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Abstract. Bipolarity is an important feature of spatial information, consider both imprecision and bipolarity which are two important
involved in the expression of preferences and constraints about sp&atures of spatial information. Indeed, bipolarity is important to dis-
tial positioning or in pairs obpposite spatial relations such as left tinguish between (i) positive information, which represents what is
and right. Another important feature is imprecision which has to beguaranteed to be possible, for instance because it has already been
taken into account to model vagueness, inherent to many spatial rebserved or experienced, and (ii) negative information, which repre
lations (as for instance vague expressions sucb@e to, to the sents what is impossible or forbidden, or surely false [15]. The inter-
right of ), and to gain in robustness in the representations. In previousection of the positive information and the negative information has
works, we have shown that fuzzy sets and fuzzy mathematical motto be empty in order to achieve consistency to the representation, and
phology are appropriate frameworks, on the one hand, to represettieir union does not necessarily cover the whole underlying space.
bipolarity and imprecision of spatial relations and, on the other handTo our knowledge, bipolarity, which has motivated works in several

to combine qualitative and quantitative reasoning in description logdirections and many domains, has not been much exploited in the
ics extended with fuzzy concrete domains. The purpose of this papepatial domain. Nevertheless, bipolarity implicitly occurs when deal-

is to integrate the bipolarity feature in the latter logical framework ing with spatial information (see Section 3). In [8], it has been shown
based on bipolar and fuzzy mathematical morphology and descriphat mathematical morphology, extended to the case of bipolar fuzzy
tion logics with fuzzy concrete domains. Two important issues aresets, is a useful formalism to manage spatial bipolar information. In
addressed in this paper: the modeling of the bipolarity of spatial rethis paper, we first briefly review works related to bipolarity and im-
lations at the terminological level and the integration of bipolar no-precision, particularly for spatial information (Section 2). Then, we
tions in fuzzy description logics. At last, we illustrate the potential of propose both (i) to model explicitly the bipolarity of spatial relations
the proposed formalism for spatial reasoning on a simple example iim our spatial relation ontology (Section 3) and (ii) to add the bipo-
brain imaging. larity feature to description logics with fuzzy concrete domains using
bipolar mathematical morphology (Section 4). The resulting frame-
work enables to provide new mechanisms to derive useful bipolar
concrete representations of concepts and new qualitative and quanti-
In image interpretation and computer vision, spatial relations be!ative reasoning tools to manage bipolar spatial information. The po-
tween Objects and Spatia| reasoning are Of prime importance_ Ne\;ential.of the proposeq forma!ism for Spatlal reasoning iS i”UStrated
ertheless, although spatial reasoning has been largely studied in arfil @ Simple example in brain imaging (Section 5).

ficial intelligence mainly using qualitative representations based on
logical formalisms, there is still a gap with the quantitative represen-2
tations used in image interpretation and computer vision. Description
logics (DL) with concrete domains [22] are & widely accepted waygijng|arity. Bipolarity is important to distinguish between positive
to integrateconcrete and quantitative qualities of real world objects jntormation and negative information [15]. This domain has recently
with conceptual knowledge and as a consequence to combine qualitgiotivated work in several directions, for instance for applications

tive and quantitative reasoning useful for real-world applications. In;, knowledge representation, preference modeling, argumentation,

[19], extending our previous work on a fuzzy spatial ontology operayyiii_criteria decision analysis, cooperative games, among others

tional forimage interpretation [20], we proposed to merge the mathy; 3 6 17, 16]. In particular, fuzzy and possibilistic formalisms
ematical morphology setting with description logics with fuzzy con- ¢, bipolar information have been proposed [15, 5]. To the best of

crete domains. To our knowledge, this association of two frameworks, knowledge, some extensions of description logics have been also

developed in two different communities was novel and mathematic%roposed to handle preferences [24] but these approaches eften d

morphology was never exploited in this context before. The resultyyit, 5 unique scale of preferences and do not handle the bipolar na-

