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Abstract. We propose a novel graph clustering method guided by ad-
ditional information on the underlying structure of the clusters (or com-
munities). The problem is formulated as the matching of a graph to a
template with smaller dimension, hence matching n vertices of the ob-
served graph (to be clustered) to the k vertices of a template graph, using
its edges as support information, and relaxed on the set of orthonormal
matrices in order to find a k dimensional embedding. With relevant pri-
ors that encode the density of the clusters and their relationships, our
method outperforms classical methods, especially for challenging cases.

Keywords: graph clustering · graph matching · graph segmentation ·

structural prior

1 Introduction

Graph clustering consists in labeling vertices of a graph (or network) in a way
that vertices with the same label belong to a set (alternatively, cluster or com-
munity) with some sort of coherent relation. Typically, graph clustering is un-
supervised, that is, there is no prior information on the shape and nature of the
sets to which vertices should be clustered into. However, in some applications,
prior information on the underlying structure of the clusters of the data may
exist. This can be modeled as a “template” (or model) graph where each vertex
corresponds to a different cluster. When this information is available, we would
like to make use of it to improve the quality of a clustering.

A common example of this scenario are graphs extracted from segmentations
of structured scenes. In a structured scene, the objects are spatially arranged
according to a known structure. For example in medical images, organs in the
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Fig. 1. Visual summary of the proposed template-based graph clustering approach.
Given an observation graph GO (on the left) and a model graph GM representing the
underlying communities and their relationships, we match every vertex in GO to a
single vertex in GM . This assignment is represented as a transformation matrix P ,
which acts as an embedding of the vertices in GO , and optimized so as to minimize an
objective function based of the adjacency matrices of the graphs. We apply k-means
clustering to P to find the final clusters.

body are organized in a fixed anatomical structure. This prior encodes a sig-
nificant amount of information that can help in segmenting the objects in the
image; by clustering a graph built from image information with a template of
the underlying structure, better results could be achieved.

To this end, we propose a matching-based graph clustering technique. Each
vertex of an “observed” graph (the one to be clustered) is matched to a single
vertex of the “model” graph. Based on this mapping, the label of the clusters are
then transferred from the “model” to the “observed” graph. This approach allows
us to leverage prior information on the underlying structure of the communities
by encoding this information in the model graph.

The main contribution of this paper is a novel method for the clustering
of graphs into communities that obey a known prior underlying structure. The
proposed approach is summarized in Figure 1.

Definitions and notations

Let G = (V,E) be a graph, where V is the set of vertices and E the set of
edges. Vertices are denoted by vi or simply i, i = 1...|V |, and edges are denoted
by eij where i and j denote the indices of the vertices of the edge. If the edges
are weighted, then the weight of eij is denoted by wij . Let A ∈ R

|V |×|V | be
the graph adjacency matrix, where an element aij of A is equal to wij if there
is an edge of weight wij in E between vertices vi and vj , and 0 otherwise. Let
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D ∈ R
|V |×|V | be the graph degree matrix, a diagonal matrix where dii = deg(vi),

where deg(vi) denotes the degree of vertex vi. We define the Laplacian L of a
graph, L ∈ R

|V |×|V |, as L = D −A.4

In the proposed approach, graph clustering is driven by a model, and the
problem is then formulated as follows. We define GM as a model, or template,
graph containing |VM | = k vertices, where AM is its adjacency matrix and
LM its Laplacian. The model graph represents the expected basic structure of
the data, where each vertex represents a single cluster, and thus k should be
equal to the number of clusters. We then define GO as an observation graph
containing |VO| = n vertices, where n > k, AO is its adjacency matrix and
LO its Laplacian. The observation graph represents the data to be clustered.
The clustering is expressed as a matching problem, where each vertex in GO is
matched to a single vertex in GM , hence a cluster (or community) is a set of
vertices of GO matched to the same vertex of GM .

