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Abstract. In several domains, such as medical image interpreta-
tion, spatial relations play a crucial role since they are less prone to
variability than properties of structures themselves. Moreover, they
constitute an important part of available knowledge. In this paper, we
suggest a new way to handle imprecise spatial information ina de-
scription logic framework based on mathematical morphology with
fuzzy interpretations in concrete domains. Fuzzy representations of
concepts contribute to bridge the gap between ontological represen-
tations and real data, and the mathematical morphology setting is a
core feature of our approach to merge the advantages of ontologies,
concrete domain representations and manipulations, and the reason-
ing power of description logics. The benefits of our logical frame-
work are illustrated on a medical image interpretation task.

1 Introduction

In image interpretation and computer vision, spatial relations be-
tween objects and spatial reasoning are of prime importancefor
recognition and interpretation tasks. Nevertheless, although spatial
reasoning has been largely studied in artificial intelligence mainly
using qualitative representations based on logical formalisms, there
is still a gap with the quantitative representations used inimage in-
terpretation.

Description logics (DLs) equipped with concrete domains [15] are
a widely accepted way to integrateconcrete and quantitative quali-
tiesof real world objects with conceptual knowledge and as a conse-
quence to combine qualitative and quantitative reasoning useful for
real-world applications. In [13], we have proposed a fuzzy spatial
ontology, operational for image interpretation, based on the expres-
sive means of description logics with fuzzy concrete domains. In this
ontology, the link between abstract concepts and the representation
of these concepts in the concrete domains was explicitely built. In
this paper, we propose to extend our previous work by the proposi-
tion of a new framework which goes deeper in the exploitationof
concrete domains. In this framework, the combination of description
logics with fuzzy concrete domains and mathematical morphology
provides new mechanisms to derive useful concrete representations
of concepts and new reasoning tools. The paper is organized as fol-
lows. In Section 2, we briefly present how mathematical morphology
can be used to derive fuzzy representations of spatial relations. In
Section 3, we present the main concepts of the fuzzy spatial relation
ontology detailed in [13]. We describe our new framework andits
properties in Section 4 and we illustrate the benefits of thisframe-
work for image interpretation tasks in Section 5.

1 1. Ecole Centrale de Paris, 2. IRD Université des Antilles et de
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2 Fuzzy representation of spatial relations using
mathematical morphology

In this Section, we briefly summarize our previous work on spa-
tial relations. Their representation combines two important features:
(i) modeling of imprecision using fuzzy sets, and (ii) computation
through mathematical morphology operators.

Imprecision has to be taken into account to model vagueness,in-
herent to many spatial relations, and to gain in robustness in the rep-
resentations. For instance, modeling in a mathematical wayvague
expressions such as “close to”, “to the right of” can be appropriately
performed in the fuzzy set framework, without defining crispthresh-
olds on distance or angle values.

Another advantage of fuzzy representations is that they lead to a
very generic modeling of different spatial relations, at different levels
of granularity. A membership function representing a spatial relation
concept provides the semantics of the concept and constitutes an effi-
cient way to convert symbolic notions into numeric ones. Moreover,
the membership functions we use have simple shapes (such as trape-
zoidal ones) that are generic enough to be applicable in manydiffer-
ent domains. For each specific domain, the parameters of the mem-
bership functions can be appropriately adapted, using prior knowl-
edge or learning procedures. Let us take the example of “close to”.
This relation is modeled as a fuzzy interval on the real line (see Sec-
tion 4). This generic model can then be instantiated, through an ad-
equate choice of the parameters, for each particular application (for
instance, the meaning of “close to” is obviously not the sameif we
consider towns observed in satellite imaging, or parts of the human
body in medical imaging).

Another important feature of our approach is the use of fuzzy
mathematical morphology operators [7] for defining spatialrelations.
Based on only one operation, the morphological dilation (and its
dual: the erosion), relations such as adjacency, distances, relative
directional position, or even more complex relations such as “be-
tween”, could be modeled mathematically with nice properties and
behaviors [4, 5].

In this paper, we show how these morphological expressions can
be integrated in a spatial relation ontology and in description logics.

