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Abstract. Fuzzy sets theory constitutes a poweful tool, that can lead
to more robustness in problems such as image segmentation and recog-
nition. This robustness results to some extent from the partial recovery
of the continuity that is lost during digitization. Here we deal with fuzzy
connectivity notions. We show that usual fuzzy connectivity definitions
have some drawbacks, and we propose a new definition, based on the
notion of hyperconnection, that exhibits better properties, in particular
in terms of continuity. We illustrate the potential use of this definition
in a recognition procedure based on connected filters. A max-tree rep-
resentation is also used, in order to deal efficiently with the proposed
connectivity.

1 Introduction

Connectivity is a key concept in image segmentation, filtering, and pattern recog-
nition, where objects of interest are often constrained to be connected according
to some definition of connectivity. This definition depends on the selected rep-
resentation of objects. The binary representation on a discrete grid remains the
most widespread, and the connectivity is then generally derived from an ele-
mentary connectivity, such as 4- or 8-connectivity in 2D. The axiomatization of
classes of connectivity [1,2] provides a rigorous framework to handle the concept
of connectivity, which leads to the design of connected filters (e.g. [3]). These
definitions were further extended to general complete lattices [2,4,5,6] and to the
notion of hyperconnectivity (i.e. based on a different definition of overlapping).

In this paper we deal with connectivity of fuzzy objects. Object represen-
tation using fuzzy sets theory [7] makes it possible to model various types of
imperfections, in particular related to the imprecision in images, and constitutes
a powerful tool, that can lead to more robustness in problems such as image
segmentation and recognition. This robustness results to some extent from the
partial recovery of the continuity that is lost during the digitization process. The
initial definition of fuzzy connectivity [8] provides a crisp characterization of the
connectivity of a fuzzy set. Its later extension [5] leads to a characterization of
the connectivity as a degree. This degree is however not continuous with respect
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to the membership function. Therefore we propose a new definition, based on
the notion of hyperconnection, that exhibits better properties, in particular in
terms of continuity.

We first recall in Section 2 some previous definitions on fuzzy sets and fuzzy
connectivity, and we illustrate some of their drawbacks. Section 3 is the core of
the paper. We introduce a new measure of connectivity, and we show that it
leads to a hyperconnection and to nice continuity properties. Hyperconnected
components are defined, and an efficient representation as a max-tree is proposed.
These notions allow us to build connected filters. In Section 4, we illustrate the
proposed approach on an example for brain imaging.

2 Preliminaries

Fuzzy sets – Let X be a set (typically the spatial domain). A fuzzy set on X
is defined as Ã = {(x, μA(x))|x ∈ X}, where μA is the membership function,
which quantifies the membership degree of x to Ã, and takes values in [0, 1]. In
the following, X is the digital space Z

n, and we restrict ourselves to fuzzy sets
having a bounded support. A fuzzy set is entirely characterized by the set of
its α-cuts, denoted by (μA)α: (μA)α = {x ∈ X | μA(x) ≥ α}. We denote by
F the set of fuzzy sets defined on X . The binary relation ≤ on F , defined by
Ã ≤ B̃ ⇔ ∀x ∈ X, μA(x) ≤ μB(x), is a partial order, and (F , ≤) is a complete
lattice. The supremum Ã∨B̃ and infimum Ã∧B̃ are defined by their membership
functions, as ∀x ∈ X, μA∨B(x) = max(μA(x), μB(x)) and ∀x ∈ X, μA∧B(x) =
min(μA(x), μB(x)), respectively. The smallest element is denoted by 0F and the
largest element by 1F . They are fuzzy sets with constant membership functions,
equal to 0 and 1, respectively.

A family Δ of fuzzy sets on X is said sup-generating if ∀Ã ∈ F , Ã =
∨

{δ ∈
Δ | δ ≤ Ã}. We will consider in particular the family {δx,t} defined as δx,t(y) = t
if y = x and δx,t(y) = 0 otherwise, which is sup-generating in the lattice (F , ≤).

As a metric on F we use: d∞(Ã, B̃) = supx∈X |μA(x) − μB(x)|, and (F , d∞)
is a metric space, inducing a definition of continuity.

