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Abstract.
the objects that compose the scene are known as well as sahegrof
properties and their spatial arrangement. We can take tayamof
this knowledge to perform the segmentation and recognitf@iruc-
tures in medical images. We propose here to formalize ttiblpm
as a constraint network and we perform the segmentationemud)+
nition by iterative domain reductions, the domains beirtg sére-
gions. For computational purposes we represent the dorbgitieir
upper and lower bounds and we iteratively reduce the dontains
updating their bounds. We show some preliminary resultsasmal
and pathological brain images.

1 INTRODUCTION

Image segmentation and recognition is a key problem in stene
terpretation. In some application domains, such as mefieding,

the objects that compose the scene are known as well as some

their properties and their spatial arrangement. This kadgé may
be properly encoded as a symbolic graph. Two main approasames
then be derived. The first one consists in matching this grepte-
sentation with image regions obtained from a preliminagnsenta-
tion (e.g. [5]). Since it is usually difficult to segment thmdge into
semantically meaningful entities, this type of approadiemfelies
on an over-segmentation, which makes the matching more leemp
(no isomorphism can be expected). The second type of agprsas
the graph as a guide in a sequential process. In [4], thetstasc
are sequentially segmented using a deformable model, vidzdn-
strained to fulfill some spatial relations with previousbgsmented
structures. However the result is highly dependent on tgmeata-
tion order and the segmentation of one structure cannoffib&oee
partial information available about not already segmestadttures.

In some application domains, such as medical imagingnetwork, domains, domain bounds, the structural consgraind the

contracting operators for several types of structural Kedge. In
Section 4 we present a propagation process and a decisioassro
based on minimal surface extraction. In Section 5 somerpiediry
segmentation and recognition results are presented amringgnetic
resonance images (MRI).

2 PRELIMINARIES

Structural Knowledge Representation — The structural arrange-
ment of anatomical structures is known and almost stablen av
the presence of a pathology. This knowledge, supposed torisése
tent, can be appropriately encoded by an hypergraph [7] evtier
vertices correspond to spatial objects and the edges (betaree or
several nodes) may represent either:

e known properties of objects, such as the connectivity, arpri

of range of volumes,

e relative positions between structures,

e appearance properties, such as homogeneity or contrash. Su
characteristics depend on the imaging modality (MRI in our e
ample).

Since such knowledge is usually expressed in linguistimse(in
anatomical textbooks for instance [19]), fuzzy sets ctutgtian ap-
pealing framework for its formal modeling: to representtepae-
lations, to account for different types of imprecision,ateld to the
imperfections of the image, and to the intrinsic vaguenésome
relations [1]. Membership functions defining these fuzag san be
learned from a data base of examples.

Fuzzy Sets [6] — Let X be a bounded subset @f*. A fuzzy set

In this paper, we propose a new method to overcome these limon X will be denoted by its membership functipn: X — [0, 1].

tations. The idea is to express the problem as a constraipaga-
tion process, exploiting the capability of constraint natks to solve
combinatorial problems [18]. The propagation can be peréat ei-
ther by adding or simplifying constraints or by reducing tleenains
of variables. In the scope of qualitative spatial reasonthg first
option has been investigated in particular to solve saliifiaprob-
lems, for instance with RCC-8 relations [16] or qualitatietative
positions [10]. We propose here to investigate the secotidrop.e.
the iterative reduction of the variable domains.

We first recall in Section 2 some definitions on structuraieepn-
tations. Section 3 is the core of the paper. We define the i@nst

1 Telecom ParisTech, CNRS UMR 5141 LTCI, Paris,
{olivier.nempont, isabelle.bloch, elsa.anggl@telecom-paristech.fr

2 Unite ESPACE S140, IRD-Cayenne/UAG, Guyane Francaisgileja-
mal.atif@gmail.com

email:

We denotex-cuts byu,., and by F the set of fuzzy sets defined on
X. (F, <) is acomplete lattice for the usual order on fuzzy sets. The
supremumyv and infimumA are themax andmin respectively. The
smallest element is denoted by and the largest element Hy-.