3 A spatial relation ontology

With the aim of image interpretation, we proposed in [13] an on-
tology of spatial relations. The semantic interpretation of images can
benefit from representations of useful concepts and the links between
them as ontologies. The proposed ontology of spatial relations is in-
tended to guide image interpretation and the recognition ofthe struc-
tures it contains using structural information on the spatial arrange-
ment of these structures. As a formal language, we have chosen de-



Constructor Syntax Semantics
atomic concept A AI ⊆ ∆I

individual a aI ∈ ∆I

Top ⊤ ⊤I = ∆I

Bottom ⊥ ⊥I = ∅I

atomic role r RI ⊆ ∆I × ∆I

conjunction C ⊓ D CI ∩ DI

disjunction C ⊔ D CI ∪ DI

negation ¬C ∆I \ CI

existential restriction ∃r.C {x ∈ ∆I | ∃y ∈ ∆I : (x, y) ∈ RI ∧

y ∈ CI}
universal restriction ∀r.C {x ∈ ∆I | ∀y ∈ ∆I : (x, y) ∈ RI ⇒

y ∈ CI}
value restriction ∋ r.{a} {x ∈ ∆I | ∃y ∈ ∆I : (x, y) ∈ RI ⇒

y = aI}
number restriction (≥ nR) {x ∈ ∆I | |{y | (x, y) ∈ RI}| ≥ n}

(≤ nR) {x ∈ ∆I | |{y | (x, y) ∈ RI}| ≤ n}
subsumption C ⊑ D CI ⊆ DI

concept definition C=̇D CI = DI

concept assertion a : C aI ∈ CI

role assertion (a, b) : R (aI , bI) ∈ RI

Table 1. Description logics syntax and interpretation (∆I denotes an
abstract domain of the interpretationI).

scription logics since it is compact and expressive and it isthe basis
of most ontological languages, in particular of the OWL language.
We rely on the standard notations of DL, summarized in Table 1.

One important entity of our ontology, as proposed in [13], isthe
conceptSpatialObject(SpatialObject ⊑ ⊤). Moreover, as men-
tioned in [14], the nature of spatial relations is twofold: they are
concepts with their own properties but they are also links between
concepts. For instance, the assertion “X is to the right of Y ” can
be interpreted and represented in two different ways: (i) asan “ab-
stract” relation betweenX andY that is either true or false; (ii) as
a physical spatial configuration between the two spatial objectsX
andY . As a consequence, we use a process of reification of spatial
relations as in [14]. A spatial relation is not considered inour ontol-
ogy as a role (property) between two spatial objects but as a concept
on its own (SpatialRelation), which is one of the main features of
our approach. The notations used in the following are the classical
notations of DL syntax and semantics.

• A SpatialRelationis subsumed by the general conceptRelation.
It is defined according to aReferenceSystem.
SpatialRelation⊑ Relation⊓ ∋ type.{Spatial} ⊓ ∃ hasRefer-
enceSystem.ReferenceSystem
SpatialRelationsubsumesTopologicalRelationandMetricRela-
tion which itself subsumesDirectionalRelationandDistanceRe-
lation. For BinarySpatialRelation, we can also specifyinverse
spatial relationsand properties such asreflexivity, irreflexivity,
symmetry, antisymmetry, asymmetryuseful for qualitative spatial
reasoning as shown in [14].

• We define the conceptSpatialRelationWithwhich refers to the set
of spatial relations which are defined according to at least one or
more reference spatial objectsRO.
SpatialRelationWith =̇ SpatialRelation⊓
∃ hasRO.SpatialObject⊓ ≥ 1 hasRO

• We define the conceptSpatiallyRelatedObjectwhich refers to
the set of spatial objects which have at least one spatial relation
(hasSR) with another spatial object. This concept is useful to de-
scribe spatial configurations.
SpatiallyRelatedObject =̇ SpatialObject ⊓
∃ hasSR.SpatialRelationWith⊓ ≥ 1 hasSR

• At last, the conceptDefinedSpatialRelationrepresents the set of
spatial relations for which target and reference objects are defined.

DefinedSpatialRelation =̇ SpatialRelation⊓
∃ hasRO.SpatialObject ⊓ ≥ 1 hasRO ⊓ ∃ hasTargetOb-
ject.SpatialObject⊓ = 1 hasTargetObject

An original feature of this ontology is that it is enriched byfuzzy
representations of concepts, which define their semantics,and allow
establishing the link between these concepts (which are often ex-
pressed in linguistic terms) and the information that can beextracted
from images. This contributes to reducing the semantic gap and it
constitutes a new methodological approach to guide semantic image
interpretation. We make use of concrete domains towards this aim.
In our previous work, the integration of the fuzzy models wasper-
formed by linking concepts of the spatial relation ontologyto their
corresponding physical fuzzy representation in the image domain. In
this paper, we propose a more formal integration, detailed next.

