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Abstract.
tion, spatial relations play a crucial role since they ass lprone to
variability than properties of structures themselves. &doer, they
constitute an important part of available knowledge. Is fhaper, we
suggest a new way to handle imprecise spatial informatican die-
scription logic framework based on mathematical morphglagh
fuzzy interpretations in concrete domains. Fuzzy reptasiems of
concepts contribute to bridge the gap between ontologigaksen-
tations and real data, and the mathematical morphologinges a
core feature of our approach to merge the advantages ofogies|
concrete domain representations and manipulations, @eéson-
ing power of description logics. The benefits of our logiaainfie-
work are illustrated on a medical image interpretation task

1

In image interpretation and computer vision, spatial retet be-
tween objects and spatial reasoning are of prime importéoce
recognition and interpretation tasks. Neverthelesspatth spatial
reasoning has been largely studied in artificial intellgemainly
using qualitative representations based on logical faeme, there
is still a gap with the quantitative representations useithiage in-
terpretation.

Description logics (DLs) equipped with concrete domairi Hre
a widely accepted way to integratencrete and quantitative quali-
tiesof real world objects with conceptual knowledge and as a&ons
guence to combine qualitative and quantitative reasongsguli for
real-world applications. In [13], we have proposed a fuzpgtil
ontology, operational for image interpretation, basedhenexpres-
sive means of description logics with fuzzy concrete domdimthis
ontology, the link between abstract concepts and the reptason
of these concepts in the concrete domains was explicitaly. bu
this paper, we propose to extend our previous work by theqsiep
tion of a new framework which goes deeper in the exploitatbn
concrete domains. In this framework, the combination otdpton
logics with fuzzy concrete domains and mathematical mdouyo
provides new mechanisms to derive useful concrete reEs®Ts
of concepts and new reasoning tools. The paper is organgzéml-a
lows. In Section 2, we briefly present how mathematical moiqdy
can be used to derive fuzzy representations of spatialigetatin
Section 3, we present the main concepts of the fuzzy spatation
ontology detailed in [13]. We describe our new framework &sd
properties in Section 4 and we illustrate the benefits of filsise-
work for image interpretation tasks in Section 5.
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In several domains, such as medical image interpreta2  Fuzzy representation of spatial relations using

mathematical morphology

In this Section, we briefly summarize our previous work on-spa
tial relations. Their representation combines two imparfaatures:
(i) modeling of imprecision using fuzzy sets, and (ii) cortation
through mathematical morphology operators.

Imprecision has to be taken into account to model vaguemness,
herent to many spatial relations, and to gain in robustrmetsei rep-
resentations. For instance, modeling in a mathematical vagye
expressions such as “close to”, “to the right of” can be appately
performed in the fuzzy set framework, without defining crisgesh-
olds on distance or angle values.

Another advantage of fuzzy representations is that they tea
very generic modeling of different spatial relations, dfiedent levels
of granularity. A membership function representing a spaélation
concept provides the semantics of the concept and coestiturt effi-
cient way to convert symbolic notions into numeric ones. dtwer,
the membership functions we use have simple shapes (sucpas t
zoidal ones) that are generic enough to be applicable in rdéfey-
ent domains. For each specific domain, the parameters of ¢ne m
bership functions can be appropriately adapted, using griowl-
edge or learning procedures. Let us take the example ofédlws
This relation is modeled as a fuzzy interval on the real lsez(Sec-
tion 4). This generic model can then be instantiated, thicgad-
equate choice of the parameters, for each particular atialic (for
instance, the meaning of “close to” is obviously not the sdfme
consider towns observed in satellite imaging, or parts eftthman
body in medical imaging).

Another important feature of our approach is the use of fuzzy
mathematical morphology operators [7] for defining spaékdtions.
Based on only one operation, the morphological dilatiord (s
dual: the erosion), relations such as adjacency, distame&give
directional position, or even more complex relations sushtee-
tween”, could be modeled mathematically with nice progsrénd
behaviors [4, 5].