Usual fuzzy connectivity – The first definition of fuzzy connectivity was proposed
by Rosenfeld [8]. More precisely, a degree of connectivity between two points in
a fuzzy set was defined, from which the connectivity of a fuzzy set was derived.

Definition 1. [8] The degree of connectivity between two points x and y of X
in a fuzzy set Ã (Ã ∈ F) is defined as:

c1
Ã
(x, y) = max

l∈Lx,y

l={x0=x,x1,...,xn=y}
min

0≤i≤n
μA(xi)

where Lx,y denotes the set of digitial paths from x to y, according to the under-
lying digital connectivity defined on X.

This degree of connectivity is symmetrical in x and y, weakly reflexive (i.e.
∀(x, y) ∈ X2, c1

Ã
(x, x) ≥ c1

Ã
(x, y)), and max-min transitive (i.e. ∀(x, y, z)
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∈ X3, c1
Ã
(x, z) ≥ min(c1

Ã
(x, y), c1

Ã
(y, z))). We have c1

Ã
(x, x) = μA(x) and c1

Ã
(x, y)

≤ min(μA(x), μA(y)).
Based on this definition segmentation processes were designed in [9,10]. An

affinity based on adjacency and grey level similarity was proposed, and the in-
duced notion of connectivity was used to perform image segmentation, initialized
with a set of seed points.

Definition 2. [8] A fuzzy set is said connected if all its α-cuts are connected
(in the sense of the connectivity on X).

Proposition 1. [8] A fuzzy set Ã is connected iff ∀(x, y) ∈ X2, c1
Ã
(x, y) =

min(μA(x), μA(y)).

(a) (b)

Fig. 1. Examples of non-connected (a) and connected (b) fuzzy sets according to Def. 2

These definitions are illustrated in Figure 1. One of the optimal paths between
x and y (achieving the max-min criterion of the definition) is displayed in (a), and
the minimal value on this path is 0.5, which provides the degree of connectivity
between x and y. The fuzzy set in (a) is non-connected since c1

Ã
(x, y) = 0.5,

which is stricly less than the membership degrees of x and y (μA(x) = 1 and
μA(y) = 0.9). On the contrary, the fuzzy set in Figure 1(b) is connected.

Connection and hyperconnection – Definition 2 provides a crisp notion of the
connectivity of a fuzzy set. However, if a set is fuzzy, it may be intuitively
more satisfactory to consider that its connectivity is also a matter of degree.
The notions of connection and hyperconnection [1,2,4] provide an appropriate
framework to this aim.

Definition 3. [2] Let (L, ≤) be a lattice. A connected class, or connection, C is
a family of elements of L such that:

1. 0L ∈ C,
2. C is sup-generating,
3. for any family {Ci} of elements of C such that

∧
i Ci 	= 0L, then

∨
i Ci ∈ C.

Let us first consider the lattice (P(X), ⊆). On this lattice, we use the usual
connection Cd induced by a digital connectivity cd on X (in the sense of the
graph of digital points). An element of Cd is then simply a subset A of X that
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is connected in the sense of cd (i.e. ∀(x, y) ∈ A2, ∃x0 = x, x1, ..., xn = y, ∀i <
n, xi ∈ A, and cd(xi, xi+1) = 1).

Now, on the lattice (F , ≤), let us consider the binary definition of connectivity
in Definition 2, and the 1D examples in Figure 2. In (a), each fuzzy set is con-
nected, and so is there union. However, in (b), the union is not connected, while
each fuzzy set is connected and their intersection is not equal to 0F . Therefore
Definition 3 cannot account for this type of situation on the lattice of fuzzy sets.
Dealing with such cases require to replace the infimum (

∧
) in condition 3 by

another overlap mapping ⊥ [2], leading to the notion of hyperconnection.

Definition 4. [2,5] Let (L, ≤) be a lattice. A hyperconnection H is a family of
elements of L such that:

1. 0L ∈ H,
2. H is sup-generating,
3. for any family {Hi} of elements of H such that ⊥iHi 	= 0L, then

∨
i Hi ∈ H.

Note that it is sufficient to have Δ ⊆ H, for a sup-generating family Δ, in order
to achieve condition 2.