4 Morphological fuzzy description logics

In this section, we introduce mathematical morphology as a spatial
reasoning tool. In particular we show how morphological operators
can be used to define a specific description logics with fuzzy concrete
domains. The main objective is to provide a foundation to reason
about qualitative and quantitative spatial relations.

4.1 Description of the formalism

The proposed framework is based on extensions of the basic descrip-
tion logics incorporating concrete domainsALC(D) [15]. In particu-
lar, as in [8], we integratefuzzy concrete informationinto description
logic concepts using fuzzy concrete domains. We first brieflyrecall
the definition of concrete domains and we introduce their usein de-
scription logics.

Definition [8] A concrete domainD is a pair(∆D, ΦD) where
∆D is a set andΦD a set of predicates names on∆D. A fuzzy con-
crete domainis a pair(∆D, ΦD), where∆D is an interpretation do-
main andΦD a set of fuzzy predicatesd with a predefined arityn
and an interpretationdD : ∆n

D → [0, 1], which is an−ary fuzzy
relation over∆D.

Role and concept terms. Let C, Ra, Rc, Ia, Ic be non empty
and pair-wise disjoint sets ofconcept names, abstract role names,
concrete role names, abstract individual names, concrete individ-
ual names. Ra also contains a non-empty setFa of abstract fea-
tures namesandRc contains a non-empty setFc of concrete features
names. These features are functional roles. A composition of fea-
tures (denotedf1, f2, ...) is called a feature chain. In addition to the
concept and terms constructors described in Table 1, we havethe fol-
lowing constructs withP ∈ ΦD a predicate name associated with
an arityn and a predicatePD ⊆ ∆n

D, andu1, ..., un,v1, ..., vm are
features chains:

• Predicate exists restriction:∃u1, ..., un.P interpreted by :{a ∈
∆I | ∃x1, ...xn ∈ ∆D : (uI

1 (a) = x1) ∧ ... ∧ (uI
n(a) = xn) ∧

(x1, ...xn) ∈ PD};
• Role forming predicate restriction [12]:

∃ (u1, ..., un) (v1, ..., vm) .P interpreted by:
{(x, y) ∈ ∆I × ∆I | ∃r1, . . . , rn, s1, . . . , sm ∈ ∆D :
uI

1 (x) = r1, . . . , u
I
n(x) = rn, vI

1 (y) = s1, . . . , v
I
m(y) = sm

and(r1, . . . , rn, s1, . . . , sm) ∈ PD}.

Terminology and assertions.A Tbox T is a finite set of termi-
nological axioms (A=̇D andA ⊑ D) and an AboxA is a finite set
of assertions (a : C (concept membership),(a, b) : R (role filler),



(a, x) : f (feature filler) and(x1, ..., xn) : P (concrete domain pred-
icate membership)).

In our framework, we instantiate the description logicsALCF(D)
(standardALC extended with functional roles and concrete domains)
with the fuzzy concrete domainS = (∆S , ΦS ). ∆S = S is a 3D
space (the image space) where fuzzy concrete objects are defined.S
is typicallyZ

2 or Z
3 for 2D or 3D images. LetF the set of fuzzy sets

defined over the spatial domainS . In our framework,ΦS contains:

• The unary predicates⊥S and⊤S denoting∅ and∆S .
• The names of two unary fuzzy predicatesµ andν which associate

to a spatial object conceptX and to a spatial relation conceptR
the interpretationsµX andνR in S (µX ∈ F , νR ∈ F). For each
point x ∈ S , µX(x) represents the degree to whichx belongs
to the spatial representation of the objectX in the image andνR

represents the fuzzy structuring element defined onS which repre-
sents the fuzzy spatial relationR in the image space (as mentioned
in Section 2, relations are defined using mathematical morphology
operators, with an appropriate structuring element).