In this paper, we show how these morphological expressians ¢
be integrated in a spatial relation ontology and in desicripiogics.

3 A spatial relation ontology

With the aim of image interpretation, we proposed in [13] @A o
tology of spatial relations. The semantic interpretatibim@ages can
benefit from representations of useful concepts and the biskween
them as ontologies. The proposed ontology of spatial oatis in-
tended to guide image interpretation and the recognitiaghe§truc-
tures it contains using structural information on the spatirange-
ment of these structures. As a formal language, we have ghiese



Constructor Syntax | Semantics
atomic concept A AT C AT
individual a at e AT
Top T TZ = AT
Bottom 1 1T =p*
atomic role r RT C AT x AT
conjunction cnbD cTnpD?
disjunction CcubD ctup?
negation -C AT\ C*
existential restriction|  3r.C {x € AT | 3y € AT : (z,y) € RT A
y € CT}
universal restriction vr.C {z € AT | vy € AT : (z,y) € RT =
yecCry
value restriction Srda} | {z e AT |3y e AT : (z,y) € RT =
y=a’}
number restriction | (> nR) {z e AT | {y ]| (z,9) € RT}| > n}
(£nR) | {zeA”]| {y|(z,y) € RT} < n}
subsumption CLCD cTCcbp
concept definition C=D ct =p?
concept assertion a:C af e c?
role assertion (a,b) : R | (a®,b%) € RE

Table 1. Description logics syntax and interpretatioh¥ denotes an
abstract domain of the interpretatid).

scription logics since it is compact and expressive andthiesbasis
of most ontological languages, in particular of the OWL laage.
We rely on the standard notations of DL, summarized in Table 1
One important entity of our ontology, as proposed in [13}his
conceptSpatialObject(SpatialObject = T). Moreover, as men-
tioned in [14], the nature of spatial relations is twofoltey are
concepts with their own properties but they are also linksveen
concepts. For instance, the assertidf is to the right of Y” can
be interpreted and represented in two different ways: (arasab-
stract” relation betweeX andY that is either true or false; (ii) as
a physical spatial configuration between the two spatia¢@bjX

andY. As a consequence, we use a process of reification of spati

relations as in [14]. A spatial relation is not consideredum ontol-
ogy as a role (property) between two spatial objects but anespt

on its own GpatialRelation), which is one of the main features of Crete domairis a pair(

our approach. The notations used in the following are thesital
notations of DL syntax and semantics.

e A SpatialRelationis subsumed by the general conc&gllation
It is defined according to ReferenceSystem
SpatialRelation C Relation 1 > type.{Spatial } 11 3 hasRefer-
enceSystem.ReferenceSystem
SpatialRelationsubsumegopologicalRelationand MetricRela-
tion which itself subsumeBirectionalRelationandDistanceRe-
lation. For BinarySpatialRelation we can also specifynverse
spatial relationsand properties such asflexivity, irreflexivity,
symmetry, antisymmetry, asymmaisgeful for qualitative spatial
reasoning as shown in [14].

e We define the conce@patialRelationWithwhich refers to the set
of spatial relations which are defined according to at leastar
more reference spatial objed©.

SpatialRelationWith = SpatialRelation
3 hasRO.SpatialObject > 1 hasRO

e We define the concepbpatiallyRelatedObjectvhich refers to

the set of spatial objects which have at least one spatiatioal

(hasSR) with another spatial object. This concept is useful to de-

scribe spatial configurations.
SpatiallyRelatedObject = SpatialObject M
J hasSR.SpatialRelationWith > 1 hasSR

DefinedSpatialRelation = SpatialRelation 1
3 hasRO.SpatialObject M > 1 hasRO M 3 hasTargetOb-
ject.SpatialObject M = 1 hasTargetObject

An original feature of this ontology is that it is enriched foygzy

representations of concepts, which define their semamtickallow
establishing the link between these concepts (which aen k-

pressed in linguistic terms) and the information that camieacted

from images. This contributes to reducing the semantic gapia
constitutes a new methodological approach to guide semiaméige

interpretation. We make use of concrete domains towardsaiii.
In our previous work, the integration of the fuzzy models \pas-

formed by linking concepts of the spatial relation ontoldgytheir

corresponding physical fuzzy representation in the imamgeain. In

this paper, we propose a more formal integration, detaited. n

4 Morphological fuzzy description logics

In this section, we introduce mathematical morphology apadial
reasoning tool. In particular we show how morphologicalrapas
can be used to define a specific description logics with funegiete
domains. The main objective is to provide a foundation tsoea
about qualitative and quantitative spatial relations.

