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Abstract. Spatial relations play a crucial role in model-based image
recognition and interpretation due to their stability compared to many
other image appearance characteristics, and graphs are well adapted
to represent such information. Sequential methods for knowledge-
based recognition of structures require to define in which order the
structures have to be recognized, which can be expressed as the op-
timization of a path in the representation graph. We proposeto inte-
grate pre-attention mechanisms in the optimization criterion, in the
form of a saliency map, by reasoning on the saliency of spatial area
defined by spatial relations. Such mechanisms extract knowledge
from an image without object recognition in advance and do not re-
quire any a priori knowledge on the image. Therefore, pre-attentional
mechanisms provide useful knowledge for object segmentation and
recognition. The derived algorithms are applied on brain image un-
derstanding.

1 Introduction

Sequential segmentation is a useful approach for knowledge-based
object recognition where objects are segmented in a predefined order,
starting from the simplest object to segment to the most difficult one.
The segmentation and recognition of each object is then based on a
generic model of the scene and relies on the previously recognized
objects. This approach, as developed e.g. in [3], requires to define the
order according to which the objects have to be recognized and the
choice of the most appropriate order is one of the difficulties raised
by this approach. Here, the recognition and the segmentation of the
objects of the scene are performed at the same time. The sequence
of objects may be expressed as a path in a graph, where each node
of the graph represents an object. In this paper, we propose anew
approach to this problem integrating information extracted from the
data, based on the notion of saliency.

The visual system is usually modeled using pre-attentionaland at-
tentional mechanisms. Basically, the purpose of the pre-attentional
step is to guide the attentional step to select salient partsin the scene.
This selection allows the attentional process to focus onlyon the
salient part (object or region) and thus reduces the computational
cost of this mechanism. We can easily draw some similaritiesbe-
tween the iterative segmentation scheme and the visual system: the
pre-attentional mechanism could correspond to the selection of the
next object to segment and the attentional mechanism to the segmen-
tation of an object of the scene (and its interpretation). Thus the iter-
ative segmentation framework is viewed as a scene exploration and
analysis process.
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Our contribution is to introduce a pre-attentional mechanism in
the optimization of the segmentation path for a sequential image
segmentation process. This article is organized as follows. First we
present in Section 2 how to represent the knowledge composing the
generic model of the scene. In Section 3, a brief overview of the
modeling of the visual system is given as well as a presentation of
the pre-attentional mechanism used in the following section. Then
we present in Section 4 a way to evaluate which information isgiven
by the attentional mechanism. Then, Section 5 presents a wayto in-
tegrate the saliency map into the segmentation process. Experiments
and results are presented in Section 6 on an example of brain image
understanding and Section 7 draws some conclusions.

2 Knowledge representation

Graphs are well adapted to represent generic knowledge, such as spa-
tial relations between the objects of a scene. In the sequential seg-
mentation framework, the generic model of the scene is modeled as
a graph where each vertex represents an object of the scene and each
edge represents one or more spatial relations between two objects.
We introduce the following notations: LetΣV , ΣE be the sets of ver-
tex labels and edge labels, respectively. LetV be a finite nonempty
set of vertices,Lv be a vertex interpreterLv : V → ΣV , E be a set of
ordered pairs of vertices called edges, andLe be an edge interpreter
Le : E → ΣE . ThenG = (V, Lv , E, Le) is a labeled graph with
directed edges. Forv ∈ V ande ∈ V ×V , δ(v, e) is a transition func-
tion that returns the vertexv′ such thate = (v, v′). Forv ∈ V , A(v)
returns the set of edges adjacent tov. Finally,p = (v1, v2, ..., vn) is
a path of lengthn labeled aslp = (v1, e(v1, v2), v2, ..., vn).

A knowledge baseKB defines all the spatial relations existing
between vertices in the graph:

KB = {viRvj , vi, vj ∈ V, R ∈ R} and
e = (v1, v2) ∈ E ⇐⇒ ∃R ∈ R, (v1Rv2) ∈ KB,

whereR is the set of relations. In the following, we use fuzzy repre-
sentations of the spatial relations, since they are appropriate to model
the intrinsic imprecision of several relations (such as “close to”, “be-
hind”, etc.), the potential variability (even if it is reduced in normal
cases) and the necessary flexibility for spatial reasoning [2]. Here,
the representation of a spatial relation is computed as the region of
space in which the relationR to an objectA is satisfied. The mem-
bership degree of each point corresponds to the satisfaction degree
of the relation at this point. Figure 2 (b,c) presents an example of a
structure and the region of space corresponding to the region “to the
right of” this structure.