• The names of two binary fuzzy predicatesδ andε with δµX
νR

the
fuzzy dilation andεµX

νR
the fuzzy erosion of the spatial fuzzy set

µX by the structuring elementνR. They are defined in [7] by :

– ∀x ∈ S , ενR
(µX)(x) = εµX

νR
(x) = infy∈S T (1 − νR(y −

x), µX(y)) whereT is a t-conorm (fuzzy union) [9];

– ∀x ∈ S , δνR
(µX)(x) = δµX

νR
(x) = supy∈S t(νR(x −

y), µX (y)) wheret is a t-norm (fuzzy intersection) [9].

Here dual definitions of these operators are chosen for theirprop-
erties, as will be seen later. Duality is intended with respect to the
complementationc defined asc(α) = 1 − α but other comple-
mentations can be used as well.

• Names for composite fuzzy predicates consisting of composition
of elementary binary predicates.

We now illustrate how these fuzzy concrete domain predicates are
used to represent spatial relations and to support spatial inference.
As in [11], we assume that each abstract spatial relation concept and
each abstract spatial object concept is associated with itsfuzzy rep-
resentation in the concrete domain by the concrete featurehasFor-
FuzzyRepresentation, denotedhasFR (it is a concrete feature be-
cause each abstract concept has only one fuzzy spatial represention
in the image space).

• SpatialObject =̇∃ hasFR.F . It defines aSpatialObject as a
concept which has a spatial existence in image represented by a
spatial fuzzy set.

• In the same way, we have :SpatialRelation =̇ Relation ⊓∃
hasFR.F .

Then, the following constructs can be used to define the othercon-
cepts of the ontology:

• ∃ hasFR.µX restricts the concrete region associated with the ob-
ject X to the specific spatial fuzzy setµX ,

• ∃ hasFR.νR restricts the concrete region associated with the re-
lationR to the specific fuzzy structuring elementνR,

• ∃ hasFR.δµX
νR

restricts the concrete region associated to the spa-
tial relationR to a referent objectX, denotedR X, to the spatial
fuzzy set obtained by the dilatation ofµX by νR,

• each conceptR X can then be defined by:R X =̇ SpatialRe-
lation ⊓∃ hasRO.X ⊑ SpatialRelationWith and R X ≡ Spa-
tialRelation ⊓∃ (hasFR,hasRO.hasFR).λ where λ is a bi-
nary fuzzy predicate built with the mathematical fuzzy opera-

tors δ and ε. For a relationR which has a referent objectX,
(hasFR,hasRO.hasFR).δ ≡ hasFR. δµX

νR
.

• C=̇SpatialObject⊓hasSR.R X denotes the set of spatial objects
which have a spatial relation of typeR with the referent objectX
and we have the following axioms:C ⊑ ∃relationTo.X andC ⊑
SpatiallyRelatedObject.

Admissibility of S = (∆S , ΦS). A concrete domainD is called
admissible iff (i) the set of its predicate names is closed under nega-
tion and contains a name⊤D for ∆D, and (ii) the satisfiability prob-
lem for finite conjunctions of predicates is decidable. Herecondition
(i) is satisfied and (ii) remains to be proved.

4.2 Examples for a few relations

Distance relations.To illustrate our approach, we take the exam-
ple of distance relations. As in [8] we use a trapezoidal function
trz(x;a, b, c, d) to define the semantics of “close to”: R

+ → [0, 1]
which represents the degree of membership to the distance relation
with trz(t;a, b, c, d) = 0 if t ≤ a or t ≥ d; (t − a)/(b − a) if t ∈
]a, b[; (d−t)/(d−c) if t ∈]c, d[. Note that any other uni-modal mem-
bership function having a similar behavior could be used as well. For
theClose To relation,a = b = 0. From this membership function,
we can define a structuring elementνCLOSE TO . This structuring
element provides a representation in the spatial domainS [3]:

∀x ∈ S , νCLOSE TO(x) = trz(d(x,O); a, b, c, d) (1)

whered(x, O) is the distance fromx to the originO of S (Euclidean
distance, or a digital distance when working on a discrete space).

We can thus define the abstract spatial relationClose to by its
fuzzy representation in the concrete domainS , i.e.Close to =̇ Dis-
tanceRelation ⊓∃hasFR.νCLOSE TO . Let X =̇∃ hasFR.µX , µX

being the spatial fuzzy set representing the spatial extentof the ob-
ject X in the concrete domain (image space). Using the concept-
forming predicate operator∃f.P (see [11]), we can define re-
strictions for the fuzzy representation of the abstract spatial con-
cept Close to X using the dilation operatorδ. As a consequence,
we haveClose to X =̇ DistanceRelation⊓∃hasFR.δµX

νCLOSE T O
.

