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Abstract. Spatial relations play a crucial role in model-based imag
recognition and interpretation due to their stability cargad to many
other image appearance characteristics, and graphs dradapted
to represent such information. Sequential methods for keye-
based recognition of structures require to define in whideothe
structures have to be recognized, which can be expressbé ap+t
timization of a path in the representation graph. We proposete-
grate pre-attention mechanisms in the optimization caterin the
form of a saliency map, by reasoning on the saliency of Spatéa
defined by spatial relations. Such mechanisms extract letyel
from an image without object recognition in advance and da&o
quire any a priori knowledge on the image. Therefore, prentipnal
mechanisms provide useful knowledge for object segmematnd
recognition. The derived algorithms are applied on braiageun-
derstanding.

1

Sequential segmentation is a useful approach for knowledged
object recognition where objects are segmented in a predkdirder,
starting from the simplest object to segment to the mostditfone.
The segmentation and recognition of each object is therdbase
generic model of the scene and relies on the previously rezed
objects. This approach, as developed e.g. in [3], requirdsfine the
order according to which the objects have to be recognizeldfzen
choice of the most appropriate order is one of the difficsltaised
by this approach. Here, the recognition and the segmentafithe
objects of the scene are performed at the same time. Thersagjue
of objects may be expressed as a path in a graph, where eaeh n
of the graph represents an object. In this paper, we proposva
approach to this problem integrating information extrddtem the
data, based on the notion of saliency.

The visual system is usually modeled using pre-attentiandlat-
tentional mechanisms. Basically, the purpose of the pextional
step is to guide the attentional step to select salient patt® scene.
This selection allows the attentional process to focus amythe
salient part (object or region) and thus reduces the cortipotd
cost of this mechanism. We can easily draw some similariies
tween the iterative segmentation scheme and the visuaryshe
pre-attentional mechanism could correspond to the setecti the
next object to segment and the attentional mechanism tetimaen-
tation of an object of the scene (and its interpretationusTte iter-
ative segmentation framework is viewed as a scene exporatid
analysis process.
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e Our contribution is to introduce a pre-attentional meckamin
the optimization of the segmentation path for a sequentigge
segmentation process. This article is organized as foll@ivst we
present in Section 2 how to represent the knowledge comgpalen
generic model of the scene. In Section 3, a brief overviewhef t
modeling of the visual system is given as well as a presemtatf
the pre-attentional mechanism used in the following sactithen
we present in Section 4 a way to evaluate which informatigivisn
by the attentional mechanism. Then, Section 5 presents donay
tegrate the saliency map into the segmentation procesgrimgnts
and results are presented in Section 6 on an example of lonaigei
understanding and Section 7 draws some conclusions.

2 Knowledge representation

Graphs are well adapted to represent generic knowledgle asigpa-
tial relations between the objects of a scene. In the seigliesen-
mentation framework, the generic model of the scene is neodas
a graph where each vertex represents an object of the sceeaein
edge represents one or more spatial relations between tigoteb
We introduce the following notations: L&y, Xz be the sets of ver-
tex labels and edge labels, respectively. ebe a finite nonempty
set of vertices,, be a vertex interpretdr, : V — Xy, E' be a set of
ordered pairs of vertices called edges, dndbe an edge interpreter
L. : E — Xg. ThenG = (V, L., E, L) is a labeled graph with
directed edges. Fere V ande € V xV, d(v, e) is a transition func-
tion that returns the vertexX such that = (v,v"). Forv € V, A(v)
returns the set of edges adjacenvtd-inally,p = (v1,v2, ..., vn) iS
o3 path of length labeled ag, = (vi, e(vi,v2),v2, ..., Un).

A knowledge basd< B defines all the spatial relations existing

between vertices in the graph:

KB = {UiRUj, Vi, Vj € V., R € R} and
e=(v1,12) € E<= 3R e R, (viRv2) € KB,

whereR is the set of relations. In the following, we use fuzzy repre-
sentations of the spatial relations, since they are apiateto model
the intrinsic imprecision of several relations (such as$elto”, “be-
hind”, etc.), the potential variability (even if it is reded in normal
cases) and the necessary flexibility for spatial reasor@hgHere,
the representation of a spatial relation is computed asethiem of
space in which the relatioR to an objectA is satisfied. The mem-
bership degree of each point corresponds to the satisfadégree
of the relation at this point. Figure 2 (b,c) presents an etarof a
structure and the region of space corresponding to thenétpahe
right of” this structure.