2 Related Work

Spectral Graph Clustering. Spectral Graph Clustering [20] is a popular technique
for clustering data organized as graphs. Data can be either originally represented
as a graph, or similarity graphs can be built from the data. From the Laplacian
L of a graph, its first k eigenvectors are computed (i.e. the ones associated with
the smallest eigenvalues). The eigenvectors are then stacked as columns of a
matrix where each row i would encode a k-dimensional embedding of the node i
from the original graph. Then, k-means clustering is applied on this embedding.

An application of Spectral Clustering [16] was proposed for solving percep-
tual grouping in images as a normalized version of Ratio-Cut [9], thus intro-
ducing spectral clustering to the machine learning community. Apart from the
normalized-cut approach proposed by Shi and Malik, Ng et al. [15] proposed to
normalize the rows of the embedding to unit length before applying k-means.
Further variations and extensions of the method can be found in [12,18].

Typical definitions of spectral clustering are unable to exploit any form of
prior information on the underlying structure of the communities beyond the
total number k of communities. Additionally, due to its spectral nature, the
technique has a specific definition of “community” as being a set of nodes with
high internal (intra-cluster) connectivity (i.e. between nodes of the same set) and
low external (inter-cluster) connectivity (i.e. between nodes of different sets) –
a definition that fails to describe some scenarios, e.g. bipartite graphs.

Modularity Graph Clustering. Modularity Q [13,14] is a quality function to mea-
sure the community structure of a graph (i.e. clustering). It is defined as:

Q =
1

2|E|

|V |
∑

i=1

|V |
∑

j=1

[

aij −
diidjj

2|E|

]

δ(ci, cj) (1)

4 Note that other definitions of the Laplacian exist [20].
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where ci is the cluster to which vertex i belongs, and δ(ci, cj) is equal to 1 if
ci = cj and 0 otherwise. Maximizing Q amounts to search for k′ clusters with
a high number of intra-cluster connections and a small number of inter-cluster
connections. It has been demonstrated that exact modularity optimization is
strongly NP-complete [2,5]. The Clauset-Newman-Moore (CNM) algorithm [5]
for clustering a graph performs greedy modularity maximization. Each node is
initially set as its own community; at each iteration, the pair of communities that
most increases modularity is joined until no potential pair increases modularity.
Other greedy modularity-based approaches have been proposed, such as the
Louvain algorithm [2], similar to CNM, but based on greedily changing a node
label to that of its neighbor, and others [3].

It has been shown that modularity maximization algorithms have difficulty
finding small communities in large networks and the resulting clusters tend to
have similar sizes, as the expected number of inter-edges between communities
gets smaller than one (the so-called resolution limit) [7]. Additionally, modularity
maximization techniques automatically find a number of clusters k′, which can
be seen as an advantage in some applications. However, in scenarios where we
have prior information on the underlying structure of the clusters and access to
the real number of clusters k, these techniques may not perform as well as those
that incorporate this information. Finally, the definition of Q implies the same
specific definition of “community” as that of spectral clustering: a set of nodes
with high internal connectivity and low external connectivity.

3 Template-Based Graph Clustering

In this section, we detail the proposed Template-Based (TB) graph clustering
method.

3.1 Basic Formulation of the Inexact Matching Problem

We want to find a mapping P which best maps vertices of GO to vertices of
GM . Many vertices of GO may be mapped to the same vertex in GM , but a
vertex of GO can only be mapped to a single vertex of GM (hence, many-to-one

matching). Similarly to [11], we will generally state the problem as solving:

arg minPF (P ), F (P ) = ‖AM − PTAOP‖
2
F (2)

where ‖.‖F denotes the Frobenius norm, P is a binary transformation matrix
such that P ∈ {0, 1}n×k, and each line in P (corresponding to one vertex of
GO) has exactly one non-zero value (corresponding to the associated vertex in

GM ) such that
∑k

j=1
pij = 1, ∀i = 1...n, where each element pij of the matrix

P indicates whether the observation vertex i is part of the cluster j.
In this formulation, the j-th column of the matrix P indicates vertices in

the j-th cluster. The term PTAOP contracts all the edges of the observation,
representing the connections of each observed cluster as the edges of a single
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vertex in the model. It can be thought of as a compression of the n× n matrix
AO into a k × k matrix that is similar to AM , as can be seen in Figure 1.

