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Abstract. In some application domains, such as medical imaging,
the objects that compose the scene are known as well as some oftheir
properties and their spatial arrangement. We can take advantage of
this knowledge to perform the segmentation and recognitionof struc-
tures in medical images. We propose here to formalize this problem
as a constraint network and we perform the segmentation and recog-
nition by iterative domain reductions, the domains being sets of re-
gions. For computational purposes we represent the domainsby their
upper and lower bounds and we iteratively reduce the domainsby
updating their bounds. We show some preliminary results on normal
and pathological brain images.

1 INTRODUCTION

Image segmentation and recognition is a key problem in scenein-
terpretation. In some application domains, such as medicalimaging,
the objects that compose the scene are known as well as some of
their properties and their spatial arrangement. This knowledge may
be properly encoded as a symbolic graph. Two main approachescan
then be derived. The first one consists in matching this graphrepre-
sentation with image regions obtained from a preliminary segmenta-
tion (e.g. [5]). Since it is usually difficult to segment the image into
semantically meaningful entities, this type of approach often relies
on an over-segmentation, which makes the matching more complex
(no isomorphism can be expected). The second type of approach uses
the graph as a guide in a sequential process. In [4], the structures
are sequentially segmented using a deformable model, whichis con-
strained to fulfill some spatial relations with previously segmented
structures. However the result is highly dependent on the segmenta-
tion order and the segmentation of one structure cannot benefit from
partial information available about not already segmentedstructures.

In this paper, we propose a new method to overcome these limi-
tations. The idea is to express the problem as a constraint propaga-
tion process, exploiting the capability of constraint networks to solve
combinatorial problems [18]. The propagation can be performed ei-
ther by adding or simplifying constraints or by reducing thedomains
of variables. In the scope of qualitative spatial reasoning, the first
option has been investigated in particular to solve satisfiability prob-
lems, for instance with RCC-8 relations [16] or qualitativerelative
positions [10]. We propose here to investigate the second option, i.e.
the iterative reduction of the variable domains.

We first recall in Section 2 some definitions on structural represen-
tations. Section 3 is the core of the paper. We define the constraint
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network, domains, domain bounds, the structural constraints and the
contracting operators for several types of structural knowledge. In
Section 4 we present a propagation process and a decision process
based on minimal surface extraction. In Section 5 some preliminary
segmentation and recognition results are presented on brain magnetic
resonance images (MRI).

2 PRELIMINARIES

Structural Knowledge Representation – The structural arrange-
ment of anatomical structures is known and almost stable, even in
the presence of a pathology. This knowledge, supposed to be consis-
tent, can be appropriately encoded by an hypergraph [7] where the
vertices correspond to spatial objects and the edges (between one or
several nodes) may represent either:

• known properties of objects, such as the connectivity, a priori
range of volumes,

• relative positions between structures,
• appearance properties, such as homogeneity or contrast. Such

characteristics depend on the imaging modality (MRI in our ex-
ample).

Since such knowledge is usually expressed in linguistic terms (in
anatomical textbooks for instance [19]), fuzzy sets constitute an ap-
pealing framework for its formal modeling: to represent spatial re-
lations, to account for different types of imprecision, related to the
imperfections of the image, and to the intrinsic vagueness of some
relations [1]. Membership functions defining these fuzzy sets can be
learned from a data base of examples.

Fuzzy Sets [6] – Let X be a bounded subset ofZn. A fuzzy set
onX will be denoted by its membership functionµ : X → [0, 1].
We denoteα-cuts byµα and byF the set of fuzzy sets defined on
X. (F ,≤) is a complete lattice for the usual order on fuzzy sets. The
supremum∨ and infimum∧ are themax andmin respectively. The
smallest element is denoted by0F and the largest element by1F .
We denote the fuzzy complementation byc(µ)(x) = 1 − µ(x), the
Lukasiewicz t-norm by⊤(x, y) = max(0, x+ y− 1) and t-conorm
by⊥(x, y) = min(1, x+ y), for x, y in [0, 1].