We denote the fuzzy complementationddy:)(z) = 1 — u(z), the
Lukasiewicz t-norm byT (z,y) = max(0,z + y — 1) and t-conorm

by L(z,y) = min(1,z + y), for z,y in [0, 1].

3 STRUCTURAL RECOGNITION PROBLEM
AS A CONSTRAINT NETWORK

3.1 Structural segmentation and recognition
problem

Let] : X — R™ be agrey level image. We want to extract a seiof
structuresy = {O;|i € [1..N]} present in that image. Each of these



variablesO; is represented as a fuzzy subgetc F of X and takes
values in a domai; C F. The set of domains associated witlis
denoted byD. This recognition problem is constrained by the prior
knowledge described in Section 2. Let us assume for insthatéhe
knowledge base contains the relatios Is to the right of B”. The
recognition amounts to find two fuzzy sets and . satisfying the
binary constraian{’}g(ul, u2) = 1. The formal expression of these
constraints is described in Section 3.3 for several typeslafions.
We will denote byC the set of constraints.

Our segmentation and recognition problem can thus be adedci
with a constraint networKx, D, C). A solution {yu;|u; € D;,i €
[1..N]} of our problem has to fulfill all constraints. Ideally thisobr
lem would have a unique solution. However it is generallyarnd
constrained and different solutions are possible. Thraagiracting
operators we will simplify our problem to obtain domains kse as
possible to the set of solutions. In the following we alwagsiame
that the problem is satisfiable.

3.2 Domain definition

The definition above involves the representation and theipnba
tion of domains which are subsets &f. In practice, membership
values are discretized, and#ifis the cardinality of the current dis-
cretization of{0, 1] andn the cardinality ofX, the cardinality ofF is

thenk™ (1031972 for the 2D examples presented in Section 5). Han-

dling such a set is generally not computationally tractatrid we
have to consider a simplified version of it. In [15], the authepre-
sent this subset by its Minimum Bounded Rectangle (MBR) (he
smallest rectangle in 2D that includes all elements of thealn).
This very compact representation is nevertheless not aldegture
the geometry of objects and provides a poor representat@rsider
for instance a diagonal line) that will limit the efficiencthe con-
straint propagation process.
Considering the lattice structure &f, we propose here to define

the domain bounds as the supremum and infimum of fuzzy sets oveb

the domain. LetD4 C F be the domain associated with an object
A. We define the upper bountiof D4 as:A = V{v € D4}. Itcan
also be interpreted as an over-estimatiomaf The lower boundd

is defined asA = A{v € Da} and is an under-estimation pfs.
We can notice thatv € D4, A < v <A,

For instance a tiny domain for the left lateral ventri€l&l (delin-
eated in Figure 1(a)) is defined as the six fuzzy sets in (bje Nt
the third one isuzv;. The lower and upper bound$. V1, V1) of
this domain are presented in (c).

Based on these notations, we represent the domain assbwitte
a structureA by its bounds:

(A, 4) ={ve FIA<v < A}.

Note that if A ¢ A, the domain(4, A) is empty and the problem

;
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Figure 1. A cropped axial view of a brain MRI. (a) Contour of left latera
ventricle (LVI). (b) A domain forLV' that contains six fuzzy sets. (c) Lower
bound LV and upper bound, V1.

is unsatisfiable. LetA', A4") and (A%, A4%) be two non empty do-
mains for the structurel. We consider the following partlal order:
(A4 A") < (42D if Ve € X, AMx) > A%(z) andA' (z) <

ZQ( ). The associated supremum and infimum operators are respec-
tively defined as(A!, A") v (42, 4°) = (A* A A2, A" v A°) and
(AV, A A (A2, A7) = (Al v A2, AN AN AD).

