumors that combines the advantages of registra-

tion based and segmentation based approaches. Indeed the

registration error is integrated in a temporal segmentation

process using a new probabilistic framework. We propose

a stochastic active model to incorporate prior knowledge

about the evolution of the tumors from the previous CT

images to constrain the tracking process in the current image.

The model does not require an initialization at each time

point, only information given by the user from a reference

image is needed. The information given by the user can be

a segmentation of the tumor in the reference image or only

two points, one point given inside the tumor and the second

point on the tumor surface. This input is used as key points to

construct a probabilistic function to constrain the evolution

of level sets inside the image. One important aspect of our

stochastic active contour is that it is flexible to allow the

level sets to fit the boundary of the target tumor.

The first level set method with prior knowledge about

shape was introduced by Leventon et al. [8]. Recent im-

provements of this approach were proposed in [2].These

methods are more adapted to segment structures with small

changes in shape. However, the tumor shape does not at

all respect this property: the same tumor can have different

shapes between two longitudinal acquisitions. Tumors can
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shrink or grow over time, which can be reflected in CT-

images in large changes of shape, appearance and volume.

All these approaches use a Bayesian framework to constrain

the evolution of the level sets. Our approach introduces a

new active contour using a different probabilistic framework,

namely chance constraints [3]. Chance constraints program-

ming (CCP) permits constraint violation up to a specified

limit and ensures explicitly that the constraints will hold even

with high a probability. In contrast, the Bayesian models

do not ensure this latter characteristic of CCP models.They

take into account information obtained through sampling

and then formulate a decision problem. More generally,

optimization under CCP is the unique probabilistic frame-

work that ensures that constraints will hold with a high

probability. The proposed CCP level set method allows to

incorporate a flexible prior using local and global confidence

maps to weigh the evolution of the level set. The local

confidence map corresponds to a voxel-wise registration error

between the reference image and the target. The reference

image is used to measure the evolution of the tumor in the

studied images compared to this reference, it can be one

of the images studied or an external template. The second

confidence map corresponds to a α-quantile that regulates

globally the evolution of the level set in the image. The whole

process of our method is summarized into the following three

steps: (1) estimate the position and shape of the tumors in

the reference image; (2) construct probabilistic constraints

from the position estimated at the first step; (3) extract the

tumors at each time point using the constraint defined in the

second step. In Section II, we will give more details about

each step and how to use it for longitudinal tracking in CT

images. In Section III we apply our approach on CT data.

II. STOCHASTIC LONGITUDINAL SEGMENTATION

A. Chance-constrained level set method

While the level set method introduces regularization to

smooth the deformation and to deal with noise, it does

not introduce a bias towards the target structure. Bayesian

models were proposed in the literature to incorporate prior

knowledge about the target structure to constrain the evo-

lution of the level set [8]. These models are adapted to

segment an object with well defined shape. However the

tumor shape is undergoing large changes over long time

periods and it is difficult to define a model that describes the

evolution of tumors over time from image information. This

makes the definition of an accurate prior for tumor tracking

a very challenging problem that has led us to introduce

chance constraints. Our approach consists in minimizing

the Chan and Vese functional V , see [1], [11], in the

probabilistic admissible space: A1−α =
{

φ : P (x, φ) >

1 − α, for almost allx ∈ Ω
}

, where P is a probabilistic

constraint that introduces a priori information about the target

from a given prior defined by the user from the reference

image. For high values of the probabilistic constraint the

prior introduced by this function constrains the tracking

process strongly whereas for small values the constraint is

very weak. The α-quantile (0 < α < 1) regulates the

influence of these probabilistic constraints in the tracking

process. In Section III, we will see that α can be chosen in a

large range for tumor tracking in CT. In the next section we

will present the methods used to construct the probabilistic

constraints and how to apply it to tumor tracking. This

model is flexible and adapted to follow tumors. The level set

evolution is monitored by the local and global confidence

maps that we have defined in the previous section.
We formulate our optimization approach using the pe-

nalization method, which is well adapted to stochastic op-
timization. The basic idea of the penalization method is
to transform the constrained optimization problem into an
unconstrained optimization problem:

E(φ, c1, c2) = V(φ, c1, c2)+ρ

∫

Ω

max
(

0, 1−α−P (x, φ)
)2

δǫ(φ) dx,

(1)

where ρ > 0 is a penalty parameter1; the factor term δǫ
allows us to restrict the shape prior within the region of

interest. As usual, we use an Euler-Lagrange formulation to

solve this optimization problem, for details see [11].