3 STRUCTURAL RECOGNITION PROBLEM
AS A CONSTRAINT NETWORK

3.1 Structural segmentation and recognition
problem

Let I : X → R+ be a grey level image. We want to extract a set ofN

structuresχ = {Oi|i ∈ [1..N ]} present in that image. Each of these



variablesOi is represented as a fuzzy subsetµi ∈ F of X and takes
values in a domainDi ⊆ F . The set of domains associated withχ is
denoted byD. This recognition problem is constrained by the prior
knowledge described in Section 2. Let us assume for instancethat the
knowledge base contains the relation “A is to the right ofB”. The
recognition amounts to find two fuzzy setsµ1 andµ2 satisfying the
binary constraintCdir

A,B(µ1, µ2) = 1. The formal expression of these
constraints is described in Section 3.3 for several types ofrelations.
We will denote byC the set of constraints.

Our segmentation and recognition problem can thus be associated
with a constraint network〈χ,D, C〉. A solution{µi|µi ∈ Di, i ∈
[1..N ]} of our problem has to fulfill all constraints. Ideally this prob-
lem would have a unique solution. However it is generally under-
constrained and different solutions are possible. Throughcontracting
operators we will simplify our problem to obtain domains as close as
possible to the set of solutions. In the following we always assume
that the problem is satisfiable.

3.2 Domain definition

The definition above involves the representation and the manipula-
tion of domains which are subsets ofF . In practice, membership
values are discretized, and ifk is the cardinality of the current dis-
cretization of[0, 1] andn the cardinality ofX, the cardinality ofF is
thenkn (10131072 for the 2D examples presented in Section 5). Han-
dling such a set is generally not computationally tractableand we
have to consider a simplified version of it. In [15], the authors repre-
sent this subset by its Minimum Bounded Rectangle (MBR) (i.e. the
smallest rectangle in 2D that includes all elements of the domain).
This very compact representation is nevertheless not able to capture
the geometry of objects and provides a poor representation (consider
for instance a diagonal line) that will limit the efficiency of the con-
straint propagation process.

Considering the lattice structure ofF , we propose here to define
the domain bounds as the supremum and infimum of fuzzy sets over
the domain. LetDA ⊆ F be the domain associated with an object
A. We define the upper boundA of DA as:A = ∨{ν ∈ DA}. It can
also be interpreted as an over-estimation ofµA. The lower boundA
is defined as:A = ∧{ν ∈ DA} and is an under-estimation ofµA.
We can notice that∀ν ∈ DA, A ≤ ν ≤ A.

For instance a tiny domain for the left lateral ventricleLV l (delin-
eated in Figure 1(a)) is defined as the six fuzzy sets in (b). Note that
the third one isµLV l. The lower and upper bounds(LV l, LV l) of
this domain are presented in (c).

Based on these notations, we represent the domain associated with
a structureA by its bounds:

(A,A) = {ν ∈ F|A ≤ ν ≤ A}.

Note that ifA � A, the domain(A,A) is empty and the problem

LVl

(a) (b) (c)

Figure 1. A cropped axial view of a brain MRI. (a) Contour of left lateral
ventricle (LVl). (b) A domain forLV l that contains six fuzzy sets. (c) Lower

boundLV l and upper boundLV l.
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3.3 Contracting operators

3.3.1 General issues

The constraints involved in the knowledge data base are expressed
as symbolic relations. Each constraint is defined as a function C :
Fk → {0, 1} if k objects are involved in the relation. As detailed
below, it will be expressed in terms of fuzzy sets representing the
objects and the spatial or appearance relations. Due to the size of
the domains, contracting operators that exhaustively browse the do-
mains (to achieve arc consistency for instance) cannot by applied.
We thus define weaker contraction operators that compute newdo-
main bounds from the initial domain bounds. A contracting operator

is written as:
〈ψ;D; C〉

〈ψ;D′; C〉
whereψ is the set of variables involved

in the set of constraintsC, D andD′ are the associated domains rep-
resented by their bounds, withD′

4 D. Notice that the contracting
operators will generally not achieve arc consistency nor 2Bconsis-
tency [9]. Indeed the domain may contain two values that fulfill all
constraints but their supremum or infimum does not necessarily.