3.3 Contracting operators
3.3.1 General issues

The constraints involved in the knowledge data base aressespd
as symbolic relations. Each constraint is defined as a fum¢di :
F* — {0,1} if k objects are involved in the relation. As detailed
below, it will be expressed in terms of fuzzy sets represgnthe
objects and the spatial or appearance relations. Due toizbeof
the domains, contracting operators that exhaustively sealve do-
mains (to achieve arc consistency for instance) cannot plieap
We thus define weaker contraction operators that computedioew
main bounds from the initial domain bounds. A contractingrapor
(;D;C)
(¥;D';C)
in the set of constraini@, D andD’ are the associated domains rep-
resented by their bounds, wif’ < D. Notice that the contracting
operators will generally not achieve arc consistency norc@ssis-
tency [9]. Indeed the domain may contain two values thatlffialfi
constraints but their supremum or infimum does not necésgsari

is written as: where) is the set of variables involved

3.3.2 Directional relative position

In [1] a method to characterize the directional relativeitpms be-
tween objects using mathematical morphology was propdsep-
pose for instance that the caudate nucléusi (delineated in Fig-
ure 2(a)) is located on the right of the left ventridl&’l (delineated
y dashed line). The relation “on the right” can be charédmter by
a structuring element. The fuzzy dilationd, (pzv;) of prv: by v
(displayed in (b)) defines a fuzzy set that corresponds tgdfirets
on the right of LVI. We consider that such a relation from an object
A to an objectB is satisfied if it is for all points ofB, and we also
impose thatB is included in the complement of. The associated
constraint can be defined as:

“ 1 if S T 61/ b )
O lip) :{ 0 otﬁ;rwise( (), i)

Suppose that the objectd and B are respectively defined over
the domains(A, A) and (B, B). The elements: of (B, B) that
satisfy Cd” accordmg to the current domain of are such that:
3 € (A A < TE.0),e(0), hencen < T(6,(A), c(4)),
since the dilation and™ are increasing and the complementation is
decreasing. The contracting operator associated withdhst@int
C4'"5 is derived from this inequality.

DIRECTION CONTRACTING OPERATOR:

(A, B; (A, A), (B, B); Ci's)
(4, B; (A7Z)7(§7§/\T(5V(A) «(A))); CT5)

Considering the same example, Figure 2 shows the upper bound
LVI (c) andCDI (d) of the domains ofLV! and CDI (the lower
bound is here the empty set). The dilatir{ LV 1) is displayed in (e)
and we can see in (f) the updated upper boGHal. The definition
of the initial bounds will be addressed in Section 4.
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Figure 2. A cropped axial view of a brain MRI. (a) Contours of the left
lateral ventricle V1) and the left caudate nucleus'(Vi). (b) Fuzzy set
that represents the points on the right of LVI. (&) 1. (d) CN1. (e) On the
right of LV1. (f) C N1 updated.

3.3.3 Distances

Distances from fuzzy objects may be computed using mathiemat
cal morphology [1]. Let us assume that we have some knowledg

about the distance between two objedtsnd B, that can be mod-
eled as a fuzzy interval. The region of space satisfying suce-
lation to a reference objeqt; is defined as the set difference be-
tween two dilations, using two structuring elementsand v de-
fined in the spatial domain and derived from the fuzzy interva
T(e(du, (1)), 0uy (111)). Two fuzzy setsuy and e satisfy the dis-
tance constraint betweefiand B if:

1 pe < T (b, (1)), 00y (1)),

dis
Calp (i, p2) = { 0 otherwise

DISTANCE CONTRACTING OPERATOR:

(A,B{(AA),(B,B):Ci%)
(A, B (A A), (B, B A T (0 (), 0, (A))); CFE)

3.34

Consider now two objectd and B with A included inB. The asso-
ciated constraint can be expressed as:

Inclusion

in _ 1 |f M1 S M2,
Cdlp(m, p2) = { 0 otherwise
INCLUSION CONTRACTING OPERATOR:

(A,B; (A, A), (B, B);C4'p)
<AvB;(AvA/\B)7(§\/AvB)’CrfB>

The inclusion prior can be extended to a partition prior, ifer
stance if an objecl can be decomposed into subpdrts; }.