4.1 Description of the formalism

The proposed framework is based on extensions of the basiciple
tion logics incorporating concrete domaid€C (D) [15]. In particu-
lar, as in [8], we integratfuzzy concrete informatidnto description
logic concepts using fuzzy concrete domains. We first brieftall
the definition of concrete domains and we introduce theirinigke-

Scription logics.

Definition [8] A concrete domairD is a pair(Ap, ®p) where
Ap is a set andbp a set of predicates hames dns. A fuzzy con-
Ap,®p), whereAp is an interpretation do-
main and®p a set of fuzzy predicates with a predefined arity,
and an interpretatiod” : A% — [0,1], which is an—ary fuzzy
relation overAp.

Role and concept terms. Let C, R., R., I, I. be non empty
and pair-wise disjoint sets afoncept namesabstract role names
concrete role namesabstract individual namesconcrete individ-
ual names R,, also contains a non-empty s&t, of abstract fea-
tures nameand R. contains a non-empty sét. of concrete features
names These features are functional roles. A composition of fea-
tures (denoted, f2, ...) is called a feature chain. In addition to the
concept and terms constructors described in Table 1, wethavel-
lowing constructs withP? € ®p a predicate name associated with
an arityn and a predicaté®” C AL, andui, ..., un,v1, ..., Um are
features chains:

e Predicate exists restrictioftus, ..., u,.P interpreted by {a €
AT |3z, ..xn € Ap : (uf(a) = z1) A A (Uk(a) = z0) A
(z1,...Tn) € PD};

e Role forming predicate restriction [12]:
I (u1, ..., un) (v1, ..., vm ) . P interpreted by:
{(z,y) € AT X AT | Ir1,...,"n,81,...,5m € Ap :
wl(x) =r1,...,ul(x) =10, vl (W) = s1,...,05(y) = sm
and(r1,...,7n,51,...,8m) € PP}

Terminology and assertions.A Thox 7 is a finite set of termi-

e At last, the concepbefinedSpatialRelatiorrepresents the set of nological axioms 4=D and A C D) and an AboxA is a finite set

spatial relations for which target and reference objeaslafined.

of assertionsd : C' (concept membershipja,b) : R (role filler),



(a,z) : f (featurefiller)andzy, ..., z») : P (concrete domain pred-
icate membership)).
In our framework, we instantiate the description logieS8C F (D)

tors § and e. For a relationR which has a referent object,
(hasFR,hasRO.hasFR).j = hasFR. 6, .
e (C'=SpatialObjectrihasSR.R_X denotes the set of spatial objects

(standard4 LC extended with functional roles and concrete domains)  which have a spatial relation of tygewith the referent objecK

with the fuzzy concrete domaif = (As, ®s). As = Sisa 3D
space (the image space) where fuzzy concrete objects anedici
is typically Z2 or Z? for 2D or 3D images. Lef the set of fuzzy sets
defined over the spatial domath In our framework®s contains:

e The unary predicates s and T s denotingf) andAs.

e The names of two unary fuzzy predicajeandr which associate
to a spatial object concept and to a spatial relation concegt
the interpretationg x andvr in S (ux € F,vr € F). For each
pointz € S, ux(z) represents the degree to whichbelongs
to the spatial representation of the obj&cin the image andr
represents the fuzzy structuring element defined orhich repre-
sents the fuzzy spatial relatiéhin the image space (as mentioned
in Section 2, relations are defined using mathematical nobogly
operators, with an appropriate structuring element).

e The names of two binary fuzzy predicat®snde with 5§, the
fuzzy dilation and:lX the fuzzy erosion of the spatial fuzzy set
wx by the structuring elememtz. They are defined in [7] by :

— Vo € S, evy(pux)(z) = eb¥ (z) = infyes T(1 — vr(y —
x), px (y)) whereT is a t-conorm (fuzzy union) [9];

-V € S, 0uy(px)(x) o (x) = sup,cst(vr(z —
y), ux (y)) wheret is a t-norm (fuzzy intersection) [9].