3.3.2 Directional relative position

In [1] a method to characterize the directional relative position be-
tween objects using mathematical morphology was proposed.Sup-
pose for instance that the caudate nucleusCNl (delineated in Fig-
ure 2(a)) is located on the right of the left ventricleLV l (delineated
by dashed line). The relation “on the right” can be characterized by
a structuring elementν. The fuzzy dilationδν(µLV l) of µLV l by ν
(displayed in (b)) defines a fuzzy set that corresponds to thepoints
on the right ofLV l. We consider that such a relation from an object
A to an objectB is satisfied if it is for all points ofB, and we also
impose thatB is included in the complement ofA. The associated
constraint can be defined as:

C
dir
A,B(µ1, µ2) =



1 if µ2 ≤ ⊤(δν(µ1), c(µ1)),
0 otherwise.

Suppose that the objectsA and B are respectively defined over
the domains(A,A) and (B,B). The elementsµ of (B,B) that
satisfyCdir

A,B according to the current domain ofA are such that:
∃ζ ∈ (A,A), µ ≤ ⊤(δν(ζ), c(ζ)), henceµ ≤ ⊤(δν(A), c(A)),
since the dilation and⊤ are increasing and the complementation is
decreasing. The contracting operator associated with the constraint
Cdir

A,B is derived from this inequality.
DIRECTION CONTRACTING OPERATOR:

〈A,B; (A,A), (B,B);Cdir
A,B〉

〈A,B; (A,A), (B,B ∧ ⊤(δν(A), c(A)));Cdir
A,B〉

Considering the same example, Figure 2 shows the upper bound
LV l (c) andCDl (d) of the domains ofLV l and CDl (the lower
bound is here the empty set). The dilationδν(LV l) is displayed in (e)
and we can see in (f) the updated upper boundCDl. The definition
of the initial bounds will be addressed in Section 4.
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Figure 2. A cropped axial view of a brain MRI. (a) Contours of the left
lateral ventricle (LV l) and the left caudate nucleus (CNl). (b) Fuzzy set

that represents the points on the right of LVl. (c)LV l. (d) CNl. (e) On the
right of LV l. (f) CNl updated.

3.3.3 Distances

Distances from fuzzy objects may be computed using mathemati-
cal morphology [1]. Let us assume that we have some knowledge
about the distance between two objectsA andB, that can be mod-
eled as a fuzzy interval. The region of space satisfying sucha re-
lation to a reference objectµ1 is defined as the set difference be-
tween two dilations, using two structuring elementsν1 andν2 de-
fined in the spatial domain and derived from the fuzzy interval:
⊤(c(δν1(µ1)), δν2(µ1)). Two fuzzy setsµ1 andµ2 satisfy the dis-
tance constraint betweenA andB if:

C
dist
A,B(µ1, µ2) =



1 if µ2 ≤ ⊤(c(δν1(µ1)), δν2(µ1)),
0 otherwise.

DISTANCE CONTRACTING OPERATOR:

〈A,B; (A,A), (B,B);Cdist
A,B〉

〈A,B; (A,A), (B,B ∧ ⊤(c(δν1(A)), δν2(A)));Cdist
A,B〉

3.3.4 Inclusion

Consider now two objectsA andB with A included inB. The asso-
ciated constraint can be expressed as:

C
in
A,B(µ1, µ2) =



1 if µ1 ≤ µ2,

0 otherwise.

INCLUSION CONTRACTING OPERATOR:

〈A,B; (A,A), (B,B);Cin
A,B〉

〈A,B; (A,A ∧B), (B ∨ A,B);Cin
A,B〉

The inclusion prior can be extended to a partition prior, forin-
stance if an objectA can be decomposed into subparts{Bi}.