The valueδµX
νCLOSE TO

(x) represents the degree to which a pointx
of S belongs to the fuzzy dilation of the fuzzy spatial representation
of X by the structuring elementνCLOSE TO . Moreover, it restricts
the role filler ofhasFR to be specific fuzzy spatial sets.

Other distance relations can be defined in a similar way, by adapt-
ing the parameters of the trapezoidal function and the definition of
the interpretation in terms of dilation. For instance,νF AR F ROM

can be derived from Equation 1 by choosing a trapezoidal function
expressing the semantics of this relation, i.e.b is chosen as the small-
est distance for which the relation is satisfied with a non-zero degree,
c is the largest distance for which the relation is not completely satis-
fied andd = +∞. We then defineFar from X =̇ DistanceRelation
⊓∃hasFR.(1 − δµX

1−νF AR F ROM
). Note that any fuzzy complemen-

tationc could be used, the most usual one beingc(α) = 1 − α.
This approach naturally extends to any distance relation ex-

pressed as a vague interval, a fuzzy interpretation being provided
by trz(t;a, b, c, d). Two fuzzy sets are then defined:ν1(x) =
trz(d(x,0); 0, 0, c, d) andν2(x) = trz(d(x,O); 0, 0, a, b). We then
defineDist to X =̇ DistanceRelation⊓∃hasFR.(δµX

ν1
\ δµX

ν2
). The

first structuring elementν1 has a semantics of “not farther than the
upper bound of the interval” whileν2 means “not closer than the
lower bound of the interval”.



For a given relationR, once we have an interpretation in the con-
crete domain as a structuring elementνR and an interpretation of
R X, e.g. asδµX

νR
(or other forms involving a dilation as seen above),

we can finally defineY R X for a target object conceptY (con-
cept DefinedSpatialRelation in Section 3) with an interpretation
expressed as a fitting functionfit(µY , δµX

νR
), which can return a

number, an interval, a fuzzy number, etc. [2, 3]. It can be forin-
stance an interval defined by the degree of inclusion ofµY in δµX

νR

and the degree of intersection of these fuzzy sets, as in a fuzzy pat-
tern matching approach [10]. This applies also to the relations that
will be detailed next. Note that this requires to add a secondconcrete
domain, for the interpretations offit functions.

Directional Relations.As for distances, directional relations can
be defined using fuzzy structuring elements. We first define a fuzzy
set on an angle space, that provides the semantics of the relation
(see [2, 16]). Let us consider the relationIn Direction α. From the
fuzzy setfα(θ) in the angle space, we derive a fuzzy structuring ele-
ment as [2]:∀x ∈ S , νIN DIRECTION α(x) = fα(|∠(Ox,~i)−α|)
where∠(Ox,~i) denotes the angle betweenOx and the first coordi-
nate axis, and the angle difference is computed in[−π, π]. For in-
stance the relationRight of can be derived fromf0(θ) = cos2(θ)
for θ ∈ [−π/2, π/2] and0 otherwise. Extension to 3D is obtained by
defining a direction with two angles. Then we defineIn Direction α
of X =̇ DirectionalRelation⊓∃hasFR.δµX

νIN DIRECT ION α
.

Adjacency relations.We propose to express adjacency as a dis-
tance relation, with a semantics of “very close to”. Thus we use
νCLOSE TO , with parameters of the trapezoidal function set to
a = b = 0 and c andd taking small values. This allows: (i) ex-
pressing this topological relation in the same formalism asthe other
relations; (ii) computing the interpretation (fuzzy representation) of
ADJ TO X with a dilation; (iii) incorporating a tolerance in the def-
inition (through the choice of the values ofc and d), avoiding to
consider it in a too strict way, and thus gaining in robustness. This is
motivated by the fact that adjacency may depend on one point only,
which often induces a loss of the adjacency property for onlytiny
changes in the considered objects. Note that strict adjacency is in-
cluded in the proposed formalism by simply choosingc = 1 and
d = 2 (for digital spaces).