A directed edge between two verticesv1 andv2 carries at least
one spatial relation between these objects. An edge interpretor asso-
ciates to each edge a fuzzy setµRel, defined in the spatial domainS ,



representing the conjunctive merging of all the representations of the
spatial relations carried by this edge to a reference structure. Since
there is at least one spatial relation carried by an edge,µRel cannot
be empty. Letµe

Ri
, i = 1, ..., ne thene relations carried by an edgee.

Thenµe
Rel is expressed as:µe

Rel = ⊤i=1..ne(µe
Ri

) with ⊤ a t-norm
(fuzzy conjunction) [4]. Since objects are sequentially segmented, we
propose to focus our attention by using known spatial relations with
previously segmented objects. The set of target objects is filtered as
the set of unsegmented objects which have a spatial relationwith a
previously segmented object. The set of segmented objects is filtered
likewise as the set of objects which have a spatial relation with an
unsegmented object of interest. The “search area” is thus defined by
the merging of the representations of known spatial relations between
previously segmented objects which have an edge in the graphwith
the target object.

We now describe the modeling of the main relations that we use:
distances and directional relative positions.

A distancerelation can be defined as a fuzzy intervalf of trape-
zoidal shape onR+. A fuzzy subsetµd of the image spaceS can
then be derived by combiningf with a distance mapdA to the ref-
erence objectA: ∀x ∈ S , µd(x) = f(dA(x)), wheredA(x) =
infy∈A d(x, y).

The relation“close to” can be defined as a function of the distance
between two sets:µclose(A, B) = h(d(A, B)) whered(A, B) de-
notes the minimal distance between points ofA andB: d(A, B) =
infx∈A,y∈B d(x, y), andh is a decreasing function ofd, from R

+

into [0, 1]. We assume thatA ∩ B = ∅. The relation ofadjacency
can be defined likewise as a “very close to” relation, leadingto a de-
gree of adjacency instead of a Boolean value, making it more robust
to small errors.

Directional relations are represented using the “fuzzy landscape
approach” [1]. A morphological dilationδνα by a fuzzy structuring
elementνα representing the semantics of the relation “in direction
α” is applied to the reference objectA: µα = δνα(A), whereνα is
defined, forx in S given in polar coordinates(ρ, θ), as:να(x) =
g(|θ−α|), whereg is a decreasing function from[0, π] to [0, 1], and
|θ − α| is defined moduloπ. This definition extends to 3D by using
two angles to define a direction. The example in Figure 2 (b,c)has
been obtained using this definition.

Other relations can be modeled in a similar way [2]. These models
are generic, but the membership functions depend on a few parame-
ters that have to be tuned for each application domain according to
the semantics of the relations in that domain.

3 Saliency Maps

Among the pre-attentional mechanisms, we focus on the saliency
map, as defined by Koch and Ullman [6]. This mechanism allows
selecting areas using some basic features easily computable on every
type of images. Figure 2 presents a saliency map and its restriction
around an object which allows exploring the area of the imagearound
the object. This approach uses three basic features: intensity, color
and orientation. For each feature, the difference between alocation
and its immediate surrounding is computed. For intensity, this is the
difference of contrast. For color, two oppositions of colors are stud-
ied: between red and green on the one hand, and between blue and
yellow on the other and. And for orientation, four directions are stud-
ied with Gabor filters. Overall, seven features are considered. Nine
scale spaces are created with dyadic Gaussian pyramids for each
feature and six maps are derived by center-surround difference be-
tween the fine scalec in {2, 3, 4} and the coarse scale of the pyramid

s = c+d, with d in {3, 4}. Finally, all maps corresponding to a same
feature are normalized, and a conspicuity map per feature (the sum
of all corresponding maps) is computed. Then the three conspicuity
maps are merged with a weighted mean to produce the saliency map.
Figure 1 presents an example of a saliency map.

Figure 1. Lena and the corresponding saliency map (dark: not
salient, bright: most salient parts)

This approach is a data-driven bottom-up approach, and the only
top-bottom connections is for the occlusion of the most salient loca-
tion. But more top-bottom connections are required to defineproto-
objects [7], an extension of the first method recently presented. In
this case, the saliency map is computed as in the original method,
but once the most salient location is detected, a feedback connection
allows finding which conspicuity map, and then which map produces
this salient location (or contributes the most). Then, a proto-object is
defined as the connected component (a pixel belongs to the compo-
nent if one of its neighbors is in the component, and if its value is
higher than a threshold) at the same location of the higher value of
the saliency map, on the map which produces it.