A directed edge between two vertices and v, carries at least
one spatial relation between these objects. An edge irtEnmpasso-
ciates to each edge a fuzzy $ei.;, defined in the spatial domai),



representing the conjunctive merging of all the repregimts of the
spatial relations carried by this edge to a reference strecSince
there is at least one spatial relation carried by an edge, cannot
be empty. Leli%,, i = 1, ..., n. then, relations carried by an edge

Thenpg, is expressed agize; = Ti=1..n, (1k,) With T a t-norm

(fuzzy conjunction) [4]. Since objects are sequentiallysented, we
propose to focus our attention by using known spatial rehativith

previously segmented objects. The set of target objectikessfl as
the set of unsegmented objects which have a spatial relafithna

previously segmented object. The set of segmented obgefittered

likewise as the set of objects which have a spatial relatigh an

unsegmented object of interest. The “search area” is thiisedieby

the merging of the representations of known spatial relatietween
previously segmented objects which have an edge in the gviph
the target object.

s = c+d,withdin {3, 4}. Finally, all maps corresponding to a same
feature are normalized, and a conspicuity map per featbeesigm

of all corresponding maps) is computed. Then the three couisp
maps are merged with a weighted mean to produce the saliemgy m
Figure 1 presents an example of a saliency map.

We now describe the modeling of the main relations that we use Figure 1. Lena and the corresponding saliency map (dark: not

distances and directional relative positions.

A distancerelation can be defined as a fuzzy interyabf trape-
zoidal shape oR™. A fuzzy subsetu, of the image spacé can
then be derived by combining with a distance mag 4 to the ref-
erence objecd: Vz € S, pa(z) = f(da(z)), whereda(z) =
infyead(z,y).

The relatiorf‘close to” can be defined as a function of the distance

between two setSiciose (A, B) = h(d(A, B)) whered(A, B) de-
notes the minimal distance between pointsdoénd B: d(A, B) =
inf,eayep d(z,y), andh is a decreasing function af, from R*
into [0, 1]. We assume that N B = §. The relation ofadjacency
can be defined likewise as a “very close to” relation, leading de-
gree of adjacency instead of a Boolean value, making it narest
to small errors.

Directional relations are represented using the “fuzzy landscape

approach” [1]. A morphological dilation,,, by a fuzzy structuring

elementy,, representing the semantics of the relation “in direction

«” is applied to the reference objedt po = 9., (A), wherev, is
defined, forz in S given in polar coordinateép, 0), as:v.(z) =
9(]0 — a|), whereg is a decreasing function froff, 7] to [0, 1], and
|0 — o is defined moduler. This definition extends to 3D by using
two angles to define a direction. The example in Figure 2 (hes)
been obtained using this definition.

Other relations can be modeled in a similar way [2]. Theseetsod
are generic, but the membership functions depend on a feavear
ters that have to be tuned for each application domain ateptd
the semantics of the relations in that domain.

3 Saliency Maps

Among the pre-attentional mechanisms, we focus on thersslie

salient, bright: most salient parts)

This approach is a data-driven bottom-up approach, andrilye o
top-bottom connections is for the occlusion of the mosesdlioca-
tion. But more top-bottom connections are required to degfiio¢o-
objects [7], an extension of the first method recently presknn
this case, the saliency map is computed as in the originahadet
but once the most salient location is detected, a feedbauhkention
allows finding which conspicuity map, and then which map poes
this salient location (or contributes the most). Then, dguabject is
defined as the connected component (a pixel belongs to thpasom
nent if one of its neighbors is in the component, and if itsieals
higher than a threshold) at the same location of the highlelevaf
the saliency map, on the map which produces it.