B. Design of the probabilistic constraints

In this section we describe the method used to construct

the probabilistic constraints that guide the evolution of our

stochastic active contour. The method consists of the two fol-

lowing steps: (1) construct a deterministic prior; (2) construct

the probabilistic constraints. In the first step we extract prior

from the reference image. This prior can be a segmentation

of the tumors from this reference image. The segmentation of

each tumor corresponds to a surface which approximates the

boundary of this tumor. The segmentation can be replaced by

two points given by the user for each tumor, the first point is

required to be inside the tumor and the second point on the

tumor surface. These two points allow us to approximate the

tumor boundary with a closed surface centered at the point

chosen inside the tumor and with a radius defined by the

second point. At the end of this first step we construct a set

of surfaces, where each surface approximates the boundary

of one tumor in the reference image.

The aim of the second step is to build from these surfaces

probability maps that we use to constrain the evolution of

the level. We propose to use chance constraints [3], these

constraints being defined from a set of random constraints.

Each surface allows us to construct a component gp of the

random constraint such that the level set function φ satisfies:

gp(x, φ,Λ) ≤ cp, p = 1, ... , nt (2)

where nt is the number of tumors detected in the reference

image and cp, p = 1, ... , nt are real constants; Λ is a random

vector, with a multi-variate normal distribution, describing

the uncertainty about the localization and the shape of

the tumor boundary in the current image. We can picture

each component of the random constraint as a surface that

oscillates around the boundary of one tumor in the reference

1Note that if φ ∈ A1−α, the penalty is null whereas for φ 6∈ A1−α a
second term is added to the functional V to introduce a penalty for violating
the constraint φ ∈ A1−α.
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image. The oscillations are monitored by the random vector

Λ, the dimension of Λ corresponds to the number of tumors

in the reference image and the covariance matrix is estimated

from the registration errors of the reference image and each

target image. The registration error is computed before the

evolution of the levels and is used as confidence map in the

stochastic term. Locally, the level set follows the target image

in regions with a high voxel-wise registration error while it

follows the prior in regions with low voxel-wise registration

errors. We give here an example of the random constraints

that we will use in our experiments. We consider the case

of only one tumor (nt = 1) and cp = 0; for this tumor we

generate from the user input a surface S that approximates

the tumor boundary in the reference image. Let φ̃ be defined

as the signed distance associated with the surface S . We

consider the following random constraint:

g(x, φ,Λ) = e(x) Λ + (φ(x)− φ̃(x))2 ≤ 0. (3)

where e is the registration error and Λ is a random variable

with a Gaussian distribution with the variance σ2. Con-

sequently the random variable Υ = eΛ has a Gaussian

distribution with the variance (eσ)2 and with the normal

distribution pΥ.

The global confidence map corresponds to a α-quantile

such that:

P (x, φ) = P

(

gp(x, φ,Λ) ≤ cp, p = 1, ... , nt

)

> 1−α. (4)

The α-quantile is used to monitor the evolution of the level

set according to the random constraints (2): the model allows

the active contour to evolve towards regions that violate

the constraint for a small amount of realizations when no

alternative solution is found. For a large α the level set

follows the data while for small α the level set follows

the prior. The α-quantile is given by the user to introduce

his knowledge about the evolution of tumors in the studied

images. This parameter can be also estimated from the

registration error: when the registration error is small we can

introduce a strong prior from the reference image to constrain

the tracking process. Moreover, we will show in Section III

that the parameter α can be chosen in a large range. For the

constraint (3), the estimation of the probabilistic constraint

and its gradient are computed analytically, for details see

[11]. Fig. 1 shows examples of the probabilistic constraints.

However, in the case of more than one tumor or when several

random constraints are needed, the probabilistic constraint

can be intractable analytically. The authors in [3] present a

Monte Carlo method adapted to this situation.

C. Chance-Constrained Programming vs Bayesian model

In the previous section we introduced a new probabilistic

framework to constrain the level set evolution, namely the

chance-constrained level set method. In this section we

compare this approach with the traditional approach of intro-

ducing shape priors in the level set formulation: the Bayesian

model. In the formulation (3), we introduce as a probabilistic

constraint that the similarity between φ and φ̃ is superior to

a given quantile. In the Bayesian formulation the prior is

Fig. 1. Confidence map, only one slice is shown but the method is applied
in 3D. First row, left: image acquired in 2007 (mobile image); center: image
acquired in 2008; right: registered image using rigid transformation. Second
row, the left panel shows the registration error (ROI on the tumor); the center
panel shows the probabilistic constraint computed without registration error;
the right panel shows the confidence map computed using the registration
error. The red color corresponds to high values, the yellow to medium values,
and green to low values.

introduced through sampling and then a decision problem

is formulated. The model is formulated as a minimization

problem of a global energy composed of two terms. The

first term corresponds to a deformation energy for a standard

region based level set method and the second term introduces

the shape prior:

Eb(φ, c1, c2) = V(φ, c1, c2) +
γ

2σ2

∫

Ω

(φ− φ̃)2 δǫ(φ) dx,

where γ is a weight parameter on the prior. We will see in

the result section how this parameter affects the segmentation

results in the Bayesian and CCP level set methods. Details

about the estimation of the minimizer are given in [11].