The choice of the adjacency matrix instead of the Laplacian was due to the
fact that the Laplacian of the model is unable to capture any information related
to the size of each community. The adjacency matrix formulation, by contrast,
encodes the quantity of edges inside a community as self-loops in the model.

3.2 Approximating the Matching Problem

In the basic formulation of the solution, finding the optimal transformation ma-
trix P ∗ is a NP-hard problem. To find an approximation, we can relax the con-
straints on P to P ∈ R

n×k and PTP = Ik, where Ik denotes the identity matrix
of size k, such that P is now an orthonormal k-frame. Then instead of directly
searching a matching, we seek an embedding for the vertices in a k-dimensional
space, in the spirit of the embedding learned by Spectral Clustering. From this
point forward, we will consider Equation 2 using this relaxed definition of P .

This constraint is smooth and defines a Riemannian manifold called the
Stiefel manifold. Several algorithms exist for optimizing over this space [1,6].
This allows us to perform a local search for an approximation of P ∗ for function
F (P ), which we call Popt, using gradient descent on the Stiefel manifold.

On Riemannian manifolds, at every point a tangent plan (i.e. a linearization
of the manifold equipped with a scalar product) is defined. The Euclidean gra-
dient of a cost function at a point X may not belong to the tangent space at X ,
and in such a case, the projection of the gradient on the tangent space makes it
a Riemannian gradient. This Riemannian gradient parametrizes a curve on the
manifold – a geodesic – that locally diminishes the cost function. For the sake of
efficiency, an approximation – called a retraction – has been developed for the
operation, transforming a displacement in the tangent space into a displacement
in the manifold. This operation is denoted by RX(u) and is the transformation
of a vector u in the tangent space at the point X into another point on the
manifold. As for every gradient based algorithm, the choice of a step size is crit-
ical and line-search methods have been extended to this setup. For more details
about optimization on matrix manifolds, the reader may want to refer to [1]. We
summarize the process of this search in Algorithm 1.

Algorithm 1: Search for optimized transformation Popt using Steepest
Gradient Descent

initialize P0 randomly;
while convergence is not satisfied do

Pt+1 ← RPt
(ηt∇t(F ));

t← t+ 1
Result: Pt

Note that the Steepest Gradient Descent used in Algorithm 1 is an optimiza-
tion method that is vulnerable to local minima. Therefore, different initializa-
tions of P0 may lead to different approximations of P ∗. However, as the results in
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Section 4.1 show, the approximations found from several distinct initializations
produce stable results in practice.

The Euclidean gradient of F defined in Equation 2 is given by

∂F (P )

∂P
= 4(AOPPTAOP −AOPAM ) (3)

The equation for its projection on the tangent space (thus creating the Rieman-
nian gradient ∇(F ) in Algorithm 1) and for the retraction can be respectively
found in [1, Ex 3.6.2 p.48] and [1, Ex 4.1.3 p.59]. The step size ηt is found using
line search.

k-Means Clustering. The optimized Popt can be seen as an analog to the eigen-
vector matrix in the context of Spectral Clustering: each row i ∈ [1, |VO|] in
Popt corresponds to the k-dimensional embedding of the observation vertex vOi

.
If this embedding is of high quality, the distance, in this space, between points
matched to the same model vertex should be small; we can then apply a cluster-
ing algorithm (such as k-means, which we use in this implementation) on Popt.
In this case, we would handle Popt as the input data matrix X , with each xi

corresponding to a line of Popt and, consequently, an observation vertex.
Note that our current implementation utilizes a QR decomposition of the P

matrix for computing the retraction step, which has an approximate complexity
of O(nk2). Thus, scalability to larger datasets with a higher number of classes
is beyond the scope of this current work, and limits the maximum size of ex-
periments. However, there is space for further refinement of the optimization
process, improving TB clustering scalability.

4 Experiments

We conducted a series of experiments to demonstrate the effectiveness of the
template-based graph clustering technique, and compare it with classic baselines
such as Spectral Clustering [20] and both Clauset-Newman-Moore (CNM) [5]
and Louvain [2] Modularity clustering (see Section 2). We performed proof-of-
concept experiments on synthetic datasets (Section 4.1) and on real datasets
(Section 4.2).