4 Evaluating saliency on manually segmented
structures

The sequential segmentation framework with the optimizephen-
tation path described in [5] uses generic knowledge andmaeeted
database and therefore cannot take into account the iotsegmen-
tation difficulties of each object. These difficulties varitwespect
to the object features: shape, homogeneity, texture ordaies, or
image noise. Some generic rules could be constructedthésgob-
ject is more difficult to segment than this other pbat this kind
of rule is not necessarily true for each image even in a st
application domain. We consider that the information ofesaly is
directly related to the difficulties of segmentation beeaas object
with a salient border will be much simpler to segment thanlgeai
with a less salient border. Therefore, we propose a metbggldb
derive the difficulty of segmentation from saliency infotioa and

map, as defined by Koch and Ullman [6]. This mechanism allowsto compare all the areas of saliency corresponding to thequgy

selecting areas using some basic features easily compuialgvery
type of images. Figure 2 presents a saliency map and itsatéstr
around an object which allows exploring the area of the inzagand
the object. This approach uses three basic features: itytecslor

and orientation. For each feature, the difference betweenadion

and its immediate surrounding is computed. For intendiig, is the
difference of contrast. For color, two oppositions of celare stud-

segmented objects. The area of saliency for an object gumels to
the saliency map masked by the segmentation (a binary mabisof
object and possibly its surrounding.

Depending on the class of segmentation algorithms, we migyeno
interested by the same parts of the objects. If we considexdgse-
based segmentation algorithm, then we consider that thé imes
portant area to take into account for the image segmentéitime

ied: between red and green on the one hand, and between ldlue aborder of the object. In this case, the interesting part efdhject

yellow on the other and. And for orientation, four direcsare stud-
ied with Gabor filters. Overall, seven features are coneitleNine

should be extracted for example as the dilated segmentatitme
object, in order take into account the surrounding of theleorin a

scale spaces are created with dyadic Gaussian pyramidsaébr e region-based segmentation, the whole object is extraapdrling

feature and six maps are derived by center-surround difterée-

on a homogeneity criterion. The saliency map is maskedjsrcdse,

tween the fine scalein {2, 3, 4} and the coarse scale of the pyramid by the extracted object.
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Figure 2. (a) A slice of a 3D Magnetic Resonance Image. (b) Right latenatricle. (c) Fuzzy subset corresponding to the spatialtion
“right of” (b). (d) A slice of the saliency map of (a). (e) Saticy around the ventricle (dark: not salient, bright: madiesit parts)

Once the saliency for the surrounding of each object has éeen
tracted, an histogram of the saliency map is computed fdn ebe
ject. Once normalized, we have a distribution of the salidaceach
object. Therefore, we propose to estimate the difficultyegfmsen-
tation as a comparison of the histograms of saliency. In gpeg-
ments, we compute the energy of the histogram as a criteficona-
parison between histograms. The energy of the histodiamith N
bins, is computed as followsnergy(H) = Y5 h(n)> whereh
is the function that counts the number of occurrences ofevalin
the saliency map. Figure 5 presents two histograms of denlgjects
from two images.

This methodology is not used for a segmentation purpose (her
are trying to get rid of the usage of a previously segmentsd}paut
only to study the saliency of the different objects and toileixithe
potential interest of this type of measure.

5 Using saliency for image interpretation

Approaches relying on the shape of the target object, likg]irmake
the assertion that the generic model is always valid, iat. ali ob-
jects from the generic model are always present and no negctobj
can be taken into account. Here, the exploration relies erpte-
viously recognized objects only and not on the shape of ttgeta
object, which allows dealing with changes in the model. lenagg-
mentation is seen as a scene exploration process, whera snigll
region of space is analyzed at a given time, i.e. objectsegmented
individually. Also, the exploration of a new area of spacewuthe
previously explored area, here the segmented objects edaaiseg-
ment the remaining parts of the scene. The process is gugied a
pre-attentional mechanism, here a saliency map, whiclcates the
most salient area of space in the search domain. This arearis c
puted using the already known part of the scene and the bpatia
lations existing between these objects and the objectstitiab be
found. Figure 3 presents the general scheme of the methdastit
we present how the graph is filtered to compute the area oflsear
then we present the process of selecting the next objecytoesg.