4 Evaluating saliency on manually segmented
structures

The sequential segmentation framework with the optimized segmen-
tation path described in [5] uses generic knowledge and a segmented
database and therefore cannot take into account the intrinsic segmen-
tation difficulties of each object. These difficulties vary with respect
to the object features: shape, homogeneity, texture or boundaries, or
image noise. Some generic rules could be constructed, e.g.this ob-
ject is more difficult to segment than this other one, but this kind
of rule is not necessarily true for each image even in a restricted
application domain. We consider that the information of saliency is
directly related to the difficulties of segmentation because an object
with a salient border will be much simpler to segment than an object
with a less salient border. Therefore, we propose a methodology to
derive the difficulty of segmentation from saliency information and
to compare all the areas of saliency corresponding to the previously
segmented objects. The area of saliency for an object corresponds to
the saliency map masked by the segmentation (a binary map) ofthis
object and possibly its surrounding.

Depending on the class of segmentation algorithms, we may not be
interested by the same parts of the objects. If we consider anedge-
based segmentation algorithm, then we consider that the most im-
portant area to take into account for the image segmentationis the
border of the object. In this case, the interesting part of the object
should be extracted for example as the dilated segmentationof the
object, in order take into account the surrounding of the border. In a
region-based segmentation, the whole object is extracted depending
on a homogeneity criterion. The saliency map is masked, in this case,
by the extracted object.
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Figure 2. (a) A slice of a 3D Magnetic Resonance Image. (b) Right lateral ventricle. (c) Fuzzy subset corresponding to the spatial relation
“right of” (b). (d) A slice of the saliency map of (a). (e) Saliency around the ventricle (dark: not salient, bright: most salient parts)

Once the saliency for the surrounding of each object has beenex-
tracted, an histogram of the saliency map is computed for each ob-
ject. Once normalized, we have a distribution of the saliency for each
object. Therefore, we propose to estimate the difficulty of segmen-
tation as a comparison of the histograms of saliency. In our experi-
ments, we compute the energy of the histogram as a criterion of com-
parison between histograms. The energy of the histogramH , with N

bins, is computed as follows:energy(H) =
P

N
h(n)2 whereh

is the function that counts the number of occurrences of value n in
the saliency map. Figure 5 presents two histograms of several objects
from two images.

This methodology is not used for a segmentation purpose (here we
are trying to get rid of the usage of a previously segmented base), but
only to study the saliency of the different objects and to exhibit the
potential interest of this type of measure.

5 Using saliency for image interpretation

Approaches relying on the shape of the target object, like in[5], make
the assertion that the generic model is always valid, i.e. that all ob-
jects from the generic model are always present and no new object
can be taken into account. Here, the exploration relies on the pre-
viously recognized objects only and not on the shape of the target
object, which allows dealing with changes in the model. Image seg-
mentation is seen as a scene exploration process, where onlya small
region of space is analyzed at a given time, i.e. objects are segmented
individually. Also, the exploration of a new area of space uses the
previously explored area, here the segmented objects are used to seg-
ment the remaining parts of the scene. The process is guided using a
pre-attentional mechanism, here a saliency map, which indicates the
most salient area of space in the search domain. This area is com-
puted using the already known part of the scene and the spatial re-
lations existing between these objects and the objects thatstill to be
found. Figure 3 presents the general scheme of the method. Atfirst,
we present how the graph is filtered to compute the area of search,
then we present the process of selecting the next object to segment.

In the following, the original image is denoted byI . The ver-
tices of the graph are divided into two disjoint groups of vertices:
V = Vseg ∪ Vtar. At the beginning of the process, a first object is
considered as known and segmented:Vseg = {vinit}. This object
can be detected using saliency in the image, or other information (in
brain imaging, the lateral ventricle can be segmented usinga com-
pletely different scheme for example).