3.3.5 Connectivity

If A is a connected object, its domain can be restricted to coatiec
fuzzy sets (definitions of fuzzy connectivity can be founfllin, 14]).

We denote by, H C F, the set of connected fuzzy sets.

conn 1 if M1 S H7
Ca () :{ 0 otherwise
A new upper bound can be obtained 8§(A) = \/{v € H|A <
v < A}. However it can be shown that this filter is not robust (a
small error onA may cause a large error on the result). As discussed
in [14], we prefer the following formulation:
(@) = V{v e H | v < Aand maxeex v(z) < p< (A1)},
where < stands for the Lukasiewicz implicator, i.e< (4, v) =
mingex min(1,1 — A(z) + v(z)).

CONNECTIVITY CONTRACTING OPERATOR:

(A5 (A, A); 05
(A5 (4, €2(A); C5™)

3.3.6 Volume

A volume prior is represented as a membership funcfief),, :
R* — [0, 1]. The constraint is formulated as (see [14] for details):

1 if maxgex p(z)
R () = < max, e+ min(py (1) (), 1, (V)
0 otherwise

wherepy (1) (v) = sup{a, |pa| > v}, |ua| denoting the cardinality

? I.e. the volume) of thex-cut 11, .

The reduction of the domain to the fuzzy sets that satisg/ghbr,
will generally not change the bounds. However if we also sspp
that the object is connected, the upper bound can be filt@watd
ingto:&,,  (A) =\{veHlv <AandCy(v) = 1}.

VOLUME AND CONNECTIVITY CONTRACTING OPERA-
TOR:

(A; (A, A); O™ A CHY
(A (A &y, (A); CT™ ACKT)

min

3.3.7 Adjacency

A degree of adjacency betweeh and B can be defined as [1]:
Hadj(pa, pB) = sup, ,ex min(pa(z), us(y), n(z,y)) where
n(x,y) stands for a connectivity degree between two paintnd
y of X. We define the following constraint:

‘ 1 if min(maxzex p1(z),
Cal (s p2) = { maxzex p2(2)) = padi (11, ),
0 otherwise

As in the volume case, a domain reduction by an adjacency con-
straint does not affect its bounds. Therefore, we also denghe
adjacency jointly with a connectivity prior, and define tioldwing
filter: £27(B) = \/{v € H|v < BandC43% (4, v) = 1}.

ADJACENCY AND CONNECTIVITY CONTRACTING OPER-
ATOR:

<A7B; (A7 Z), (B B) CZdJB /\ Oconn Cconn>
(4, B; (A, £57(A)), (B, &57(B)); CiTp ACE™ ACE™)

3.3.8 Contrast

The following constraint will play a key role in the propaiget pro-
cess, since it will be computed from image data. We suppose he



that the contrast between the structures is roughly knovehsta-
ble, which is the case in MRI (the lateral ventricles are f@tance
hypointense compared with the white matter on T1 weighted)MR
We first define the grey level membership function associafiéu

a spatial object asu’ (v) = SUP,e x r(x)=v HA(T), Where !l is
the intensity function and a grey level value (conversely a spatial
membership functiop. can be obtained from a grey level opé as
p(x) = ul o I(x)).

We rely on the definition of Michelson for the contrast [12]:
c= ﬁ wherev; andwv, are two grey levels. According to the
extension principle [20], we obtain the following membeépsfunc-
tion for the contrast between two fuzzy objectsand B, with grey
level membership functions’, andu5:

pa,p(c) = Sup(m,1,2)6R+2_C,'U11U2 min(ﬂg(vl)vﬂg('w))'
? v1+v

2
Conversely, if we consider a contrast pripf, 5, we can obtain
the set of grey levels that satisfy this contrast prior frobjeot

. —1
A as: MI (’U) = Sup(’ul o) ERT2 v=v1xvo mm(ﬂg (Ul)7 M]1Q4¢B(U2))
with iy () = sup,.;_, y,_1-c %, 5(c) and from objects3
[t 1+c
aS:MI (U) = Sup(’ul o) ERT2 v=v1xvo HliH(MIB (’Ul)7 HIACA,B(,UQ)) Wlth

pa,p (V) =SUD gy gy, 1xe pp(c).

