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1 Introduction

Abduction is a backward chaining inference, finding the best ex-
planations of an observation with regard to a knowledge base in a
two-steps process: i) hypotheses generation, and ii) explanations se-
lection according to a minimality criterion. A propositional abduc-
tion problem P is a tuple 〈V,O, T 〉 [3], where V is a set of vari-
ables, T denotes the background knowledge of an application do-
main, O represents the observation, which is not directly entailed by
the knowledge base T �|= O, and H is a hypothesis of the problem
P if T ∪ {H} |= O.

Example 1

Let us consider V : {r, c, s, w, n, d}, O : {w ∧ d}, T =
{φ1, · · · , φ4} : φ1 = r → w, if it rains, the ground will be wet;
φ2 = s → w, when the sprinkler is on, the ground will be wet;
φ3 = c → r ∧ d, if there are some heavy clouds, it will rain and get
dark; φ4 = n → d, during the night, it is dark. Potential explana-
tions H can be c, r ∧ n, s ∧ n, r ∧ c, s ∧ c, and c ∧ n.

In our paper, we restrict O and H to be a conjunction of a set of
literals. A hypothesis is an explanation if it satisfies the consistency
(T ∪ {H} is consistent) and explanatory (H �|= O) conditions. Se-
mantic minimality is one of the important criteria in propositional
logic [5, 6] and Description Logics [2] to select the most general
explanations. H is a semantic-minimal explanation if there does not
exist an explanation H′ of P such that T ∪{H} |= H′. One concrete
algorithm to solve the propositional abduction problem, based on se-
mantic tableaux, is proposed in [1, 5] and [7]. In this paper, we focus
on improving the performance of the computation process of abduc-
tive reasoning in propositional logic by developing an optimized se-
mantic tableau method to find semantic minimal explanations for a
propositional abduction problem.

2 An optimized semantic tableau for propositional
logic

2.1 Optimized semantic tableau

Definition 2.1 (Relevant formula)
Given a literal l and a formula φ, φ is a relevant formula for l if l
appears in the normal form of φ. The set of relevant formulas for l is
denoted by J(l).

In Example 1, we have for instance J(r) = {c → r ∧ d}.
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Definition 2.2 (And-Or semantic tableau)
Given a propositional abduction problem P = 〈V,O, T 〉, the And-
Or semantic tableau, denoted by TO(V,O, T ) (TO for short), is an
And-Or tree structure where an And-node (called rule node) consists
of a formula φ ∈ T or ¬O and an Or-node (literal node) consists of
a set of literals {li} derived from its parent rule node. The level of a
node is the distance from the root to this node.

Remark 1. The semantic tableau proposed in [1], denoted by TA, can
be represented as a special structure using And-Or semantic tableau,
denoted by T ′

A: i) every literal node has a unique rule node as a child
and this rule node is not necessarily a relevant formula of its parent
literal node; ii) all the rule nodes appearing at the same level are iden-
tical formula; iii) all the rule nodes in the same branch are different
formulas.

2.2 Tableau construction and hypotheses
generation

We propose to construct a connected And-Or semantic tableau (de-
noted by TG) exhibiting hierarchical connection structures such that,
in contrast to the traditional tableau method, the construction process
involves only relevant formulas in the knowledge base iteratively and
intermediate hypotheses are generated in the node along with the de-
velopment of the tableau. TG is expanded step by step and termi-
nated when a sub-tableau is closed or no more relevant formulas can
be applied: i) level 0 is composed by the negation of the observa-
tion; ii) level 1 is composed by the union of negation of observation
literals (¬oi) by applying expansion rules; iii) an edge derived from
a rule node (φ) at level 2k to a literal node (a) at level 2k + 1 by
applying expansion rules is denoted by φ −→ a; iv) an edge derived
from a literal node (a) at level 2k + 1 to a rule node (φ) at level
2(k+1) is denoted by a ��� φ, where φ is a relevant formula of ¬a
(φ ∈ J(¬a)). The connected And-Or semantic tableau of Example
1 is shown in Figure 1. An intermediate hypothesis Hinter of an el-
ementary sub-tableau3 is the complement of the literals in the open
branches.