ing framework enabled to provide new mechanisms to derive useful,re of information. Bipolarity has not been much exploited in the
concrete representations of concepts and new qualitative and quangisatial domain either. A few works used intuitionistic fuzzy sets or
tative reasoning tools. Moreover, it also enables to take into accounfierya| valued fuzzy sets [2, 12] but not really asymmetric bipolar-
imprecision to model vagueness, inherent to many spatial relatlonﬁy. As shown in [8], mathematical morphology operations on bipolar
and to gain in robustness in the representations [7]. In this paper, Wg,,,y sets is a useful formalism to manage spatial bipolar informa-
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pair of functions(y, v) such thatvx € S, u(z) + v(z) < 1. For ~ combine two important features: (i) modeling of imprecision using
each pointz, u(z) defines the membership degreerofpositive in-  fuzzy sets, and (ii) computation through mathematical morphology
formation) andv(z) its non-membership degree (negative informa- operators. Due to limited size of the paper, we do not recall mathe-
tion), while 1 — p(x) — v(z) encodes a degree of neutrality, indif- matical models of spatial relations based on fuzzy mathematical mor-
ference or indetermination. This formalism allows representing bottphology but the reader can find an overview in [7]. Contrary to [28]
bipolarity and fuzziness. Concerning semantics, it should be notewhich proposes a spatial fuzzy description logics to reason on both
that a bipolar fuzzy set does not necessarily represent one physicRCC (Region Connection Calculus) relations and directional rela-
object or spatial entity, but rather more complex information, poten-ions, we consider only fuzzy relations in the concrete domain (i.e.
tially issued from different sources (called asymmetric bipolarity in the image space). Moreover, our work is focused on the integration of
[15]). Let us consider the st of pairs of numberga, b) in [0, 1] fuzzy mathematical morphology in DL in order to guide scene seg-
such thata + b < 1. It is a complete lattice, for the partial or- mentation and recognition in images which is quite different from
der defined as [13](a1,b1) =< (a2,b2) iff a1 < ag andby > bs the task of image classification illustrated in [28].

(Pareto ordering). The greatest elementli)) and the smallest el-
ementis(0, 1). The supremum and infimum are respectively defined

as: (a1,b1) V (az, bs) = (max(ar, az),min(br,b2)), (a1, b1) A 3 Bipolarity of spatial information

(a2,b2) = (min(a1,az), max(bi,b2)). The partial order< in- | this section, we propose an approach to model the bipolarity of
duces a partial order on the set of bipolar fuzzy séts:v1) X gpatial information and spatial relations at the terminological level.
(p2,v2) iff Vo € S, pn(z) < po(x)andvi(z) > va(z), and in-  |ndeed, as explained in the introduction, bipolarity implicitly occurs