In the following, the original image is denoted Wy The ver-
tices of the graph are divided into two disjoint groups oftioes:
V = Vieg U Viar. At the beginning of the process, a first object is
considered as known and segment®d:;, = {vini}. This object
can be detected using saliency in the image, or other infdomén
brain imaging, the lateral ventricle can be segmented usingm-
pletely different scheme for example).

The recognition of an object implies thus to move a vertexnfro
the set of target vertices to the set of segmented verticgstas
mandatory that the vertex to segment is directly connectéhdet set
of already segmented vertices. An iteration of the seqaksggmen-
tation is expressed as a function of the previously segrdestifects
Vieg, the chosen next object to segméntthe saliency map of the
image sals, the original imagel and E the spatial relations be-
tween both sets of objects, already segmented and to be stgine

respectively:
Vsieg = seqseg(V;';gl7 0, saly, I, Ejfl)

where the superscriptdenotes the iteration.

Accordingly the set of target vertices is filtered so as tqkeely
the vertices connected with the already segmented set t€a®r
Likewise, the latter set is filtered to the subset of vertoasnected
with an edge to the set of target objects. The set of edgeteiefil ac-
cordingly. The obtained subgraph forms a bipartite graphpmsed
by both sets of known and target objects, and by the set ofsedge
representing the spatial relations between both groupertites:

st = {'Ul S Vseg | Jug € ‘/tarw (U17U2) € E}
Vft = {U2 € Viar | Jv; € ‘/S€g7 (1}1,’[}2) S E}
E; = {(ve,vs) | ve € Vi, vs € Vis}

For each edge in E, the edge interpretor producg$.;. The area
of space of the search domain is defined as the merging of fip@gu
of all edge representations, given by the edge interpretor:

Hsd = J—eGE'f (;u??el)

with L a t-conorm (fuzzy disjunction) [4]. The binary map corre-
sponding to the search domain gives an area of space whicidasc
the spatial location of all the target objects (hence a digjon com-
bination). Note that this spatial location could cover ayéapart of
the image space, particularly if the only spatial relatietieen two
objects is a relation of direction. The search domadnis simply
defined as:
sd = support(fisq)

Now, we present how the process of selection of a targetwerte
by an analysis of the saliency in the search domain. Theifijesf
the graph gives two groups of verticdg;, andV;; and we have to
choose inVy; the next vertex (and so the object that the vertex repre-
sents) to recognize. For each candidate vertéts estimated spatial
location is defined by the merging of the spatial relatiommezting
this vertex to the previously recognized vertices:

locy = Tee(a@)ney) (KRet)

with T a t-norm. This estimated spatial location of a vertex is then
combined with the search domain, to extract the salienclérarea
of the estimated location of the target object and its sumding:

saliency, = T (locy, sd, salr)

An histogram of this area is then produced. We select theotgztt
to segment by an analysis of this histogram. Among other ureas
the energy of the histogram (previously defined) is kept agerion

of selection and allows selecting the most salient area laexl the
next object to segment:

o .
= arg mox (energy(H.))
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Figure 3. Block diagram of the proposed method to include a pre-atteat mechanism into sequential segmentation.

the exploration of the scene consists then in moving a vénbex the
set of target vertices to the set of known vertices, and thexsen
of the moved vertex is realized by the comparison of the saji®f
each object area of the search domain, which correspondaoadel-
driven exploration of the scene. This method allows us teatly
take into account the knowledge given by the current imagedaes
not rely on a representation of the target objects duringtbeess.

The segmentation of the object is expressed as a functiomeof t
selected object to segmeit selected with a criterion based on
saliency, its spatial relations with the previously segtedrobjects
and the original image:

segs = segment(v,locs, I)
Finally, the set of segmented object is updated:
Viarget \ {0}

Vsieg = Vsi;;l U {f)} and‘/tz;m“get =

6 Application to human brain structures
recognition

Saliency map on 3-dimensions MRI Saliency maps, especially

Finally, 9 maps are extracted. Note that we could extracemtanes
allowing to take into account more directions thus bettetrapy.