Mereotopological relations.Our formalism leads also to simple
definitions of internal or external boundaries of an object.For in-
stance, the concept “external boundary” can be defined asExtB X
=̇ SpatialObject ⊓∃hasFR.(δµX

ν0
\ µX) whereν0 denotes an el-

ementary structuring element (it can be crisp or fuzzy and de-
fined according to the digital connectivity onS). In a similar way,
we define the internal boundary asIntB X =̇ SpatialObject ⊓∃
hasFR.(µX \ εµX

ν0
).

Based on these notions, all relations of the mereotopology or of
RCC-8 [1, 17, 19] can be expressed in our framework: parthood:
P(X,Y) =̇ X ⊑ Y; partial overlap:PO(X,Y) =̇ (X ⊓ Y 6= ⊥); discon-
nection:DC(X,Y) =̇ (X ⊓ Y = ⊥); external connection:EC(X,Y)
=̇ (X ⊓ Y = ⊥) ⊓ X ADJ TO Y; proper part:PP(X,Y) =̇ (X ⊑
Y) ⊓ (ExtB X ⊑ Y); tangential properpart:TPP(X,Y) =̇ (X ⊑ Y)
⊓ (ExtB X ⊓ ¬Y 6= ⊥). This shows that the proposed formalism
allows integrating in a very simple way spatial relations defined in
other works.

More complex relations.Relations such as “between”, or “sur-
round”, can be expressed in the same formalism, using dilations or
compositions of previously defined relations [6]. They are not de-
tailed here since their semantics is somewhat more complex and not
independent of the shape of the involved objects. It is then more dif-
ficult to defineR andR X independently.

4.3 Properties

As before we denote in a general way byR a spatial relation concept,
X a spatial object concept, andR X the concept “relationR toX”. Us-
ing the classical partial order on fuzzy sets≤, (F ,≤) is a complete
lattice, hence the appropriate framework for defining mathematical
morphology operators. The associated infimum and supremum are
denoted by∧ and∨ (min and max here). The interpretation in the
concrete domain ofX1⊓ X2 is then∧(µX1

, µX2
) and the one ofX1⊔

X2 is∨(µX1
, µX2

). Several interesting properties of description log-
ics can be derived from properties of mathematical morphology (for
properties of mathematical morphology see [18] and [7] for the fuzzy
case). We summarize here the most important ones:

• dilation commutes with the supremum:δν(µX1
) ∨ δν(µX2

) =
δν(µX1

∨ µX2
) and δν1

(µX) ∨ δν2
(µX) = δν1∨ν2

(µX), and
therefore we have the following equivalences between concepts:
R X1⊔ R X2 ≡ R (X1⊔ X2) andR1 X⊔ R2 X ≡ R12 X where
R12 has for fuzzy representationν1 ∨ ν2;

• for the infimum, we only have:δν(µX1
) ∧ δν(µX2

) ≥ δν(µX1
∧

µX2
) henceR (X1⊓ X2) ⊑ R X1⊓ R X2 ;

• increasingness:µX1
≤ µX2

⇒ ∀ν ∈ F , δν(µX1
) ≤ δν(µX2

)
andν1 ≤ ν2 ⇒ ∀µX ∈ F , δν1

(µX) ≤ δν2
(µX) henceX1 ⊑

X2 ⇒ ∀ R, R X1 ⊑ R X2 andR1 ⊑ R2 ⇒ ∀ X, R1 X ⊑ R2 X;
• iterativity property: δν1

(δν2
(µX)) = δδν1

(ν2)(µX) hence
R1 (R2 X) ≡ (R1 R2) X, whereR1 R2 is the relation having as
fuzzy representationδν1

(ν2);
• extensivity:ν(O) = 1 ⇒ ∀µX ∈ F , µX ≤ δν(µX) henceX

⊑ R X for any relation defined by a dilation with a structuring
element containing the origin ofS (with membership value 1);

• duality: for the chosen definition of fuzzy dilation and erosion,
we haveεν(µX) = 1 − δν(1 − µX) (or a similar equation with
any complementationc), which induces relations between some
relations. For instance the fuzzy representation ofIntB X can be
written as:µX \εµX

ν0
= µX ∧δ1−µX

ν0
= δ1−µX

ν0
\(1−µX ), hence

IntB X ≡ ExtB ¬X.

These properties provide the basis for inference processes. Other
examples use simple operations, such as conjunction and disjunction
of relations, in addition to these properties, to derive useful spatial
representations of potential areas of target objects, based on knowl-
edge about their relative positions to known reference objects. This
will be illustrated in the following section on a concrete example in
brain imaging.