The evaluation is performed according to the following measures:
– Adjusted Rand Index [10] (ARI) of the clustering, used as a measure of

clustering accuracy and quality. The Rand Index is a measure of agreement
between two partitions of a set, and can be computed asRI = TP+TN

TP+TN+FP+FN

(where TP, TN, FP, FN are the numbers of true positives, true negatives,
false positives and false negatives, respectively). The ARI is corrected-for-
chance by using the expected similarity of comparisons as a baseline.This
index takes values in [−1, 1], with 0 meaning a random clustering and 1
meaning a perfect clustering (up to a permutation);

– Projector Distance: as the matching of points to clusters can be thought as
an embedding P , and as we are searching for an embedding that approaches
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the “perfect” embedding P ∗ represented by the ground truth5 (i.e. reference
classification of the data), we compute the Frobenius norm of the difference
between the projector of these embeddings: PD = ‖PPT − P ∗P ∗T ‖2F .

The Python code used to run all experiments along with the results generated
are available online6. For solving the manifold optimization involved in Equation
2, the toolbox Pymanopt [19] was used. For oeprations based on graphs, the
NetworkX [8] and Scikit-Network7 libraries were used.

4.1 Experiments on Synthetic Datasets

In order to provide a controlled environment to study in depth the performance
of the TB technique, experiments were performed on different synthetic datasets.
These datasets allowed us to easily control characteristics such as size of clusters
and probabilities of inter- and intra-connection of communities. All synthetic
datasets used are undirected and unweighted (all edges have weight w = 1).

For each experiment, the following steps were taken:

1. Generate a random example of the specified toy dataset;

2. Execute template-based, pure spectral, CNM modularity and Louvain mod-
ularity clustering methods;

3. Compute the two evaluation measures (adjusted rand index and projector
distance) from the output of the clustering;

4. Perform 100 repetitions with different random initializations, compute aver-
age and standard deviation of the evaluation measures.

Description of Synthetic Datasets

The G3 graph: a graph containing three communities connected in a line, i.e.
cluster 1 is connected with cluster 2, which is connected to cluster 3. Probabilities
of inter-connection are 0.1 between communities 1 and 2 and between 2 and
3; probabilities of intra-connection are the complement of the inter-connection
probabilities: 0.8 for the central community and 0.9 for the outer communities.

The G6 graph: a graph containing six communities with no model isomorphisms.
Probabilities of inter-connection are 0.1 between all communities; probabilities
of intra-connection are the complement of the inter-connection probabilities:
1 − 0.1deg(communityi) for each community i, where deg(communityi) is the
number of other communities that have vertices directly connected to vertices
belonging to community i.

5 In practice, P ∗ is not always an orthogonal matrix and to be able to use this distance,
we compute its closest orthogonal matrix.

6 https://github.com/MarEe0/TBGC
7 https://scikit-network.readthedocs.io/

https://github.com/MarEe0/TBGC
https://scikit-network.readthedocs.io/
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The C2 graph: a graph containing four communities in a line; in our experiments,
we varied the inter-connection probability of the two central communities in
order to test a progressively harder clustering scenario. Probabilities of inter-
connection are 0.1 between the outer and the central communities, and variable
between the central communities. Intra-connection probability is the complement
of the inter-connection probabilities.

The BP graph: a graph containing only two communities; used for experimenting
on bipartite graphs (intra-connection probability equal to 0 for all communities)
and hub (or star)-style graphs (intra-connection probability equal to 0 for one
community). We varied the inter-connection probabilities.

Figure 2 shows illustrative examples of all synthetic graphs used. We display
the observation graphs, and the corresponding model graph is represented by
colors (one color for each cluster or each vertex of the model graph).

BP – bipartite

G3 G6 C2 BP – hub

Fig. 2. Illustrative examples of the synthetic graphs used. Solid (resp. dashed) lines
indicate intra (resp. inter)-community edges. Vertices of the same color belong to the
same ground truth community. Examples given for G3, C2 and BP – bipartite have a
cluster size of 4 vertices; those given for G6 and BP – hub have a size of 5 vertices.
Cluster sizes were chosen to be small for the purpose of visualization in this figure.