Experiments have been conducted using a manually segmented
database of human brain 3D MRI (IBSR database). This dagabas
is composed by 18 brain images with their segmentations.pBhe
rameters of the membership functions used to computed tire-re
sentation of the spatial relations are learned on a dataifdsalthy
cases (IBSR) and pathological cases (5 differents casear,scof-
responding to different types of brain tumor). Table 1 pnéssome
relations used in our experiments.

Table 1. Some relations used in our experiments. LLV: left laterattxiele
LCN: left caudate nucleus, LTH: left thalamus and LPU: leftdmen.

V1 R V2 V1 R V2
LLV RightOf LCN LCN UpOf LCTH
LLV CloseTo | LCN LTH BehindOf | LCN
LLV DownOf LTH LTH DownOf LCN
LCN RightOf LPU LTH RightOf LPU
LCN | InFrontOf | LTH

Saliency on manually segmented structures In our experiments,
the area of saliency taken into account for each structuregponds

according to Koch and Ullman, are usually computed on 2D-natutg the 3D binary map of the segmentation of one object dilated

ral images with a sufficient resolution to produce the retpebscale

elementary structuring element in 6-connectivity. Théesaly map

of the dyadic pyramid. In the case of 3D magnetic resonance imijs normalized between 0 and 255.

ages (MRI), the resolution of the image is often small. Th&RB

The histogram in Figure 4 presents the saliency for eachef th

databaséimages used during our experiments have the followingthree structures on all images, and it shows the variaticraligncy,

size:256 x 256 x 128. We limit our pyramid to 7 scales (includ-

although the IBSR data set is quite uniform. This variatiboves

ing the original scale). The fine scale used to compute maps arhat the measure of saliency takes into account specificrirgtion

1, 2 and 3. The coarse scale are the fine scale pldsa {2, 3},
ie.14+21+3,2+2,2+3,....Finally, the saliency map is com-
puted with the size of the third level of the dyadic pyramid.

about each image.
Table 2 presents saliency measures for three anatomioatigtes
of the human brain plus the same measure for the white matter a

3D MRI provides only one channel which is considered as an in-[he gray matter. These measures (energy of the histogram)veays

tensity in the computation. Since there is no color charowbbr fea-
tures are just removed. For orientation, we use a similarcgoh as
in 2 dimensions, but on 3 different planes defined by the agisdky
for the first plane, x and z for the second, y and z for the last We
considered 4 directions for each plane and removed theaips.

3 Internet Brain Segmentation Repository. The MR brain dats sind
their manual segmentations were provided by the Center forphb-
metric Analysis at Massachusetts General Hospital and \aitable at
http://www.cma.mgh.harvard.edu/ibsr/

higher for the three anatomical structures. Figure 5 ptesgome
histograms of saliency for these structures. Histogramsabéncy
for gray and white matter are in most of the cases larger amdrlo
than histograms for other structures, and particularlyhikeograms
of caudate nucleus and putamen. Thus, there is more salieticy
area of the anatomical structures than in areas of gray dewtatter,
which does not present much information. Comparing strestuit
appears that the thalamus has generally lower values (lebasvell
defined boundaries). Hence it can be expected that its ségtioen



Table 2. Saliency measures (energy measure of saliency histogram)
for 3 anatomical structures, white matter (LWM) and grayterat
(LGM) for all images of the IBSR database. LCN: left caudate
nucleus, LTH: left thalamus and LPU: left Putamen.