fimum and supremum are defined accordingly. It follows tha if  \yhen dealing with spatial information. For instance, the position of
denotes the set of bipolar fuzzy sets®n(B, <) is a complete lat- 4 spatial object in the space can be evaluated in ternposifive
tice and hence the appropriate framework for defining bipolar fuzzy(e_g_ set of possible places) anaative (e.g. set of forbidden places
mathematical morphology operators [8]. In Section 4, we propos&yhich are already occupied by other objects) aspects. A semantics
to integrate bipolar fuzzy sets and mathematical morphology intQyt congtraints (whose negation defines what is forbidden or unac-
description logics extended by fuzzy concrete domains in order t%eptable) andpreferences (which represent what is satisfactory or
combine both qualitative and quantitative spatial reasoning. what is desired) also expresses bipolarity. For instance, in a brain
Spatial relations. In [20], we proposed an ontology of spatial rela- jmaging application aiming at finding the right thalamus, constraints
tions (in DL) whose main concepts are represented in Figure 1. Thigan pe all the image space corresponding to the left hemisphere and
ontology is intended to guide image interpretation and the recognignown objects, and preferences can be the spatial locations derived
tion of the structures it contains using structural information on thefrom known anatomical structures having spatial relations with the
spatial arrangement of these structures. An important feature of oyt thalamus. Moreover, the positive and the negative part of a con-
ontology is that we have used a process of reification of spatial relagept can be issued from different sources. For instance in the case
tions to carry the double nature of spatial relations, i.e. concepts Wit medical images, negative information could represent anatomical
their own properties but also links between concepts. A spatial regonstraints, which have always to be satisfied, while positive infor-
lation is not considered in our ontology as a role (property) betweeRnation could represent what is actually seen in the images, for a spe-
two spatial objects but as a concept on its oeialRelation). An-  ¢jfic case. Another issue concerns the modeling of the bipolarity of
otherimportant concept of our ontology is the conc@pttialObject.  gpatial relations, which has not been addressed so far. Indeed, spa
tial relations often go by pairs. For instance, we often condiefer
andright as opposite relations while they are not the contrary of each
other. The semantics opposite captures a notion of symmetry (with
respect to some axis or plane) rather than a strict complementation.
g In particular, there may be positions which are considered neither to
Spatial Relation With e the right nor to the left of some reference object, thus leaving room
as ReferentOblecl. = /= " = for some indifference or neutrality. This corresponds to the idea that
Spatially Related the union of positive and negative information does not cover all the
Object space.
Modeling bipolarity in description logics. Hereafter, we assume
the reader be familiar with DL syntax and semantics and usual nota-
tions are used. The reader can point to [3] for a complete overview.
We define ebipolar spatial conceptCy;, as a paifPosc, Negc)
“RightOf_A" cClossTo D" wherePosc andNege are concepts that respectively represent pref-
- erences and constraints related to the spatial olfjecA bipolar
Figure 1. Representation of the main concepts of the spatial relation  cOncept(Pos, Neg) is interpreted by{Pos™ C A*, Neg® C
ontology, as a Venn diagram. AT, Pos™ N Negt = (7}, expressing that what is possible or pre-
ferred (positive information) should be included in what is not for-
bidden (negative information) [15]. Note that we consider asymmet-
Another important feature of this ontology is that it is enriched ric bipolarity as defined in [17]. Thus, duality is not required between
by fuzzy representations of concepts, which define their semanticshe positive and the negative part of a concept. Given a spatial knowl-
and allow establishing the link between these concepts (which aredge bas& = (7, .4) composed of a terminolody (i.e. Tbox) and
often expressed in linguistic terms) and the information that carassertions about individual$ (i.e. Abox), to satisfy the bipolar con-
be extracted from images. We make use of fuzzy concrete domairnsept C' with respect tolC means tostrictly satisfy -Negc and to
towards this aim. Indeed, fuzzy representations of spatial relationsatisfy Posc as much as possibléWe have the following important

“CloseTo” “RightOf”

Spatial Relation



constructs : concrete features names (t). These features are functional roles. A
e ChipMDyip = (PoscMPosp, NegoUNegp ) interpreted a§ PosZ N composition of features (denotéd, f-, ...) is called a feature chain.

Posk, Negk U Negk, (Post N Posk) N (Negk U Negh) = 07} In addition to the basic concept and term constructors of DL, we have
o CyiplDy;;, = (PoscUPosp, NegcMNegp) interpreted ag PosZ U the following constructs wittP € & a predicate name with an ar-
Posk, NegLZ N Negk, (Post U PosL) N (Negk N Negh)) = 07} ity n andus, ..., un,v1, ..., v, are features chains:

e Ir.Cpip = (In.Posc, Ir.Nege) interpreted agz € AT | Iy, y_ € o Predicate exists restrictioBisy , ..., u, . P interpreted by {a € A7 |
AT : (z,y4) € REAy4 € Posk, (z,y-) € RTAy_ € AT\Negl} 3z1,.mn € AP ¢ (uF(a) = 21) Ao A (u(a) = z0) A (21, ..0) €
e Vr.Cyi, = (Vr.Posc,Vr.Negc) interpreted agz € AT | Vyi,y_ € PP},
AT (z,y4+) € RT = yy € Post, (z,y-) € R = y_ € AT\ ¢ Role forming predicate restriction [18]:
Negt} I (ut, ..., un) (v1, ..., vm) .P interpreted by:

o Cyip C Dy interpreted az{Posgv - Pos%,Neg% - Negg,} {(z,y) € AT x AT | 3ry,... 70, 51,...,8m € AD

s _ T _ v _ T _
We should note that the underlying ordering is the Pareto ordering a4t (@) =711, ug (@) = 7o, v (Y) = 81, Vv (Y) = sm