Here dual definitions of these operators are chosen for phep-
erties, as will be seen later. Duality is intended with respe the
complementatiore defined as:(a) = 1 — « but other comple-
mentations can be used as well.

e Names for composite fuzzy predicates consisting of contiposi
of elementary binary predicates.

We now illustrate how these fuzzy concrete domain predicate
used to represent spatial relations and to support spafeieince.
As in [11], we assume that each abstract spatial relationegurand
each abstract spatial object concept is associated withzty rep-
resentation in the concrete domain by the concrete fe&taseor-
FuzzyRepresentation, denotechasFR (it is a concrete feature be-
cause each abstract concept has only one fuzzy spatiabespian
in the image space).

e SpatialObject =3 hasFR.F. It defines aSpatialObject as a
concept which has a spatial existence in image represegted b
spatial fuzzy set.

e In the same way, we have SpatialRelation = Relation M3
hasFR.F.

Then, the following constructs can be used to define the othrer
cepts of the ontology:

and we have the following axiomé! C JrelationTo.X andC' C
SpatiallyRelatedObiject.

Admissibility of S = (Ag,®s). A concrete domairD is called
admissible iff (i) the set of its predicate names is closedenmega-
tion and contains a namep for Ap, and (ii) the satisfiability prob-
lem for finite conjunctions of predicates is decidable. Hamedition
(i) is satisfied and (ii) remains to be proved.

4.2 Examples for a few relations

Distance relations.To illustrate our approach, we take the exam-
ple of distance relations. As in [8] we use a trapezoidal fianc
trz(z;a, b, ¢, d) to define the semantics of “close tdR™ — [0, 1]
which represents the degree of membership to the distatatéonre
with trz(t;a,b,¢,d) = 0if t < aort > d;(t —a)/(b—a)ift €
la, b[; (d—t)/(d—c) if t €]c, d[. Note that any other uni-modal mem-
bership function having a similar behavior could be usedels wor
the Close_To relation,a = b = 0. From this membership function,
we can define a structuring elememtr.ose_ro. This structuring
element provides a representation in the spatial do§idB]:
Vz € S,vcrose_ro(x) = trz(d(z,0); a,b, ¢, d) 1)

whered(z, O) is the distance from to the originO of S (Euclidean
distance, or a digital distance when working on a discreseasp

We can thus define the abstract spatial relattdose_to by its
fuzzy representation in the concrete domédiri.e. Close_to = Dis-
tanceRelation M3hasFR.vcrose_ro. Let X =3 hasFR.ux, px
being the spatial fuzzy set representing the spatial exiktite ob-
ject X in the concrete domain (image space). Using the concept-
forming predicate operatoff.P (see [11]), we can define re-
strictions for the fuzzy representation of the abstractiapaon-
cept Close_to_X using the dilation operataf. As a consequence,
we haveClose_to_X = DistanceRelation M3hasFR.0L%, o5 10 -
The valuedl, s » o () represents the degree to which a paint
of S belongs to the fuzzy dilation of the fuzzy spatial repreatan
of X by the structuring elememtcrose_ro. Moreover, it restricts
the role filler ofhasFR to be specific fuzzy spatial sets.