3.3.5 Connectivity

If A is a connected object, its domain can be restricted to connected
fuzzy sets (definitions of fuzzy connectivity can be found in[17, 14]).

We denote byH, H ⊆ F , the set of connected fuzzy sets.

C
conn
A (µ1) =



1 if µ1 ∈ H,
0 otherwise.

A new upper bound can be obtained as:ξ1A(A) =
W

{ν ∈ H|A ≤

ν ≤ A}. However it can be shown that this filter is not robust (a
small error onA may cause a large error on the result). As discussed
in [14], we prefer the following formulation:
ξ2A(A) =

W

{ν ∈ H | ν ≤ A and maxx∈X ν(x) ≤ µ≤(A, ν)},
whereµ≤ stands for the Lukasiewicz implicator, i.e.µ≤(A, ν) =
minx∈X min(1, 1 −A(x) + ν(x)).

CONNECTIVITY CONTRACTING OPERATOR:

〈A; (A,A);Cconn
A 〉

〈A; (A, ξ2A(A));Cconn
A 〉

3.3.6 Volume

A volume prior is represented as a membership functionµVmin :
R+ → [0, 1]. The constraint is formulated as (see [14] for details):

C
vol
A (µ) =

8

<

:

1 if maxx∈X µ(x)
≤ maxv∈R+ min(µV (µ)(v), µVmin(v)),

0 otherwise,

whereµV (µ)(v) = sup{α, |µα| ≥ v}, |µα| denoting the cardinality
(i.e. the volume) of theα-cutµα.

The reduction of the domain to the fuzzy sets that satisfy this prior,
will generally not change the bounds. However if we also suppose
that the object is connected, the upper bound can be filtered accord-
ing to:ξµVmin

(A) =
W

{ν ∈ H|ν ≤ A andCvol
A (ν) = 1}.

VOLUME AND CONNECTIVITY CONTRACTING OPERA-
TOR:

〈A; (A,A);Cconn
A ∧ Cvol

A 〉

〈A; (A, ξµVmin
(A));Cconn

A ∧ Cvol
A 〉

3.3.7 Adjacency

A degree of adjacency betweenA andB can be defined as [1]:
µadj(µA, µB) = supx,y∈X min(µA(x), µB(y), n(x, y)) where
n(x, y) stands for a connectivity degree between two pointsx and
y of X. We define the following constraint:

C
adj
A,B(µ1, µ2) =

8

<

:

1 if min(maxx∈X µ1(x),
maxx∈X µ2(x)) = µadj(µ1, µ2),

0 otherwise.

As in the volume case, a domain reduction by an adjacency con-
straint does not affect its bounds. Therefore, we also consider the
adjacency jointly with a connectivity prior, and define the following
filter: ξadj

A
(B) =

W

{ν ∈ H|ν ≤ B andCadj
A,B(A, ν) = 1}.

ADJACENCY AND CONNECTIVITY CONTRACTING OPER-
ATOR:

〈A,B; (A,A), (B,B);Cadj
A,B ∧ Cconn

A ∧ Cconn
B 〉

〈A,B; (A, ξadj

B
(A)), (B, ξadj

A
(B));Cadj

A,B ∧ Cconn
A ∧ Cconn

B 〉

3.3.8 Contrast

The following constraint will play a key role in the propagation pro-
cess, since it will be computed from image data. We suppose here



that the contrast between the structures is roughly known and sta-
ble, which is the case in MRI (the lateral ventricles are for instance
hypointense compared with the white matter on T1 weighted MRI).
We first define the grey level membership function associatedwith
a spatial object as:µI

A(v) = supx∈X,I(x)=v µA(x), where I is
the intensity function andv a grey level value (conversely a spatial
membership functionµ can be obtained from a grey level oneµI as
µ(x) = µI ◦ I(x)).