D
defined in Section 2. Hence, we consider that the main concepts G- | "r”’sld""s’"t? € PA }:I'.b T is a finite set of termi
our ontology are bipolar concepts. erminology and assertions ox T is a finite set of termino-

Bipolar spatial relations. According to the definition of a bipolar logical axioms 4=D andA C D) and an AboxA is an finite set

concept in description logics, we propose a representation of se\fZf assgrtlt)fnsi( : ?’”(concept memberét;p}ja,b) : tRéroIe flller),d
eral spatial relations with a bipolar perspective, which can be ver)‘a’tx) : f(sa ukrl(_e lller) andz1, ..., 2 : P (concrete domain pred-
useful in many applications. For instance, we will see in Section gicate memoers ip)).

that whereas we have a positive information related to the positior]1n our framework, we instantiate the description logid€C (D)

of an anatomical structure (e the left of the right ventricle), we with the concrete domaiff = (As, ®s). As = S'is a 3D space
also want to restrict the search to the right hemisphere of the brai fhe image space) where bipolar fuzzy concrete objects are defined.

without being too strict. In our framework the forbidden area is au- IS typlcaIIyZ2 or 7% for 2D or 3!3 Images. LeB the set of bipolar
tomatically defined by the opposite relation (ite the right of ) but fuzzy_set-s defined over the spatial domainin our framework®s
other constraints could be modeled as well. Our model includes dis2oMaINS:

tance, directional and topological relations, represented by bipola? The unary predicatess and T s denoting §, As) and(As,0).
concepts such €lose To, Very Far From), (Right Of, Left Of), (Top e The names of two unary fuzzy predicajeandr which associate
Of, Bottom Of), (Below, In Front Of ), (Ina direction a, In a direction to a bipolar spatial object conce}§tand to a bipolar spatial rela-
a + 7), (Intheinterior of, Exterior to). tion concepR the interpretation§ux, vx) and (ur, vr) in S.
For each pointt € S, ux(x) represents the degree to whigch

. . . belongs to the spatial representation of the objeat the image
4 Bipolar and morphological fuzzy description (positive information) and x (x) represents its non-membership

logics degree to the spatial representatiorXof ur, vr) represents the

The main objective of this section is to provide a foundation to reason  bipolar fuzzy structuring element defined Snwhich represents
about qualitative and quantitative bipolar spatial information using the bipolar fuzzy spatial relatioR in the image space.

mathematical morphology operators for defining a specific descripe The names of two binary fuzzy predicatande with 555;’;;())

tion logic with bipolar fuzzy concrete domains. These operators pro-  the fuzzy bipolar dilation andg“x ,'fx>) the fuzzy bipolar erosion
URSVR

vide concrete tools for modifying positive and negative information, ¢ he bipolar spatial fuzzy Séﬂx; vx ) by the bipolar structuring
for instance to reduce constraints, to extend preferences in order to element(uur, vz). Possible definitions of the fuzzy bipolar dila-

reach a consensus in a group, or to model spatial relations for explor- 4o and erosion [8] arefz € S:

ing an image. X VX
= (g (1, vx) (@) = eBX VX (2) =
4.1 Description of the formalism (infyesT(VR(y—w)v px (y)),supyest(ur(y—12), Vx(y)))

) ) ) . whereT is a t-conorm (fuzzy union) antlis a t-norm (fuzzy
The proposed framework is based on extensions of the basic descrip- intersection) [14].

tion_ logics incorporating concrete_domaimsCC(D) [22] and en- o  lixorx) s
abling the management of uncertainty and vagueness [21]. In partic- Stupwn) (hx, vx)(2) = 5(HR7VR) (x) =

ular, we integratdipolar fuzzy concrete information into descrip- (supyest(ﬂR(m—y)7 px (), infyesT (vr(z—y), vx (y)))
tion logic concepts using bipolar fuzzy concrete domains. We first
briefly recall the definition of concrete domains and we introduce
their use in description logics.