Other distance relations can be defined in a similar way, hptad
ing the parameters of the trapezoidal function and the diefimof
the interpretation in terms of dilation. For instaneg,ar_rrom
can be derived from Equation 1 by choosing a trapezoidaltiomc
expressing the semantics of this relation, 4.is.chosen as the small-
est distance for which the relation is satisfied with a nom-gdegree,
cis the largest distance for which the relation is not conghjesatis-

e JhasFR.ux restricts the concrete region associated with the obfied andd = 4-co. We then defin€ar_from_X = DistanceRelation

ject X to the specific spatial fuzzy sgty,

n3hasFR.(1 — &4'*

1 e an rron - Note that any fuzzy complemen-

e J hasFR.vr restricts the concrete region associated with the retationc could be used, the most usual one beifg) =1 — a.

lation R to the specific fuzzy structuring element,

This approach naturally extends to any distance relation ex

e JhasFR.o,X restricts the concrete region associated to the Spapressed as a vague interval, a fuzzy interpretation beingiged

tial relationR to a referent objeck, denotedR_X, to the spatial
fuzzy set obtained by the dilatation pf by vr,

e each concepR_X can then be defined byR_X = SpatialRe-
lation M3 hasRO.X C SpatialRelationWith and R_X = Spa-
tialRelation M3 (hasFR,hasRO.hasFR).\A where X\ is a bi-
nary fuzzy predicate built with the mathematical fuzzy @per

by trz(t;a,b,c,d). Two fuzzy sets are then defined;(x)
trz(d(z,0);0,0, ¢, d) andvz(x) = trz(d(z, 0);0,0, a, b). We then
defineDist_to_X = DistanceRelation M3hasFR.(65X \ 655). The
first structuring element; has a semantics of “not farther than the
upper bound of the interval” whilee means “not closer than the
lower bound of the interval”.



For a given relatiorR, once we have an interpretation in the con-

crete domain as a structuring element and an interpretation of

R_X, e.g. agh,X (or other forms involving a dilation as seen above),

we can finally defineY_R_X for a target object concept (con-
cept DefinedSpatialRelation in Section 3) with an interpretation
expressed as a fitting functiofit(uy, 50X ), which can return a
number, an interval, a fuzzy number, etc. [2, 3]. It can beiffer
stance an interval defined by the degree of inclusiopsefin §,%
and the degree of intersection of these fuzzy sets, as inzy faet-
tern matching approach [10]. This applies also to the m@batithat
will be detailed next. Note that this requires to add a secaomtrete
domain, for the interpretations ¢fit functions.

Directional Relations. As for distances, directional relations can
be defined using fuzzy structuring elements. We first definezayf
set on an angle space, that provides the semantics of themnela
(see [2, 16]). Let us consider the relatibnDirection_a.. From the

fuzzy setf.(0) in the angle space, we derive a fuzzy structuring ele-

mentas [2]¥z € S,vin_pirEcTION o(2) = fa(|£(0z,1)—al)
where/Z(Oz, i) denotes the angle betweén: and the first coordi-
nate axis, and the angle difference is compute@Hn, 7|. For in-
stance the relatioRight_of can be derived frony,(0) = cos?(0)
for @ € [—m/2, w/2] and0 otherwise. Extension to 3D is obtained by
defining a direction with two angles. Then we defineDirection_«
_of_X = DirectionalRelation M3hasFR.60%, . recrion -

Adjacency relations. We propose to express adjacency as a dis-

tance relation, with a semantics of “very close to”. Thus vee u

verose.ro, With parameters of the trapezoidal function set to

a = b = 0 andc andd taking small values. This allows: (i) ex-
pressing this topological relation in the same formalisnthasother
relations; (ii) computing the interpretation (fuzzy repeatation) of
ADJ_TO_X with a dilation; (iii) incorporating a tolerance in the def-
inition (through the choice of the values ofand d), avoiding to
consider it in a too strict way, and thus gaining in robustn@sis is
motivated by the fact that adjacency may depend on one paolyt o
which often induces a loss of the adjacency property for dinly
changes in the considered objects. Note that strict adjgcsnin-
cluded in the proposed formalism by simply choosihg= 1 and
d = 2 (for digital spaces).