Definition 2.3 (Hypothesis model)
A hypothesis H of P is the conjunction of {Hk

inter|k ∈ {1, · · · , n}}
where {Hk

inter|k ∈ {1, · · · , n}} represents n terminal elementary
sub-tableaux in a simple sub-tableau4 of TO . The intermediate hy-
pothesis model M(Hinter) of a sub-tableau S consists of truth as-
signments of a set of literals {li}, where li is the complement of the
literal of an open branch or the literal of a closed branch in the leaf

3 An elementary sub-tableau is a two-level sub-tableau rooted in a rule node.
4 An And-Or semantic tableau is called simple if every literal node has at

most a unique child node.
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Figure 1. The tree-structure of the connected And-Or semantic tableau
method for Example 1.

nodes including S and its ancestors. This set represents the semantic
model of the intermediate hypothesis Hinter in the current elemen-
tary sub-tableau with respect to the ancestor elementary sub-tableau
Tl =

∧
i∈Il

φi. A hypothesis model is the union of the intermediate
hypotheses models (M(H) =

⋃
k∈{1,··· ,n} M(Hk

inter)).

A resolved knowledge base is a knowledge base with supplemen-
tary formulas derived by applying resolution on the original one T ,
denoted by Tc. Tc is represented by formulas rewritten in disjunctive
normal form. For each literal li in M(H), we remove the conjunc-
tion containing its complement li in each formula. If one formula be-
comes an empty formula, the intermediate hypothesis is considered
as inconsistent. We choose one rule node among alternative children
nodes under each literal node, and the conjunction of the comple-
ments of all leaf literal nodes is one potential hypothesis.

In the exploration part, we update the initial explanation set once
a new elementary sub-tableau is added in the tableau. The interme-
diate hypothesis model of this elementary sub-tableau is compared
with the one in the hypotheses set. When M(Hinter) ⊆ M(H)
is satisfied, the new elementary sub-tableau will be considered as a
candidate to construct a hypothesis.

In Example 1, the initial hypotheses are s∧n, s∧c, r∧n and r∧c.
When the elementary sub-tableau associated with φ3 = ¬c∨(r∧d)
is added below φ1 = ¬r ∨ w, c is a new intermediate hypothesis.
Therefore, a new explanation is a conjunction of the literal set ob-
tained by replacing r by c in the initial hypothesis literal set {r, c}.
The new explanation is c.

2.3 Soundness and completeness

Proposition 2. The connected And-Or semantic tableau (TG) and
the semantic tableau proposed in [1] (TA) provide the same sets of
minimal hypotheses.

Sketch of the proof : The proof relies on the following steps. We
first show that TG can be obtained from T ′

A by a sequence Φ of
transformations, combining deletion of branches that would lead to
inconsistencies (closed branches), and “cut and paste”, which con-
sists in moving a semi-closed sub-tableau closer to the root of the
tableau. We then prove that Φ(T ′

A) and T ′
A provide the same sets of

hypotheses. Finally we prove that Φ(T ′
A) and TG provide the same

sets of hypotheses.

3 Experimental evaluation

In this section, we present an empirical study to compare the com-
putational cost of the proposed optimized semantic tableau with the
algorithms in [1] and [4]. The theories used in our experiments to
compare with semantic tableau method in [1] are generated in 3-CNF
using a random generator5. The experiments are carried out by vary-
ing the number of formulas in the theory (namely for 10, 15 and 20
formulas). As evidenced in Table 1, our optimized semantic tableau
based abduction has a significantly lower computation time for all
the experiments compared to the semantic tableau method in [1].

Number of formulas 10 15 20
mean value (TA) 999.64 3147.23 21435.59

std. deviation (TA) 1083.80 2916.39 90244.14
mean value (TG) 2.61 4.58 8.50

std. deviation (TG) 4.29 7.24 13.63

Table 1. Computation cost of the two semantic tableau methods by varying
the number of formulas in the theory.

The comparison between the semantic tableau method with the
other abduction approaches using the diagnosis benchmark in [4]
and Example 1 is shown in Table 2. The proposed method is com-
petitive for the simple example presented in Example 1. However,
the computation time increases along with the number of formulas in
the theory. In the second example, the methods evaluated in [4] are
more efficient. However, some explanations (c) are ignored for this
example and the employed subset minimality is less restricted than
semantic minimality.

Example (in ms) TA TG ATMS HS-DAG MUS
Example 1 713 7 8 9 13

Diagnosis Horn theory out of memory 85 17 17 30

Table 2. Computation time of all the methods.
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