We rely on the definition of Michelson for the contrast [12]:
c = v1−v2

v1+v2
, wherev1 andv2 are two grey levels. According to the

extension principle [20], we obtain the following membership func-
tion for the contrast between two fuzzy objectsA andB, with grey
level membership functionsµI

A andµI
B :

µc
A,B(c) = sup

(v1,v2)∈R+2,c=
v1−v2
v1+v2

min(µI
A(v1), µ

I
B(v2)).

Conversely, if we consider a contrast priorµc
A,B , we can obtain

the set of grey levels that satisfy this contrast prior from object

A as: µI(v) = sup(v1,v2)∈R+2,v=v1∗v2
min(µI

A(v1), µ
k−1

A,B(v2))

with µk−1

A,B(v) = sup
c∈[−1,1],v= 1−c

1+c

µc
A,B(c) and from objectB

as:µI(v) = sup(v1,v2)∈R+2,v=v1∗v2
min(µI

B(v1), µ
k
A,B(v2)) with

µk
A,B(v) = sup

c∈[−1,1],v= 1+c
1−c

µc
A,B(c).

C
cont
A,B (µ1, µ2) =
8

>

>

>

>

>

>

<

>

>

>

>

>

>

:

1 if ∀v ∈ R+,

µI
1(v) ≤ sup

(v1,v2)∈R+2

v=v1∗v2

min(µI
2(v1), µ

k
A,B(v2))

and∀v ∈ R+,

µI
2(v) ≤ sup

(v1,v2)∈R+2

v=v1∗v2

min(µI
1(v1), µ

k−1

A,B(v2))

0 otherwise.

CONTRAST CONTRACTING OPERATOR:

〈A,B; (A,A), (B,B);Ccont
A,B 〉

〈A,B; (A,A ∧ (sup
(v1,v2)∈R+2

v=v1∗v2

min(µI

B
(v1), µ

k
A,B(v2)) ◦ I)),

(B,B ∧ (sup
(v1,v2)∈R+2

v=v1∗v2

min(µI

A
(v1), µ

k−1

A,B(v2)) ◦ I));C
cont
A,B 〉
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Figure 3. (a)LV l. (b) µI
LV l

. (c) OriginalµI
WMl

(plain), updated one

(dashed).WMl before (d) and after (e) application of the contrast
contracting operator.

This is illustrated in Figure 3. Suppose for instance that the fuzzy
set displayed in (a) is the upper boundLV l of the domain of the
left lateral ventricle. The associated grey level membership function
µI

LV l is shown in (b). An upper boundWMl for the left white matter
structures is displayed in (d) (the contour ofWMl is also shown) and
µI

WMl in (c). The application of the contrast contracting operator re-

strictsµI
WMl to the membership in (c) (dashed), which corresponds

to the updatedWMl (e).

4 CONSTRAINT PROPAGATION

We describe here a simple propagation algorithm to perform the seg-
mentation and recognition of a set of structuresχ. First we initialize
the domains of these structures to(0F , 1F ) and we restrict the set of
constraints to those that involve only variables inχ. The constraints
are then sequentially applied to reduce the variable domains, i.e. to
reduce the upper bound and increase the lower one.

The constraints could be applied sequentially without any order-
ing. However in most cases the constraint computation wouldbe use-
less and time consuming. Different factors may influence thebene-
fit of the computation of a constraint. Among them we considerthe
amount of change (since the last computation) of the bounds of the
variables involved in the constraint3 and the computation cost of the
constraintCC (function of the complexity of each involved opera-
tion such as dilations). We define a priorityP for each constraint, ini-
tialized toP (0) = card(X)

CC
. At each step of the propagation process

the highest priority constraint is selected and the associated contract-
ing operator is computed. The priority of the constraint is then set to
0. The application of this contracting operator may induce changes
on the domain of its variables. When this occurs, the priority P of a
constraint that depends on one of the variables is updated asfollows:

P (i+ 1) = P (i)+

P

x∈X(A
1
(x) − A

2
(x)) + (A2(x) −A1(x))

CC
,

were(A1, A
1
) and(A2, A

2
) are respectively the domains before and

after a change on the variable andP (i) is the priority value at stepi.
The process stops when the priority of all constraints is equal to0.