Mereotopological relations.Our formalism leads also to simple
definitions of internal or external boundaries of an objédr in-
stance, the concept “external boundary” can be defindxéB_X
= SpatialObject M3hasFR.(65 \ px) wherewv, denotes an el-

ementary structuring element (it can be crisp or fuzzy and de

fined according to the digital connectivity @). In a similar way,
we define the internal boundary &astB_X = SpatialObject M3
hasFR.(ux \ eb).

Based on these notions, all relations of the mereotopologyf o

RCC-8 [1, 17, 19] can be expressed in our framework: parthood

P(X,Y) =X LY, partial overlapPO(X,Y) = (X MY # _1); discon-
nection:DC(X,Y) = (X 1Y = _1); external connectionEC(X,Y)
=(XnNY= 1)n X_,ADJ_TO_Y; proper partPP(X,Y) = (X C

Y) M (ExtB_X C Y); tangential properparfPP(X,Y) = (X C Y)

M (ExtB_X 1 =Y # _1). This shows that the proposed formalism
allows integrating in a very simple way spatial relationdirted in
other works.

More complex relations. Relations such as “between”, or “sur-
round”, can be expressed in the same formalism, using dlilgtor
compositions of previously defined relations [6]. They act de-
tailed here since their semantics is somewhat more complgxet
independent of the shape of the involved objects. It is thererdif-
ficult to defineR andR_X independently.

4.3 Properties

As before we denote in a general wayRya spatial relation concept,
X a spatial object concept, aRdX the concept “relatioR to X”. Us-

ing the classical partial order on fuzzy sets(F, <) is a complete
lattice, hence the appropriate framework for defining matecal
morphology operators. The associated infimum and supremam a
denoted byA and Vv (min and max here). The interpretation in the
concrete domain ok, M Xz is thenA(ux, , pex, ) and the one ok, LI
X2isV(ux,, tx,). Several interesting properties of description log-
ics can be derived from properties of mathematical morgho(éor
properties of mathematical morphology see [18] and [7]lierfuzzy
case). We summarize here the most important ones:

e dilation commutes with the supremumy; (px,) V 6, (ux,) =
6V(MX1 4 HX2) and o, (HX) V 0y, (HX) = Ouyvuy (NX)v and
therefore we have the following equivalences between quiace
R_X;U RX2 = R_(XiU Xz2) andR1_XU R2_X = R12_X where
R12 has for fuzzy representation V vs;

o for the infimum, we only havel, (px,;) A v (px,) > 60 (px, A
qu) henceR_(Xm Xz) C RXiMRXs ;

e increasingnessix, < px, = Vv € F, 0 (ux,) < du(px,)
andv; < vy = VYux € F, 6, (ux) < du,(px) henceX; C
X2 = VR, R.X; ERXs andR1 CRy;y=VX RiI_XCR2.X;

e iterativity property: d,, (0u, (11x)) 85, (v)(1x) hence
R1-(R2-X) = (R1-R2)_X, whereR; _R: is the relation having as
fuzzy representatiob,, (v2);

o extensivity:v(0) = 1 = Vux € F,ux < §,(ux) henceX
C R_X for any relation defined by a dilation with a structuring
element containing the origin &f (with membership value 1);

e duality: for the chosen definition of fuzzy dilation and éoos
we haves, (ux) = 1 — 6,(1 — px) (or a similar equation with
any complementation), which induces relations between some
relations. For instance the fuzzy representatiomtB_X can be
written asyux \ eb = px Ady *X = 6,5 #% \ (1—pux ), hence
IntB_X = ExtB_—X.

These properties provide the basis for inference proce€xbasr
examples use simple operations, such as conjunction ajuhcti®on
of relations, in addition to these properties, to derivefulsgpatial
representations of potential areas of target objects dbasénowl-
edge about their relative positions to known referenceat®jd his
will be illustrated in the following section on a concreteample in
brain imaging.