Definition [27] A concrete domain D is a pair(Ap, ®p) whereAp

is a set andbp a set of predicates names &,. A fuzzy concrete
domain is a pair(Ap, ®p), whereAp is an interpretation domain
and®p a set of fuzzy predicataswith a predefined arity. and an
interpretationd® : A% — [0, 1], which is an—ary fuzzy relation
overAp. We now illustrate how these fuzzy concrete domain predicates are
Role and concept terms.Let C, R,, R, I., I be non empty and used to represent spatial relations and to support bipolar spatial infer-
pair-wise disjoint sets otoncept names (A), abstract role names ence. We assume that each abstract spatial relation concept and each
(R), concrete role names (T), abstract individual names (a), con- abstract spatial object concept is associated with its bipolar fuzzy
crete individual names (c). R, also contains a non-empty skt of representation in the concrete domain by the concrete fehtise
abstract features names () and R. contains a non-empty séf. of ForFuzzyRepresentation, denotechasFR (it is a concrete feature

Here dual definitions of these operators are chosen for their prop-
erties, as will be seen later. Here duality is intended with respect
to the complementation defined as:(u,v) = (v, ) but other
complementations can be used as well, under the condition to be
defined according to the underlying ordering.

e Names for composite fuzzy predicates consisting of composition
of elementary bipolar binary predicates.



because each abstract concept has only one bipolar fuzzy spptial rerestrictions for the fuzzy representation of the abstract spatial con-
resention in the image space). ceptClose_to_X using the bipolar dilation operatdr As a conse-

e SpatialObject =3 hasFR.B. It defines spatialObject as acon-  duence, we have: (ox )
cept which has a bipolar spatial existence in image represented Hy03e-10-X = DistanceRelation M3hasFR.5.,, X ")
a bipolar spatial fuzzy set. =hasFR.(bvc (ux), e1-vp (vx)) . _

e In the same way, we haveSpatialRelation = Relation M3 Other distance relations can be defined in a similar way, by adapting
hasFR.B. the parameters of the trapezoidal function and the definition of the

interpretation in terms of dilation.

Then, the following constructors can be used to define the other confhis construct has a nice interpretation, which well fits with intu-
cepts of the ontology: ition. Indeed, if we consider thdf.x, vx ) represents a spatial bipo-
lar fuzzy set withu x the positive information for the location of
andvx the negative information for this location, dilatifgx, vx)
by a bipolar structuring elemertiz,vg) amounts to dilate: by
B, i.e. the positive region is extended by an amount represented by
the positive information encoded in the structuring element. On the
contrary, the negative information is eroded by the complement of
€the negative information encoded in the structuring element.
As explained in [7], directional relations can also be defined using
fuzzy structuring elements and thus with bipolar fuzzy structuring el-

(per, V), ) ements (Figure 2(b) illustrates the bipolar fuzzy structuring element
» each concefR X can then be defined by: (vLest.VRight), IN the spatial domain) as well as adjacency relations

.R’X : SpatialRelation .ﬂa (hasFR,hasRO.hesFR)./\ whereA . which can be expressed using a distance relation, with a semantics of
is a binary fuzzy predicate built with the bipolar mathematical Very close to

fuzzy operator$ ande. hasRO represents the relatidmas for
referent object (see [19]). For a relatioR which has a referent
objectX, we write:
(hasFR hasRO.hasFR).5 = hasFR. 3+ x /).

e (C'=SpatialObjectrhasSR.R_X denotes the set of spatial objects
which have a spatial relation of tygR with the referent objecX

and we have the following axiomé! C JrelationTo.X andC' C a b

SpatiallyRelatedObiject (c.f. Figure 1). Figure 2. Bipolar fuzzy structuring element defining the semantics ef th

Close_To (a) andLeft_of (b) relations in the spatial domain. Grey levels

encode the membership or non-membership degrees, from 0 (bdatk)
(white).

e JhasFR.(ux,vx) restricts the concrete region associated with
the objectX to the specific bipolar spatial fuzzy sgtx, vx),

e J hasFR.(ur,vr) restricts the concrete region associated with
the relationR to the specific bipolar fuzzy structuring element
(1R, VR),

e JhasFR. 655? :X>> restricts the concrete region associated to the
spatial relationR to a referent objecX, denotedR_X, to the
bipolar spatial fuzzy set obtained by the dilation(pfx, vx) by