3 In AC−3 algorithm [11], the list of constraints to update would correspond
to those with a non-zero amount of change.

(a) (b)

(c) (d)

(e) (f)

Figure 4. LV l (left) andLV l (right) at step 0 (a), 500 (b), 1000 (c), 2500
(d), 10000 (e) and 20000 (f) of the propagation process. The target object

LV l is delineated.



Ideally the upper and lower bounds of the different domains will
converge to the same fuzzy set. However this will generally not oc-
cur and there remains some indecision at least on object boundaries.
Even if the propagation significantly reduces the search space, it is
still time consuming to apply a backtracking algorithm to extract an
optimal solution according to some cost function. Therefore we pro-
pose to refine the segmentation of each structure by using themethod
proposed in [13], based on minimal surface optimization [3]. The
segmentation problem consists in finding the closed curve that mini-
mizes a metric based on the obtained bounds. This can efficiently be
solved using a graph-cuts based method [2] for instance.

5 PRELIMINARY RESULTS ON NORMAL AND
PATHOLOGICAL BRAIN

We illustrate here some preliminary results on 2D brain MRI.Our
knowledge base contains about 3000 relations involving 34 variables
that correspond to visible structures on MRI. If we considerthe left
caudate nucleus, it is for instance strictly on the right of the left lateral
ventricle, fairly on the left of the putamen, much brighter than the
lateral ventricle, darker than the white matter and somewhat darker
than the putamen.

We now describe the recognition process for a few structuresof
the 2D brain MRI presented in Figure 5(a). We suppose that thebrain
was previously extracted. The associated domain is defined as a sin-
gleton. Its lower and upper bounds are thus equal. We initialized all
other domains to(0F , 1F ). The propagation is then performed, com-
pleting in about 5 hours on a 3.0 GHz Pentium 4 CPU. We show in
Figure 4 the upper and lower bounds of the left lateral ventricle at
different steps of the propagation process. The prior information pro-
vides a good discrimination with other structures and the upper and
lower bounds are close to the solution at the end of the propagation.
The extraction of a crisp segmentation can then easily be performed
using the method in [13]. We show in Figure 5(b) the segmentation
results for the internal structures.

We show also a result on a case affected by a brain tumor in Fig-
ure 5 (c-d). The tumor induces various degrees of deformation and
may also involve structural modifications. The case presented here is
affected by a cortical tumor which was previously extracted[8]. We
modify the knowledge base, just to include that the tumor is asubpart
of the brain. We do not modify the other relations. The segmentation
results for internal structures is shown in Figure 5(d). We can ob-
serve that the result remains correct, despite the shape modification
induced on some structures by the tumor.

6 CONCLUSION

We have proposed in this paper a new formulation of the segmenta-
tion and recognition task in the case of a known structural arrange-
ment as the resolution of a constraint network. Preliminaryresults
were shown on 2D MRI brain. They illustrate that the constraint
propagation is very efficient in providing domain bounds close to
the object, thus considerably reducing the search space. Future work
aims at improving the efficiency of the propagation process to make
it applicable in 3D cases. A deeper study for pathological cases
will also be performed, in particular to account for strong structural
changes on the internal structures potentially induced by subcortical
tumors.

ACKNOWLEDGEMENTS

This work has been partly supported by a grant from INCA.

(a) (b) (c) (d)

Figure 5. (a) 2D T1 weighted brain MRI. (b) Cropped view of
segmentation results for the internal structures. (c) 2D MRI of a brain
affected by a tumor. (d) Segmentation results for internal structures.

REFERENCES

[1] I. Bloch, ‘Spatial Reasoning under Imprecision using Fuzzy Set Theory,
Formal Logics and Mathematical Morphology’,International Journal
of Approximate Reasoning, 41, 77–95, (2006).