CXH (1, p2) =
1 if Yo € RT,
i (v) <sup, o cpro min(pg (o), ph p(v2))

V=707 *Vg

andvv € RT,

. —1
ps(v) <sup, o cpre min(pi (01), ph g (v2))

V=707 *vg

0 otherwise
CONTRAST CONTRACTING OPERATOR:

(A,B; (A, A), (B, B); C&)
(A, B; (A, AN (sup(,,, ) etz min(pg(v1), w5 (v2)) 0 1)),

V=07 *Vg

n : -1 con
(B, BA(sup,,, . ent+> min(uip(v1), pli 5 (v2)) o 1)); CXH)

V=01%*v3

: (b) :
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Figure 3. (a)LVI. (b) u! .. (c) Originalyl, , ,, (plain), updated one
(dashed)WW M1 before (d) and after (e) application of the contrast
contracting operator.

This is illustrated in Figure 3. Suppose for instance thatftlzzy
set displayed in (a) is the upper bould’] of the domain of the
left lateral ventricle. The associated grey level membpr&mction
pky,, is shown in (b). An upper bounid” M1 for the left white matter
structures is displayed in (d) (the contoud®tM/1 is also shown) and
whs o in (€). The application of the contrast contracting operate

stricts iy, ,,, to the membership in (c) (dashed), which corresponds

to the updatedV M1 (e).

4 CONSTRAINT PROPAGATION

We describe here a simple propagation algorithm to perfoeséeg-
mentation and recognition of a set of structuge$-irst we initialize
the domains of these structureg @y, 1) and we restrict the set of
constraints to those that involve only variablesinThe constraints
are then sequentially applied to reduce the variable d@snam to
reduce the upper bound and increase the lower one.

The constraints could be applied sequentially without amer
ing. However in most cases the constraint computation woelldse-
less and time consuming. Different factors may influencebirge-
fit of the computation of a constraint. Among them we consttier
amount of change (since the last computation) of the bouhtiseo
variables involved in the constrafrand the computation cost of the
constraintC'C' (function of the complexity of each involved opera-
tion such as dilations). We define a priorifor each constraint, ini-
tialized toP(0) = %éx) At each step of the propagation process
the highest priority constraint is selected and the assatieontract-
ing operator is computed. The priority of the constrainhisnt set to
0. The application of this contracting operator may inducengfes
on the domain of its variables. When this occurs, the psiafitof a
constraint that depends on one of the variables is updatied@ss:
Seex@ () = A(2) + (A%(x) — Al (2)

cc ’

P(i+1) = P(i)+

were(A', A") and(A2, A°) are respectively the domains before and
after a change on the variable aRd:) is the priority value at step
The process stops when the priority of all constraints isaetp0.

3 In AC —3 algorithm [11], the list of constraints to update would espond
to those with a non-zero amount of change.

Figure 4. LV (left) and LV (right) at step O (a), 500 (b), 1000 (c), 2500
(d), 10000 (e) and 20000 (f) of the propagation process. ditget object
LV is delineated.



Ideally the upper and lower bounds of the different domaiils w
converge to the same fuzzy set. However this will generadtyat-
cur and there remains some indecision at least on objecilanies.
Even if the propagation significantly reduces the searchespgais
still time consuming to apply a backtracking algorithm taregt an
optimal solution according to some cost function. Therefee pro-
pose to refine the segmentation of each structure by usinmgetieod
proposed in [13], based on minimal surface optimization [3je
segmentation problem consists in finding the closed curaentini-
mizes a metric based on the obtained bounds. This can efficken
solved using a graph-cuts based method [2] for instance.

5 PRELIMINARY RESULTS ON NORMAL AND
PATHOLOGICAL BRAIN

Figure 5.
segmentation results for the internal structures. (c) 20 bR brain
affected by a tumor. (d) Segmentation results for intertralcures.

(a) 2D T1 weighted brain MRI. (b) Cropped view of
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