4.2 Examples for distance relations

To illustrate our approach, we take the example of distance relationé.3  Properties
As in [11], we use a trapezoidal functignz(z; a, b, ¢, d) to define
the semantics oflose to : RT — [0, 1] which represents the de-
gree of membership to the distance relation with(¢; a, b, ¢, d) =
Oift<aort>d;(t—a)/(b—a)ift €la,b[;(d—t)/(d—c)if t €
le,d[. For theClose_To relation,a = b = 0. From this mem-
bership function, we can define a unipolar structuring elerrent
This structuring element provides a representation in the spatial d
main S [7]: vz € S,ve(z) = trz(d(z,0);a,b, c,d) whered(z, O)

is the distance fromx to the origin O of S (Euclidean distance,
or a digital distance when working on a discrete space). To definé
the bipolar structuring element associate€tose_To, we consider
that its positive part is its unipolar structuring element and its neg-,
ative part is the unipolar structuring element of its opposite relation
Far_From. vr is derived by choosing a trapezoidal function express-e dilation commutes with the supremum, ,)((ux,,vx,)) V
ing the semantics of this relation, ifeis chosen as the smallest dis-  0¢u0) (X2, vx2)) = Sy (x1,vx,) V' (x2,Vx5))
tance for which the relation is satisfied with a non-zero degré, and S0 ((ux,vx)) Vo Ogugwe) ((Bx,vx)) =
the largest distance for which the relation is not completely satisfied 0., vyuz,01a0) (X, vx)), and therefore we have the fol-
andd = +oo. Figure 2(a) illustrates the obtained fuzzy structuring lowing equivalences between concefsX; U R Xz = R_(X; U
element ofClose_To, (vc, vr), in the spatial domain. We can thus ~ Xz2) and R1_. XU R2.X = R12_.X where R12 has for fuzzy

As before we denote in a general way Ry bipolar spatial relation
conceptX a bipolar spatial object concept, aRdX the bipolar con-
ceptRelation R to X. In the following, we consider the ordef de-
fined in Section 2, and the complete lattid@® <) on which bipolar

and fuzzy mathematical morphology operators are defined [8]. The
interpretation in the concrete domain Xfr1 X, is then the bipolar
c}uzzy set((ux, A px,), (vx, V vx,)) and the one oK;U X is
((x: V pxsy), (vx, Avx,)). Several interesting properties of de-
scription logics can be derived from properties of mathematical mor-
phology (for properties of mathematical morphology see [26],[]0, 9
for the fuzzy case and [8] for the bipolar case). We summarize here
the most important ones:

define the abstract bipolar spatial relatiGlose_to by its bipolar representatiofiu: V pe, v1 A vz2);
fuzzy representation in the concrete dom&in e for the infimum, we only have:d, .)((1x,,vx,)) A
Close_to = DistanceRelation M3hasFR.(vc, vr). Oy (Bx5,vx3)) = Sy ((Bxy,vx) AN (pBxs,Vx,))

Let X =3 hasFR.(ux,vx), (1ux,vx) being the bipolar spatial henceR_(XiM X2) ERXiMR Xz ;

fuzzy set representing the information related to the spatial extene increasingness{ux,,vx,) = (Ux,,Vx,) = VY(u,v)
of the objectX in the concrete domain (image space). Using the B, 0¢,,.)((tx1,vx,)) =X Ou) ((1xs,vx,)) and (p1,v1)
concept-forming predicate operatey.P (see [18]), we can define (p2,v2) = Y(ux,vx) € B, ) (ux,vx))

IATA M



O(ug ey ((x,vx)) henceX; T Xz = VR, RX; CRXoand  tion (RLV U RTH) and by pa the setpurrv V prrw):

C C . AnatomicalStructure C SpatialObject
_Rl —_R_2 = VX, RiXLC R X GN L AnatomicalStructure
o iterativity Property:  0(uy,uy) (8(ua ) ((Hx, vx)) = Bl_-\\// iAAnattomicaggrUiture n aar?aSFFRR-(#RLV, VRLV)
- = AnatomicalStructure 1 3 hasFR. ,
6(5<u1,u1>((#2«V2>>>((“X’ vx)) henceR:(R2.X) = (Ri-R2)-X, LV = RLV U LLV (rrv,viny)

where R;_R2 is the relation having as fuzzy representation RTH =GN 3hasFR.(urrH,VRTH)