5 Application to medical image interpretation

In this section, we show how our framework can be used to support
terminological and spatial reasoning in a cerebral image interpreta-
tion application. In particular, our aim is to segment and recognize
anatomical structures progressively by using the spatial information
between the different structures. We denote respectivelyLV, RLV
and LLV the Lateral Ventricle, the Right Lateral Ventricleand the
Left Lateral Ventricle. The other anatomical structures we consider
are theCaudate Nuclei(denotedCN, RCN, LCN) which aregrey
nuclei (denotedGN) of the brain. We have the following TBox
describing anatomical knowledge :



AnatomicalStructure⊑ SpatialObject
GN ⊑ AnatomicalStructure
RLV =̇ AnatomicalStructure⊓ ∃ hasFR.µRLV

LLV =̇ AnatomicalStructure⊓ ∃ hasFR.µLLV

LV ≡ RLV ⊔ LLV
Right of =̇ DirectionalRelation⊓ ∃ hasFR.νIN DIRECTION 0

Close to =̇ DistanceRelation⊓ ∃ hasFR.νCLOSE TO

Right of RLV =̇ DirectionalRelation ⊓ ∃ hasRO.RLV ⊓ ∃
hasFR.δµRLV

νIN DIRECT ION 0

Close To RLV =̇ DistanceRelation ⊓ ∃ hasRO.RLV ⊓ ∃
hasFR.δµRLV

νCLOSE T O

RCN =̇ GN ⊓∃ hasSR.(Right of RLV ⊓ Close To RLV)
CN =̇ GN ⊓∃ hasSR.(Close To LV)
CN ≡ RCN ⊔ LCN
The role forming predicate also allows defining explicitly dilation

or erosion as a role (for instance the dilation that defines the region
to the right of the materlat ventricle):
dilate =̇ (hasFR,hasRO.hasFR).δ
Right Of RLV =̇ Right Of ⊓∃ dilate.RLV

In an object recognition task, we now consider the situationillus-
trated in Figure 1 where the right lateral ventricle has already been
extracted from the image.

(a) (b) (c) (d)
Figure 1. (a) The right ventricle corresponding to the image regionS1 is

superimposed on one slide of the original image. (b) Fuzzy structuring
element representing the semantics ofRight of in the image. (c) Fuzzy

structuring element representing the semantics ofClose To in the image. (d)
δ
µS1
νIN DIRECT ION 0

∧ δ
µS1
νCLOSE TO

.

The situation in Figure 1 corresponds to the following ABox:
c1 : RLV , (c1,µS1

): hasFR
r1 : Right of, (r1,νIN DIRECTION 0): hasFR
r2 : Close to, (r2,νCLOSE TO): hasFR

In a first example, our aim is to find some spatial constraints in the
image domain on an instancec2 of the Right Caudate Nucleus, i.e. to
find constraints on concrete domains to ensure the satisfiability of the
assertionc2 : RCN , (c2,µS2

): hasFR. Using the inference mecha-
nisms of description logics and the properties of our framework, we
derive the following spatial contraints :
µS2

≤ δ
µS1
νIN DIRECT ION 0

∧ δ
µS1
νCLOSE T O

.
In a second example, illustrating disjunctions of relations, we are

interested in all the instances of Caudate Nuclei in the image. A
caudate nucleus is a grey nucleus which is either to the rightor to the
left of the lateral ventricles (there is one in each brain hemisphere).
This information can be represented by the following axioms:
CN =̇ GN ⊓∃ hasSR.(Right of LV ⊔ Left of LV)
Using the property of disjunction of relations, we have :
Right of LV ⊔ Left of LV ≡ SpatialRelation ⊓∃
hasFR.δµLV

νRIGHT OF ∨νLEFT OF
.

As a consequence, the search space for the caudate nuclei is
computed byδνRIGHT OF ∨νLEFT OF

(µLV ), which is equivalent to
δνRIGHT OF

(µLV ) ∨ δνLEF T OF
(µLV ). This fuzzy region is rep-

resented in Figure 2.