Generating observation and model graphs: for each synthetic graph, the obser-
vation graph GO was first built by creating the specified amount of vertices per
community. Then, for each pair of vertices, an edge may be added or not, with
the probability of the edge being added specified by the communities to which
each vertex in the pair belongs.

The model graph GM was generated by adding the expected value of con-
nections between communities – thus, the diagonal values (that is, self-loops)
are aMjj = 2Rjj · sj (thus encoding the amount of intra-connections in j) and
the non-diagonal values are aMjk = Rjk · (sj + sk) (thus encoding the amount of
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inter-connections between j and k), where Rjk is the probability of connecting
communities j and k and sj is the size of community j.

Experimental Setup. Three main experiments were set up:

Basic Graphs Comparison: A preliminary experiment was performed on the G3,
G6 and C2 datasets, to compare the performance of each method on basic sce-
narios. The central inter-community probability for C2 was set to 0.42. Different
sizes for the communities were explored: {5, 10, 20, 40, 80}. We aimed to analyze
the basic behavior of all techniques on graphs of different sizes.

C2 Progressive Difficulty: Experiments were performed on the C2 graph ex-
ploring the following values for the inter-connection probability of the central
communities: {.20, .25, .30, .35, .40, .45, .50, .55, .60}. Different sizes for the com-
munities were explored: {10, 20, 40}. The intent of this experiment is to analyze
the behavior of all clustering techniques when faced with progressively harder-
to-separate scenarios, i.e. when inter-connection probabilities increase, the two
central communities become more and more indistinguishable. A visual example
of progressively harder scenarios is shown in Figure 3.

0.8 intra
0.1 inter

0.6 intra
0.3 inter

0.5 intra
0.4 inter

0.4 intra
0.5 inter

0.3 intra
0.6 inter

Fig. 3. Examples of progressively harder-to-separate C2 graphs with cluster size of 8.
Vertices of the same color belong to the same community. Solid (resp. dashed) lines
indicate intra (resp. inter)-community edges. Gray lines indicate edges with an endpoint
in the “outside” communities. Red lines are intra-community edges within the central
communities; blue lines are inter-community edges connecting the central communities.
Each subcaption shows the probability of inter- and intra-connections in the two central
communities. From left to right, as the probabilities shift towards harder-to-separate
scenarios, we see less red edges and more blue edges.
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Bipartite and Hub Comparison: Experiments were performed on the BP graph
with values {.40, .45, .50, .55, .60, .65, .70, .75, .80} for the inter-connection prob-
abilities, and two values for the intra-connection probabilities: 0 (or “Bipar-
tite”) and .50 (or “Hub”). Different sizes for the communities were explored:
{10, 20, 40}. The intent of this experiment was to analyze the behavior of our
clustering technique in a scenario that is known to be extremely hard for tradi-
tional spectral clustering to perform. A visual example of both hubs and bipartite
graphs with different inter-connection probabilities can be seen in Figure 4.

0.3 inter 0.6 inter 0.9 inter

Fig. 4. Examples of progressively harder-to-separate BP – bipartite (top row) and
BP – hub (bottom row) graphs with cluster size of 8. Vertices of the same color belong
to the same community. Solid (resp. dashed) lines indicate intra (resp. inter)-community
edges. Red lines are intra-community edges; blue lines are inter-community edges. Each
subcaption shows the probability of inter-connections between communities. From left
to right, as the probabilities increase, we see more blue edges.