Oy n) (2, 12)); Left.of = (3 hasFR.v , Right.of )
° extensivity: (HB’ I/B)(O) — (1’ 0) = V(MX, VX) c Close_to = (3 hasFR.v¢ , Far_from)

vi
. ‘ vB) . . . Close_to A = (3 hasFR.5, 4 ,3 hasFR.5%

Iat_lo_n deflned_ b_y a dilation with a bipolar structuring element con- RF?SZOGN mé ha:ZR_(,_eﬂfofA fcmsngJA)

taining the originO of 5; Given a known segmentation of RLV and RTH, the goal

sion and the complementation we haves(,,.)((1x;vx)) =  From an ontological perspective, it means to find the bipo-

¢ [0 (c((1x,vx)))], which induces relations between some |5 spatial constraints and preferences on concrete domains

. . . . RCN , (c3,(pss,vs5)): hasFR given the following ABox A :
These properties provide the basis for inference processes. @ther e ¢1 i RLV , (15, ): hasFR
. . - . . . C2
of relations, in addition to these properties, to derive useful bipolar ., - | eft_of, (r1,(v1., vr)): hasFR
knowledge about their relative positions to known reference objectsWe should note that we only consider the positive part for spatial
concepts that are known (already segmented) but we consider
S ﬁ?pl'catt'otn to Spatial Reasoning for Image reasoning, it means that the ABokU{cs : RPU } is satisfiable.
nterpretation First, we replace the conceRPU by its definition: AU { c3 : GN
imaging application. Our aim is to segment and recognize anatomicdfbleau caIcqu; (currently used in description logics reasoning _[4])
structures progressively by using the spatial information between th@nd the properties of our framework are used to transform the given
resonance images (MRI) obtained in routine clinical acquisitions. A2nd preferences on the fuzzy representation of concepts in the
slide of a typical 3D MRI is shown in Figure 3 with a few labeled concrete domain (in our case, the image domain). For instance,
Close_To_A) in the resulting ABox. As a consequence, we have

an individual named:s such thates : Left_.of_A M Close_To A,

LTH = GN 1 3 hasFR.(urr, vrT)
B, (px,vx) = 8up.wp ((kx,vx)) henceX C RX for any re- Leftof-A = (3 haSFR"S“iCH hasFR 0y )
e duality: for the chosen definition of fuzzy dilation and ero- i5 g define a region of interest of the RPU in the image.
spatial relations. to ensure the satisfiability of the following assertions
amples use simple operations, such as conjunction and disjunction ! “RTH , (c2,s,): hasFR
spatial representations of potential areas of target objects, based o, : Close._to, (rs,(vc, vr)): hasFR
bipolar spatial relations. Using the basics of description logics
In this section, we illustrate the potential of our framework on a brain 13 hasSR.(Left_.of A 1 Close_To_A)}. Then, completion rules of
different structures. The recognition is performed in 3D magneticABOX into more descendent ABoxes and to derive both constraints
structures of interest. the completion rule adds the assertion: 3 hasSR.(Left_.of_A M
(cs, ca):hasSR, (ca,(us,, vs,)):hasFR, fit(us,,us,) as much as

RCN LeN possibleandstrictly fit(vs,,vs,). As c4 is an instance of a conjunc-
LPU tion of bipolar concepts, its bipolar fuzzy spatial representation in
RPU tumor the image domain i$piefiofa A closeToA, URightof.A V [iFarFromA)-
RTH LTH Then, we have to consider assertions of the typeRx with Rx a
RLV LLv bipolar spatial relation and we can apply the constructs of Section
4. So, we have s,,vs,) = (008 Ao, 1 — (812, V ouR)).