6 Conclusion

In this paper, we extended our previous work described in [13] by the
proposition of a framework for spatial relations and spatial reasoning

(a) (b)
Figure 2. (a) Fuzzy interpretation of the disjunction of the relations left or

right to LV. (b) One of the caudate nuclei is displayed.

under imprecision based on description logics with fuzzy interpreta-
tions in concrete domains and fuzzy mathematical morphology. This
framework enables to integrate qualitative and quantitative informa-
tion and to derive appropriate representations and reasoning tools for
an operational use in image interpretation. Future work aims at ad-
dressing questions of satisfiability and admissibility, and at further
developing the brain imaging example.

REFERENCES
[1] N. Asher and L. Vieu, ‘Toward a Geometry of Common Sense: A

Semantics and a Complete Axiomatization of Mereotopology’, in IJ-
CAI’95, pp. 846–852, San Mateo, CA, (1995).

[2] I. Bloch, ‘Fuzzy Relative Position between Objects in Image Process-
ing: a Morphological Approach’,IEEE Transactions on Pattern Analy-
sis and Machine Intelligence, 21(7), 657–664, (1999).

[3] I. Bloch, ‘On Fuzzy Distances and their Use in Image Processing under
Imprecision’,Pattern Recognition, 32(11), 1873–1895, (1999).

[4] I. Bloch, ‘Fuzzy Spatial Relationships for Image Processing and In-
terpretation: A Review’,Image and Vision Computing, 23(2), 89–110,
(2005).

[5] I. Bloch, ‘Spatial Reasoning under Imprecision using Fuzzy Set Theory,
Formal Logics and Mathematical Morphology’,International Journal
of Approximate Reasoning, 41, 77–95, (2006).

[6] I. Bloch, O. Colliot, and R. Cesar, ‘On the Ternary Spatial Relation
Between’,IEEE Transactions on Systems, Man, and Cybernetics SMC-
B, 36(2), 312–327, (apr 2006).

[7] I. Bloch and H. Maı̂tre, ‘Fuzzy Mathematical Morphologies: A Com-
parative Study’,Pattern Recognition, 28(9), 1341–1387, (1995).

[8] F. Bobillo and U. Straccia, ‘A Fuzzy Description Logic with Product
T-norm’,Proceedings of Fuzzy Systems Conference, 2007. FUZZ-IEEE
2007. IEEE International, 1–6, (2007).

[9] D. Dubois and H. Prade,Fuzzy Sets and Systems: Theory and Applica-
tions, Academic Press, New-York, 1980.

[10] D. Dubois, H. Prade, and C. Testemale, ‘Weighted Fuzzy Pattern
Matching’, Fuzzy Sets and Systems, 28, 313–331, (1988).

[11] V. Haarslev, C. Lutz, and R. Moller, ‘Foundations of spatioterminolog-
ical reasoning with description logics’, inSixth International Confer-
ence on Principles of Knowledge Representation and Reasoning, pp.
112–123, Trento, Italy, (1998).

[12] V. Haarslev, C. Lutz, and R. Moller, ‘A description logic with concrete
domains and a role-forming predicate operator’,Journal of Logic and
Computation, 9(3), 351–384, (1999).

[13] C. Hudelot, J. Atif, and I. Bloch, ‘Fuzzy Spatial Relation Ontology for
Image Interpretation’,Fuzzy Sets and Systems, (2008).

[14] F. Le Ber and A. Napoli, ‘The design of an object-based system for
representing and classifying spatial structures and relations’, Journal of
Universal Computer Science, 8(8), 751–773, (2002).

[15] C. Lutz, ‘Description logics with concrete domains:a survey’, Advances
in Modal Logics, 4, 265–296, (2003).

[16] K. Miyajima and A. Ralescu, ‘Spatial Organization in 2DSegmented
Images: Representation and Recognition of Primitive Spatial Rela-
tions’, Fuzzy Sets and Systems, 65, 225–236, (1994).

[17] D. Randell, Z. Cui, and A. Cohn, ‘A Spatial Logic based onRegions
and Connection’, inPrinciples of Knowledge Representation and Rea-
soning KR’92, eds., B. Nebel, C. Rich, and W. Swartout, pp. 165–176,
San Mateo, CA, (1992). Kaufmann.

[18] J. Serra,Image Analysis and Mathematical Morphology, Academic
Press, New-York, 1982.

[19] A. Varzi, ‘Parts, Wholes, and Part-Whole Relations: The Prospects of
Mereotopology’,Data and Knowledge Engineering, 20(3), 259–286,
(1996).