[2] Y. Boykov and V. Kolmogorov, ‘Computing geodesics and minimal sur-
faces via graph cuts’, inIEEE International Conference on Computer
Vision, ICCV, pp. 26–33, Nice, France, (jun 2003).

[3] V. Caselles, R. Kimmel, and G. Sapiro, ‘Geodesic active contours’, in
IEEE International Conference on Computer Vision, ICCV, pp. 694–
699, Boston, MA, USA, (1995).

[4] O. Colliot, O. Camara, and I. Bloch, ‘Integration of Fuzzy Spatial Rela-
tions in Deformable Models - Application to Brain MRI Segmentation’,
Pattern Recognition, 39, 1401–1414, (2006).

[5] A. Deruyver, ‘Adaptive pyramid and semantic graph: knowledge driven
segmentation’, inGraph-based Representations in Pattern Recognition,
GbR, volume LNCS 3434, pp. 213–223, Poitiers, France, (apr 2005).

[6] D. Dubois and H. Prade,Fuzzy Sets and Systems: Theory and Applica-
tions, Academic Press, New-York, 1980.

[7] C. Hudelot, J. Atif, O. Nempont, B. Batrancourt, E. Angelini, and
I. Bloch, ‘GRAFIP: a Framework for the Representation of Healthy
and Pathological Anatomical and Functional Cerebral Information’, in
Human Brain Mapping, HBM, Florence, Italy, (jun 2006).

[8] H. Khotanlou, O. Colliot, J. Atif, and I. Bloch, ‘3D BrainTumor Seg-
mentation in MRI Using Fuzzy Classification, Symmetry Analysis and
Spatially Constrained Deformable Models’,To appear in Fuzzy Sets
and Systems.

[9] O. Lhomme, ‘Consistency Techniques for Numeric CSPs’, in Interna-
tional Joint Conference on Artificial Intelligence, IJCAI, pp. 232–238,
Chambry, France, (1993).

[10] G. Ligozat, ‘Reasoning about Cardinal Directions’,Journal of Visual
Languages and Computing, 9(1), 23–44, (1998).

[11] A.K. Mackworth, ‘Consistency in networks of relations’, Artificial In-
telligence, 8(1), 99–118, (feb 1977).

[12] A. Michelson,Studies in Optics, Chicago University Press, 1927.
[13] O. Nempont, J. Atif, E. Angelini, and I. Bloch, ‘Combining Radiomet-

ric and Spatial Structural Information in a New Metric for Minimal
Surface Segmentation’, inInformation Processing in Medical Imaging,
IPMI, volume LNCS 4584, pp. 283–295, Kerkrade, The Netherlands,
(jul 2007).

[14] O. Nempont, J. Atif, E. Angelini, and I. Bloch, ‘A New Fuzzy Con-
nectivity Class. Application to Structural Recognition inImages’, in
Discrete Geometry for Computer Imagery DGCI, volume LNCS 4992,
pp. 446–457, Lyon, France, (2008).

[15] D. Papadias, T. Sellis, Y. Theodoridis, and M.J. Egenhofer, Topological
relations in the world of minimum bounding rectangles: a study with
R-trees, ACM Press New York, NY, USA, 1995.

[16] J. Renz and B. Nebel, ‘On the complexity of qualitative spatial reason-
ing: A maximal tractable fragment of the Region Connection Calculus’,
Artificial Intelligence, 108(1-2), 69–123, (1999).

[17] A. Rosenfeld, ‘Fuzzy Digital Topology’,Information and Control, 40,
76–87, (1979).

[18] F. Rossi, P. Van Beek, and T. Walsh,Handbook of Constraint Program-
ming, Elsevier Science, 2006.

[19] S.G. Waxman,Correlative Neuroanatomy, McGraw-Hill, New York,
24 edn., 2000.

[20] L. A. Zadeh, ‘The Concept of a Linguistic Variable and its Application
to Approximate Reasoning’,Information Sciences, 8, 199–249, (1975).