LCN LTH LPU LWM LGM
0.065 [ 0.057 [ 0.068 || 0.026 | 0.015
0.097 | 0.064 | 0.095 || 0.041 | 0.020
0.039 | 0.033 | 0.042 || 0.027 | 0.017
0.050 | 0.031 | 0.054 || 0.026 | 0.017
0.038 | 0.028 | 0.107 || 0.027 | 0.018
0.054 | 0.038 | 0.099 || 0.038 | 0.025
0.039 | 0.024 | 0.046 || 0.023 | 0.018
0.040 | 0.026 | 0.046 || 0.020 | 0.014
0.039 | 0.026 | 0.061 || 0.026 | 0.020 .
0.045 | 0.030 | 0.060 || 0.027 | 0.014 Fi
0.037 | 0.025 | 0.048 || 0.019 | 0.011
0.033 | 0.029 | 0.032 || 0.026 | 0.017
0.037 | 0.033 | 0.069 || 0.031 | 0.020
0.046 | 0.030 | 0.061 || 0.025 | 0.017
0.033 | 0.026 | 0.044 || 0.017 | 0.014
0.032 | 0.025 | 0.044 || 0.022 | 0.015
0.045 | 0.032 | 0.049 || 0.022 | 0.020

Thalamus

Figure 4. The histograms of the saliency of each structure for all
images in the database.

Sequential segmentation Starting from the lateral ventricle, we

. 2
are looking for the next structure to segment. Table 3 ptssire g
measures of saliency for the two structures connected ttatbeal
ventricle in the graph, the caudate nucleus and the thalamndsthe  [3]

same measure, after the segmentation of the first structure.
For all the images of the IBSR database, the same path igesgttlec 4]
but with some variation of the criterion values. The resgjtpath

00

hist. IBSR 02

T T R TR

IBSR 02

gure 5. Histograms of saliency for 4 anatomical structures, white

matter and gray matter of the left hemisphere in a 3D MRI. is th

case, the saliency is high for all structures, ventricle cauttiate

saliency histograms are clearly distinct from putamen athtnus

ones. Saliency of white matter and gray matter are lower than
saliency of internal structures.

Table 3. Measure of saliency for two successive selections, for
each image in the IBSR database. The initial structure itefhe
lateral ventricle

Tst selection LLV—_[[ 2nd selection (LCN,[LV)—
LCN LTH LTH LPU
0.035 0.016 0.015 0.012
0.048 0.023 0.022 0.017
0.018 0.011 0.011 0.009
0.018 0.011 0.011 0.010
0.017 0.011 0.011 0.009
0.022 0.013 0.013 0.012
0.017 0.011 0.011 0.010
0.016 0.011 0.011 0.010
0.021 0.014 0.014 0.013
0.018 0.013 0.012 0.010
0.017 0.010 0.010 0.009
0.017 0.010 0.010 0.009
0.019 0.012 0.012 0.011
0.017 0.011 0.010 0.009
0.017 0.010 0.010 0.009
0.014 0.010 0.010 0.010
0.019 0.014 0.014 0.013
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corresponds to the path used in [3], defined intuitively, isuper-  [5] G. Fouquier, J. Atif, and I. Bloch, ‘Local Reasoning in Zzy At-
vised way, thus with visual hints. It is hence very satisfagcto find "gmes GVEP;‘S for Og"m'ﬁ'gg Sique”“a' Segmentationgth IAPR-

. . . TC15 Workshop on Graph-based Representations in Pattecodre
_the same pgth automatically using a saliency fe_ature. TBRIBase tion, GbR'07 ed., springer, volume 4538 aINCS pp. 138147, Ali-
is also a quite homoggneous database, and gll images havedgee cante, Spain, (Jun 2007).
istered, lowering the difference between the images. Ex@aits on  [6] L. Iti, C. Koch, and E. Niebur, ‘A model of saliency-baseisual at-
images with a higher variability, including pathologicales, are cur- tenéion thr rapid Sﬁene an%l(ysi;tEEE TfanSﬁCﬁ(OHS on Pat)tem Analysis

i : Y and Machine Intelligence20(11), 1254—-1259, (Nov. 1998).

rentll);.condli(r:]ted. Figure 6 presents a typical segmentatong the [7] D. Walther and C. Koch, ‘Modeling attention to salienof-objects’,
resulting path. Neural Networks19(9), 1395-1407, (Nov. 2008).
7 Conclusion
We have presented a sequential segmentation frameworledias
a scene exploration process, and guided by a pre-attehtietha-
nism, here saliency map. Preliminary results show thag¢seyi pro-
vides intrinsic information about the image, usable fosggmenta-
tion. Further work will be done on a larger graph with morestures
and relations between them.
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