5 Application to medical image interpretation

In this section, we show how our framework can be used to stippo
terminological and spatial reasoning in a cerebral imaggrfpneta-
tion application. In particular, our aim is to segment ancbgmize
anatomical structures progressively by using the spatfatination
between the different structures. We denote respectivélyRLV
and LLV the Lateral Ventricle the Right Lateral Ventricleand the
Left Lateral Ventricle The other anatomical structures we consider
are theCaudate Nucle{denotedCN, RCN, LCN) which aregrey
nuclei (denotedGN) of the brain. We have the following TBox
describing anatomical knowledge :



AnatomicalStructure C SpatialObject

GN C AnatomicalStructure

RLV = AnatomicalStructure 1 3 hasFR.urrv

LLV = AnatomicalStructure 1 3 hasFR.urrv

LV=RLV U LLV

Right_of = DirectionalRelation ™ 3 hasFR.vin_prrecTion o

Close_to = DistanceRelation 1 3 hasFR.vcrose_ro

Right_.of RLV = DirectionalRelation M 3 hasRO.RLV 1 3

haSFR'(S’bLIIQJ\%_‘I/DIRECT_ION_O .

Close_To_.RLV = DistanceRelation M 3 hasRO.RLV mn 3

haSFR'(Sggfgsa“_To

RCN = GN M3 hasSR.(Right_of_RLV M Close_To_RLV)

CN = GN M3 hasSR.(Close_To_LV)

CN=RCNULCN

The role forming predicate also allows defining explicitliation
or erosion as a role (for instance the dilation that defineg¢igion
to the right of the materlat ventricle):
dilate = (hasFR,hasR0O.hasFR).¢
Right_ Of_RLV = Right_Of 3 dilate.RLV

In an object recognition task, we now consider the situatlas-
trated in Figure 1 where the right lateral ventricle hasadyebeen

extracted from the image.

(b)

(a) The right ventricle corresponding to the image regsaris
superimposed on one slide of the original image. (b) Fuazicsiring
element representing the semantic&kajht_of in the image. (c) Fuzzy

structuring element representing the semantidgSloge_To in the image. (d)

(©

(d)

Figure 1.
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The situation in Figure 1 corresponds to the following ABox:
c1:RLV, (c1,ps,): hasFR
r1 . Right.of, (r1,viN_prrEcTION_0): haSFR
ro ! Close_to, (re,vcrose_ro): hasFR

In a first example, our aim is to find some spatial constramthe
image domain on an instanee of the Right Caudate Nucleus, i.e. to
find constraints on concrete domains to ensure the satigfjaifithe
assertiorez : RCN , (c2,15,): hasFR. Using the inference mecha-
nisms of description logics and the properties of our fraor&awe
derive the following spatial contraints :

/’LSZ S 65151\17_DIRECTION_0 A 65§LOSE_TO'

In a second example, illustrating disjunctions of relasione are
interested in all the instances of Caudate Nuclei in the endg
caudate nucleus is a grey nucleus which is either to the oigtat the
left of the lateral ventricles (there is one in each brain ispimere).
This information can be represented by the following axioms
CN = GN M3 hasSR.(Right_of_LV LI Left_of_LV)

Using the property of disjunction of relations, we have :
Rightof LV 1  Leftof LV SpatialRelation
hasFR.é6, LY

VRIGHT_OFVVLEFT_OF"

= n4

As a consequence, the search space for the caudate nuclei is

computed bV, ;v or v prr_or (Lv ), Which is equivalent to
5VRIGHT_OF (NLV) \4 6VLEFT_OF (MLV)- This fUZZy reQion is rep-

resented in Figure 2.
6 Conclusion

In this paper, we extended our previous work described ihjg3he
proposition of a framework for spatial relations and spagasoning

.
(a) (b)

Figure 2. (a) Fuzzy interpretation of the disjunction of the relatideft or

right to LV. (b) One of the caudate nuclei is displayed.

under imprecision based on description logics with fuzzgripreta-
tions in concrete domains and fuzzy mathematical morplyolbkis
framework enables to integrate qualitative and quant#atiforma-
tion and to derive appropriate representations and reagoools for
an operational use in image interpretation. Future worksaiinad-
dressing questions of satisfiability and admissibilityd a further
developing the brain imaging example.
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