The recognition of an object implies thus to move a vertex from
the set of target vertices to the set of segmented vertices and it is
mandatory that the vertex to segment is directly connected to the set
of already segmented vertices. An iteration of the sequential segmen-
tation is expressed as a function of the previously segmented objects
Vseg, the chosen next object to segmentv̂, the saliency map of the
imagesalI , the original imageI and Ef the spatial relations be-
tween both sets of objects, already segmented and to be segmented,

respectively:

V
i

seg = seqseg(V i−1
seg , v̂, salI , I,E

i−1
f )

where the superscripti denotes the iteration.
Accordingly the set of target vertices is filtered so as to keep only

the vertices connected with the already segmented set of vertices.
Likewise, the latter set is filtered to the subset of verticesconnected
with an edge to the set of target objects. The set of edges is filtered ac-
cordingly. The obtained subgraph forms a bipartite graph composed
by both sets of known and target objects, and by the set of edges
representing the spatial relations between both groups of vertices:

Vfs = {v1 ∈ Vseg | ∃v2 ∈ Vtar, (v1, v2) ∈ E}
Vft = {v2 ∈ Vtar | ∃v1 ∈ Vseg, (v1, v2) ∈ E}

Ef = {(vt, vs) | vt ∈ Vft, vs ∈ Vfs}

For each edgee in Ef , the edge interpretor producesµe
Rel. The area

of space of the search domain is defined as the merging of the support
of all edge representations, given by the edge interpretor:

µsd = ⊥e∈Ef
(µe

Rel)

with ⊥ a t-conorm (fuzzy disjunction) [4]. The binary map corre-
sponding to the search domain gives an area of space which includes
the spatial location of all the target objects (hence a disjunction com-
bination). Note that this spatial location could cover a large part of
the image space, particularly if the only spatial relation between two
objects is a relation of direction. The search domainsd is simply
defined as:

sd = support(µsd)

Now, we present how the process of selection of a target vertex
by an analysis of the saliency in the search domain. The filtering of
the graph gives two groups of vertices:Vfs andVft and we have to
choose inVft the next vertex (and so the object that the vertex repre-
sents) to recognize. For each candidate vertexv, its estimated spatial
location is defined by the merging of the spatial relations connecting
this vertex to the previously recognized vertices:

locv = ⊤e∈(A(v)∩Ef )(µ
e
Rel)

with ⊤ a t-norm. This estimated spatial location of a vertex is then
combined with the search domain, to extract the saliency in the area
of the estimated location of the target object and its surrounding:

saliencyv = ⊤(locv, sd, salI)

An histogram of this area is then produced. We select the nextobject
to segment by an analysis of this histogram. Among other measures,
the energy of the histogram (previously defined) is kept as a criterion
of selection and allows selecting the most salient area and then the
next object to segment:

v̂ = arg max
v∈Vft

(energy(Hv))
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Figure 3. Block diagram of the proposed method to include a pre-attentional mechanism into sequential segmentation.

the exploration of the scene consists then in moving a vertexfrom the
set of target vertices to the set of known vertices, and the selection
of the moved vertex is realized by the comparison of the saliency of
each object area of the search domain, which corresponds to amodel-
driven exploration of the scene. This method allows us to directly
take into account the knowledge given by the current image and does
not rely on a representation of the target objects during theprocess.

The segmentation of the object is expressed as a function of the
selected object to segmentv̂, selected with a criterion based on
saliency, its spatial relations with the previously segmented objects
and the original image:

segv̂ = segment(v̂, locv̂ , I)

Finally, the set of segmented object is updated:

V i
seg = V i−1

seg ∪ {v̂} andV i
target = V i−1

target \ {v̂}

6 Application to human brain structures
recognition

Saliency map on 3-dimensions MRI Saliency maps, especially
according to Koch and Ullman, are usually computed on 2D natu-
ral images with a sufficient resolution to produce the requested scale
of the dyadic pyramid. In the case of 3D magnetic resonance im-
ages (MRI), the resolution of the image is often small. The IBSR
database3 images used during our experiments have the following
size:256 × 256 × 128. We limit our pyramid to 7 scales (includ-
ing the original scale). The fine scale used to compute maps are
1, 2 and 3. The coarse scale are the fine scale plus aδ ∈ {2, 3},
i.e.1 + 2, 1 + 3, 2 + 2, 2 + 3, . . . . Finally, the saliency map is com-
puted with the size of the third level of the dyadic pyramid.

3D MRI provides only one channel which is considered as an in-
tensity in the computation. Since there is no color channel,color fea-
tures are just removed. For orientation, we use a similar approach as
in 2 dimensions, but on 3 different planes defined by the axis xand y
for the first plane, x and z for the second, y and z for the last one. We
considered 4 directions for each plane and removed the duplicates.