III. RESULTS

The data are composed of two CT data sets from two

patients and each data set is composed of at least two

images acquired at different time points: for patient 1, data

were acquired on 02/2007 and 03/2008 and for patient 2 on

06/11/2007, 05/14/2008, and 07/24/2008. The patients held

their breath at full inspiration during the acquisition. The

resolution of the data is 1.172× 1.172× 5 mm and we take

into account the anisotropy of voxel dimensions in the level

set propagation by using a weighted distance [4].

To construct the random constraints (3) for the CCP model

(1), we have used a rigid registration method since non-rigid

registration deforms the tumor so much that changes in the

tumor are not well detected in the difference image. Fig. 2-

center shows a comparison between the manual segmentation

and the results obtained with our CCP level set method

using different values of α, the best results were obtained

with 0.6 < α < 0.85. This shows also that the quantile α

can be chosen for CT longitudinal segmentation in a large

range. For α smaller than 0.6 the probabilistic constraint

constrains strongly the segmentation process and as we can

see in Fig. 2 the results are very close to the level set

prior, whereas for α superior to 0.8 the constraint is very

weak, therefore the propagation leaks outside the region of

interest (localization of the tumor). The manual segmentation
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Fig. 2. 3D longitudinal segmentation of tumors with our CCP level set
method. First row, left: CT image acquired in 2007 (axial view); center and
right panels show axial and sagittal views, respectively, of the CT image
acquired in 2008. Second row, right panel: the signed distance from the

initial contour (the prior φ̃), the level zero of this distance corresponds to
the black contour; the second panel shows the results obtained with α = 1

(no prior); the third panel corresponds to α = 0.47 (very strong prior); the
right panel corresponds to α = 0.7 (medium prior).

Patient
Dice similarity

CCP BAY

Sensitivity

CCP BAY

Specificity

CCP BAY

1 0.898 0.851 0.815 0.774 1.000 0.945

2 0.875 0.826 0.784 0.705 0.991 0.996
TABLE I

COMPARISON OF THE CCP AND THE BAYESIAN MODEL

of tumors is performed by a medical expert by hand drawing

on every 2D slice and is subjective. Therefore, the manual

segmentation is not an “absolute” ground truth. In Table I, we

compare the results obtained with our CCP level set method

and the Bayesian model using the CT data for the two

patients. We evaluate the effect of the weight on the prior for

each approach: γ for the Bayesian model and α for the CCP

model (see Fig. 3). The CCP model gives the best results

in terms of Dice measure. Furthermore, the Bayesian model

suddenly leaks outside the tumor when a weak or medium

weight on the prior is used. This can be explained by the fact

that the prior in the CCP model is introduced as an explicit

constraint which allows us to constrain the segmentation

more efficiently. However, for the two patients considered

in this study, a strong prior leads to an underestimation of

the area of the tumor for both models.

IV. DISCUSSION AND CONCLUSION

We present a novel approach for the longitudinal track-

ing of tumor in CT images. Our approach combines the

registration and segmentation to derive a model that ben-

efits from the advantages of each approach. We introduce

chance constraints to incorporate priors for the shape and

localization of the tumors. The prior is computed from the

registration error and the user input. Our results illustrate the

efficiency and the flexibility of our approach: the method is

adapted to large changes in tumor shape and the user can

introduce priors easily from different sources. The prior is

used to build chance constraints to constrain the evolution of

the level set in the CT images. The CCP makes it possible

to introduce an explicit constraint and permits the violation

of the constraints up to a specified level. However, the
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Fig. 3. CCP level set method versus Bayesian level set model. The left
and panel show the effect of the variation on the prior parameters for CCP
(parameter: quantile α) and Bayesian (parameter: weight on the prior γ)
level set methods on the evaluation measures: Dice similarity, Sensitivity,
and Specificity; the right panel shows the variation of the Dice measure for
the CCP and Bayesian level set methods versus the number of experiments
for different values of γ and α.

constraints can be hold even at a high probability. On the

one hand, the deterministic approach is too rigid to allow

constraint violations. Therefore a solution that satisfies the

constraint everywhere except for a very small set of image

points will be rejected even when this solution gives the

best minimizer except for this insignificant set of points. On

the other hand the Bayesian models which introduce priors

through sampling and then formulate a decision problem do

not ensure that the constraint holds at a high probability.

This makes chance-constrained programming a powerful and

unique tool for optimization problems under uncertainty.

CCP is therefore very suitable for medical image analysis

where uncertainties and risk are omnipresent.
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