Results and Discussion. Basic Graphs Comparison Results: Figure 5 shows
the results for the Basic Graphs Comparison experiment. Figure 6 displays quali-
tative results for each method and graph. The ARI of the TB clustering is similar
to the spectral clustering (baseline) in most scenarios, with notable exceptions
of small-clusters C2, where it under-performs. The projector distance of the TB
method diminishes in all cases and decreases faster than the spectral method
as the size of clusters increases, outperforming spectral clustering in G3 and G6

starting at cluster size 20. Modularity performance is highly dependent on the
graph being segmented: for C2, the performance is increased as the method seg-
ments external communities correctly and the central communities together, as
can be seen in the qualitative result. For G6, however, the performance for CNM
is significantly lower, mainly because modularity does not force the existence
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Fig. 5. Adjusted Rand Index and Projector Distance for the Basic Graphs Compar-
ison experiments. Error bars represent the standard deviation of the results. Rows
correspond to different graphs (C2, G3, and G6, respectively).

of all clusters. Louvain avoids this shortcoming, but still underperforms until
cluster size increases.

G3 for TB: ARI 1.0 G3 for spectral: ARI 1.0 G3 for modularity: ARI 1.0

G6 for TB: ARI 1.0 G6 for spectral: ARI 1.0 G6 for modularity: ARI 0.64

C2 for TB: ARI 0.64 C2 for spectral: ARI 0.66 C2 for modularity: ARI 0.7

Fig. 6. Qualitative results for the basic experiment with cluster size 10. Each circle of
vertices is a ground truth community; vertices of the same color are predicted to be in
the same community.
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C2 Progressive Difficulty Results: Figure 7 shows the results for the C2 Pro-
gressive Difficulty experiment. We can note, again, that both TB and spectral
graph clustering perform similarly, except on the hardest case (when inter-cluster
probability is .60) with results being better the greater the cluster size. Mod-
ularity, again, under-performs when the difficulty is low before stabilizing at
predicting three clusters, joining the central clusters.

0.60 0.55 0.50 0.45 0.40 0.35 0.30 0.25 0.20
Inter-cluster Probability

0.6
0.7
0.8
0.9
1.0
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I

Cluster size 10
Template-based
Spectral
CNM Modularity
Louvain

0.60 0.55 0.50 0.45 0.40 0.35 0.30 0.25 0.20
Inter-cluster Probability

0.50

0.75

1.00
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Cluster size 10
Template-based
Spectral
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Inter-cluster Probability
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0.8

0.9
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Cluster size 20
Template-based
Spectral
CNM Modularity
Louvain
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Cluster size 20
Template-based
Spectral

0.60 0.55 0.50 0.45 0.40 0.35 0.30 0.25 0.20
Inter-cluster Probability

0.7

0.8

0.9

1.0
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I

Cluster size 40
Template-based
Spectral
CNM Modularity
Louvain

0.60 0.55 0.50 0.45 0.40 0.35 0.30 0.25 0.20
Inter-cluster Probability

0.5

1.0
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r D
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Cluster size 40
Template-based
Spectral

Fig. 7. Adjusted Rand Index and Projector Distance for the C2 Progressive Difficulty
experiments. Error bars represent the standard deviation of the results. Rows are for
different cluster sizes (10, 20 and 40).

Bipartite and Hub Comparison Results: Figure 8 shows the results for the
Bipartite and Hub Comparison experiment. As expected, both modularity and
spectral graph clustering have greater difficulty clustering the bipartite cases,
as their base versions are not equipped to deal with such graphs. By contrast,
TB clustering performs accurately, with the ARI predictably falling off on the
harder cases (such as a hub with few connections and small clusters, where many
nodes are simply unconnected).

4.2 Experiments on real datasets

To validate the TB graph clustering method, we performed experiments on the
email8 and the school [17] datasets.

8 Taken from https://snap.stanford.edu/data/email-Eu-core.html

https://snap.stanford.edu/data/email-Eu-core.html
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Fig. 8. Adjusted Rand Index and Projector Distance for the Bipartite and Hub Com-
parison experiments. Top three lines are for the “Bipartite” case, bottom three are
for the “Hub” case. Error bars represent the standard deviation of the results. Rows
correspond to different cluster sizes (10, 20, 40 for “Bipartite” and for “Hub”).

The email dataset is composed of 1 005 vertices, each representing an indi-
vidual email account in a research institution. The graph has 25 571 edges, when
emails are exchanged from one account to another; the average degree of a ver-
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tex is 33.8 with a standard deviation of 37.4. Each vertex belongs to one of 42
communities, depending on the department of the owner of the email account.