3 Internet Brain Segmentation Repository. The MR brain data sets and
their manual segmentations were provided by the Center for Morpho-
metric Analysis at Massachusetts General Hospital and are available at
http://www.cma.mgh.harvard.edu/ibsr/

Finally, 9 maps are extracted. Note that we could extract more planes
allowing to take into account more directions thus better isotropy.

Experiments have been conducted using a manually segmented
database of human brain 3D MRI (IBSR database). This database
is composed by 18 brain images with their segmentations. Thepa-
rameters of the membership functions used to computed the repre-
sentation of the spatial relations are learned on a databaseof healthy
cases (IBSR) and pathological cases (5 differents cases so far, cor-
responding to different types of brain tumor). Table 1 presents some
relations used in our experiments.

Table 1. Some relations used in our experiments. LLV: left lateral ventricle
LCN: left caudate nucleus, LTH: left thalamus and LPU: left Putamen.

v1 R v2 v1 R v2

LLV RightOf LCN LCN UpOf LTH
LLV CloseTo LCN LTH BehindOf LCN
LLV DownOf LTH LTH DownOf LCN
LCN RightOf LPU LTH RightOf LPU
LCN InFrontOf LTH

Saliency on manually segmented structures In our experiments,
the area of saliency taken into account for each structure corresponds
to the 3D binary map of the segmentation of one object dilatedby a
elementary structuring element in 6-connectivity. The saliency map
is normalized between 0 and 255.

The histogram in Figure 4 presents the saliency for each of the
three structures on all images, and it shows the variation ofsaliency,
although the IBSR data set is quite uniform. This variation shows
that the measure of saliency takes into account specific information
about each image.

Table 2 presents saliency measures for three anatomical structures
of the human brain plus the same measure for the white matter and
the gray matter. These measures (energy of the histogram) are always
higher for the three anatomical structures. Figure 5 presents some
histograms of saliency for these structures. Histograms ofsaliency
for gray and white matter are in most of the cases larger and lower
than histograms for other structures, and particularly thehistograms
of caudate nucleus and putamen. Thus, there is more saliencyin the
area of the anatomical structures than in areas of gray or white matter,
which does not present much information. Comparing structures, it
appears that the thalamus has generally lower values (it hasless well
defined boundaries). Hence it can be expected that its segmentation



Table 2. Saliency measures (energy measure of saliency histogram)
for 3 anatomical structures, white matter (LWM) and gray matter
(LGM) for all images of the IBSR database. LCN: left caudate

nucleus, LTH: left thalamus and LPU: left Putamen.

LCN LTH LPU LWM LGM
0.065 0.057 0.068 0.026 0.015
0.097 0.064 0.095 0.041 0.020
0.039 0.033 0.042 0.027 0.017
0.050 0.031 0.054 0.026 0.017
0.038 0.028 0.107 0.027 0.018
0.054 0.038 0.099 0.038 0.025
0.039 0.024 0.046 0.023 0.018
0.040 0.026 0.046 0.020 0.014
0.039 0.026 0.061 0.026 0.020
0.045 0.030 0.060 0.027 0.014
0.037 0.025 0.048 0.019 0.011
0.033 0.029 0.032 0.026 0.017
0.037 0.033 0.069 0.031 0.020
0.046 0.030 0.061 0.025 0.017
0.033 0.026 0.044 0.017 0.014
0.032 0.025 0.044 0.022 0.015
0.045 0.032 0.049 0.022 0.020

will be more difficult.
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Figure 4. The histograms of the saliency of each structure for all
images in the database.

Sequential segmentation Starting from the lateral ventricle, we
are looking for the next structure to segment. Table 3 presents the
measures of saliency for the two structures connected to thelateral
ventricle in the graph, the caudate nucleus and the thalamus, and the
same measure, after the segmentation of the first structure.

For all the images of the IBSR database, the same path is selected
but with some variation of the criterion values. The resulting path
corresponds to the path used in [3], defined intuitively, in asuper-
vised way, thus with visual hints. It is hence very satisfactory to find
the same path automatically using a saliency feature. The IBSR base
is also a quite homogeneous database, and all images have been reg-
istered, lowering the difference between the images. Experiments on
images with a higher variability, including pathological ones, are cur-
rently conducted. Figure 6 presents a typical segmentationusing the
resulting path.

7 Conclusion

We have presented a sequential segmentation framework viewed as
a scene exploration process, and guided by a pre-attentional mecha-
nism, here saliency map. Preliminary results show that saliency pro-
vides intrinsic information about the image, usable for itssegmenta-
tion. Further work will be done on a larger graph with more structures
and relations between them.
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