Indeed, we consider a conjunction of the positive parts and a
Figure 3. A slice of a 3D MRI brain image, with a few structures: leftand disjunction of the negative parts. By considering that the

rigrt]t Iater?ll_\F/)eUntricéeru:()I[JL)V agdtﬁll-V)v Ca?fﬁ:e ”lgCEiTL'—)@:d_RCNg‘ § function just consists in checking an inclusion relation, we derive

putamen an and thalamus an . Aring-shape : : L , o

tumor is present in the left hemisphere (the usual “left istfighnvention is the fQIIOWIng Sp%’i:al c%rltralnts "_1 the image ngalgi' much as
adopted for the visualization). possibleps, < o, Adyé andstrictly vs, < dug V617,

As shown in Figure 4, the RPU is well included in the bipolar
Let us consider the right hemisphere (i.e. the non-pathologicaf”zzy region of interest which is obtained using this procedure. This

one). We consider the problem of defining a region of interest for thd©9ion can then be efficiently used to drive a segmentation and recog-

RPU, based on a known segmentation of RLV and RTH. AnatomiNition technique of the RPU. _ )
Let us now consider the left hemisphere, where a ring-shaped

cal knowledge, derived from existing medical ontologies, such as the

FMA [25, 20] provides some information about the relative position tUmMor is present. The tumor induces a deformation effect which
of these structures: strongly changes the shape of the normal structures, but also their

« directional information : the RPU is exterior (left on the image) SPatial relations, to a less extent. In particular the LPU is pushed

of the union of RLV and RTH (positive information) and cannot be W&y from the inter-hemispheric plane, and the LTH is pushed to-
interior (negative information): wards the posterior part of the brain and compressed (see Figure 3).

« distance information: the RPU is quite close to the union of RLY APPlying the same procedure as for the right hemisphere does not

and RTH (positive information) and cannot be very far (negative in-'€ad to very satisfactory results in this case (see Figure S, con-
formation). junctive function positive and negative parts). The default relations

This knowledge is converted in our formalism. We have &€ here too strict and the resulting region of interest is not ade-
the following excerpt of the TBox T{) describing anatomi- quate: the LPU only satisfies with low degrees the positive part of
cal knowledge (for readability we denote by the disjunc- the information, while it also slightly overlaps the negative part.



(1]
& !
(3]
(4]
. i
(6]
Figure 4. Bipolar fuzzy representations of spatial relations witpect to (7]
RLV and RTH. Top: positive information, bottom: negative infation.
From left to right: directional relation, distance relatj@onjunctive fusion.
The contours of the RPU are displayed to show the positiohisfstructure [8]
with respect to the region of interest. ]

In such cases, some relations (in particular metric ones) should be
considered with care. This means that they should be more permigt0]
sive, so as to include a larger area in the possible region, account-
ing for the deformation induced by the tumor. This can be easily1!]
modeled by a bipolar fuzzy dilation of the region of interest with [12]
a structuring elemenfityar, Voar) (Figure 2(2)):(1hises Viise) =
Opvarsvoar) (Wdist, Vaist) Where (paist, vaist) is defined as for the
other hemisphere, i.gdy, LY "ETH 5 *LLVIRLTH ) Now the 1
obtained region is larger but includes the correct area and thus tﬁe |
corresponding spatial constraints are satisfied, as shown in the Iggt)
column of Figure 5. This bipolar dilation amounts to dilate the posi-
tive part and to erode the negative part.

(3]

[16]
[17]
[18]
[19]
[20]
Figure 5. Bipolar fuzzy representations of spatial relations witbpect to [21]
LLV and LTH. From left to right: directional relation, distae relation,
conjunctive fusion, Bipolar fuzzy dilation. First line: gitive parts, second
line: negative parts. The contours of the LPU are displageshow the [22]
position of this structure.
[23]
. [24]
6 Conclusion
[25]

In this paper, we proposed a new formalism merging ontological rea-
soning and mathematical morphology reasoning, in the case of bipo-
lar information, in order to handle both positive and negative infor-[26]
mation. The similarity between the underlying algebraic framework
of description logics and mathematical morphology leads to interesizn
ing properties of the proposed extension of description logics, whicipg)
are useful in particular for spatial reasoning. The new reasoning ca-
pabilities offered by this extension have been illustrated in this do-
main, on a brain imaging example: the proposed formalism allows
us to manipulate both abstract bipolar concepts and their spatial con-
crete representations. Developing further such examples will be the
aim of future work.
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