The school datasets are composed of 242 vertices, each representing a student
or teacher in a school. The school1 dataset has 37 414 edges and school2 has
40 108, representing interactions between individuals; average node degrees are
317 and 338 with standard deviations of 0.22 and 0.27 for each. Each vertex
belongs to one of 11 communities, for each student and teacher’s classes.

We used the previously annotated community ground truths to compute the
models. To verify the robustness of our method to imperfections in the model,
we also added Gaussian zero-mean noise to the weights in the models. For the
experiment, the following steps were taken:
1. Generate model graph from the ground truth communities, add noise with

standard deviation σ;
2. Execute TB, spectral, CNM modularity and Louvain modularity clustering;
3. Evaluate the output of the clustering;
4. Perform 40 repetitions with different random initializations, compute average

and standard deviation of evaluation measures.

Results and Discussion. Results for the real experiments are given in Ta-
ble 1 and Figure 9. We can see that the TB method can leverage the underlying
structure of the communities to outperform CNM modularity and spectral clus-
tering, while the low standard deviation shows that it is not significantly affected
by different initializations, despite the intrinsic vulnerability of gradient descent
methods to local minima. The Louvain modularity technique achieves a signif-
icantly better quality. In the email dataset, the projector distance of the TB
is slightly larger than the one of the spectral clustering; however, the spectral
technique underperforms significantly compared to TB, pointing to an overall
lack of quality of the spectral clustering, which may be caused by a failure of the
k-means to properly segment the “better” embedding. In the school datasets,
however, TB largely outperforms all baselines, and edges out the spectral tech-
nique in the Projector Distance. This is justified by the leveraging of the strong
information in our prior. Additionally, we can see that these observations hold
even for moderate amounts of noise, demonstrating the robustness of the TB
technique to imperfect models.

Table 1. Results of the noiseless experiments on the real datasets: Adjusted Rand
Index (ARI) and Projector Distance (PD).

Dataset name Metric TB Spectral CNM Modularity Louvain

email
ARI 0.19 ± 0.01 0.10 ± 0.03 0.17 ± 0.0 0.26± 0.0

Proj. Dist. 7.71 ± 0.01 7.23± 0.0 N/A N/A

school1
ARI 0.89± 0.0 0.47 ± 0.03 0.21 ± 0.0 0.47± 0.0

Proj. Dist. 2.23± 0.0 2.26 ± 0.0 N/A N/A

school2
ARI 0.92± 0.0 0.41 ± 0.02 0.21 ± 0.0 0.56± 0.0

Proj. Dist. 2.16± 0.0 2.18 ± 0.0 N/A N/A
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Fig. 9. Results for the experiment on the real datasets with noisy models, with σ

the standard deviation of the Gaussian noise added to each weight in the model. The
dashed lines are the baseline methods (which are unaffected by noise).

5 Conclusion

In this paper, we presented a novel method for clustering a graph when we
have prior information on the structure of its communities. Although this is
a strong prior and not readily available for many cases, we believe that this
method is a significant step towards improving the quality of clustering and
segmentation of data containing this type of prior, such as graphs derived from
images of structured scenes. Our results show the potential of the template-based
method for clustering graphs with known prior about their community structure.
We obtained equal or greater accuracy than common methods, such as spectral
clustering or modularity, and in particular for scenarios where communities have
little or no internal connections.

There are many possible avenues of research for extending the template-based
graph clustering technique. In several real-world applications, nodes of a network
have multiple underlying communities, e.g. in a product recommendation net-
work, each product may belong to several categories. It could be modified to
support multi-labeled nodes. Further experiments on real datasets and applica-
tions, such as graphs extracted from medical images[4], should also be performed,
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to confirm and explore the advantages and limitations of the technique. Improve-
ments on the algorithm complexity, as well as faster implementations, can result
in a speed-up of the technique. Finally, and perhaps of greater interest, a the-
oretical approximation of the spectral graph theory with the template-based
clustering could be performed by searching for a graph Laplacian-based model
and matching algorithm.
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