On the lattice (F , ≤), the hyperconnection H1 containing the connected fuzzy
sets according to Definition 2 is obtained for the following overlap mapping ⊥ [5]:

⊥1({Ãi}) =
{

1 if ∀α ∈ [0, 1],
⋂

i{(μAi)α | (μAi)α 	= ∅} 	= ∅
0 otherwise (1)

For the sake of simplicity, we denote the values taken by ⊥ as 1 and 0 (instead
of 1F and 0F). It is easy to check that the union of connected fuzzy sets such
that their non empty α-cuts intersect is connected in the sense of Definition 2.

This overlap mapping was extended in [5] to the following family:

⊥1
τ ({Ãi}) =

{
1 if ∀α ≤ τ,

⋂
i{(μAi)α | (μAi)α 	= ∅} 	= ∅

0 otherwise (2)

Let us define H1
τ = {Ã ∈ F , ∀α ≤ τ, (μA)α ∈ Cd}.

Proposition 2. [5] Each H1
τ is an hyperconnection, i.e. verifies all items of

Definition 4, for the overlap mapping ⊥1
τ . It contains in particular the sup-

generating family Δ = {δx,t, x ∈ X, t ∈ [0, 1]}. The family {H1
τ , τ ∈ [0, 1]} is

decreasing with respect to τ : τ1 ≤ τ2 ⇒ H1
τ2

⊆ H1
τ1

.

Now the connectivity of a fuzzy set can be defined as a degree, instead as a
crisp notion, as follows: c1(Ã) = sup{τ ∈ [0, 1] | Ã ∈ H1

τ}. This definition
is equivalent to applying the extension principle [11] to the crisp connectivity:
c1(Ã) = sup{α ∈ [0, 1] | (μA)α ∈ Cd}.

As an illustration, the fuzzy sets in Figure 2(c) and (d) have a degree of
connectivity of 0.25 and 0.05, respectively. However, intuitively we would rather
say that the example in (d) is more connected than the one in (c), which seems to
have two very distinct parts. The degree of connectivity depends on the height of
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0.75

0.25

 

0.05

0.05

(a) (b) (c) (d)

Fig. 2. Examples of fuzzy sets on Z. (a) The union is connected in the sense of Defini-
tion 2, while in (b) it is not. The degree of connectivity of the fuzzy set in (c) is equal
to 0.25, and in (d) to 0.05, although it seems to be more connected.

the lowest minimum or saddle point, and not on its depth. A small modification
in (d) would make the fuzzy set fully connected, illustrating that this definition
is not continuous.

The aim of this paper is to propose a new definition that overcomes these
drawbacks.

3 A New Class of Connectivity

3.1 Connectivity Measure

In this section, we introduce a new measure of connectivity of a fuzzy set, with
better properties than c1(Ã). The proposed construction is based on the fact
that, since it always holds that c1

Ã
(x, y) ≤ min(μA(x), μA(y)), then the condition

for a fuzzy set to be connected, in the sense of Proposition 1, is equivalent
to: ∀(x, y) ∈ X2, min(μA(x), μA(y)) ≤ c1

Ã
(x, y). We propose to replace the

inequality by a degree of satisfaction of this inequality, based on Lukasiewicz’
implication [12]: ∀(a, b) ∈ [0, 1]2, μ≤(a, b) = min(1, 1 − a + b). Rewriting this
expression for a = min(μA(x), μA(y)) and b = c1

Ã
(x, y) leads to the following

definition.

Definition 5. The connectivity degree between two points x and y in a fuzzy set
Ã is defined by:

c2
Ã
(x, y) = min(1, 1 − min(μA(x), μA(y)) + c1

Ã
(x, y))

= 1 − min(μA(x), μA(y)) + c1
Ã
(x, y). (3)

This measure takes its values in [0, 1], it is symmetrical and reflexive (c2
Ã
(x, x) =

1). It is not transitive. From this degree of connectivity between two points we
derive the following definition of the connectivity degree of a fuzzy set.

Definition 6. The connectivity degree of a fuzzy set Ã is defined as: c2(Ã) =
min(x,y)∈X2 c2

Ã
(x, y).

It is easy to show that, for given x and y, c1
Ã
(x, y) and c2

Ã
(x, y) are achieved for

the same point on the same path from x to y, and that c2(Ã) is achieved for
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x such that μA(x) = maxx′∈X μA(x′) (i.e. x is a global maximum), and for y
belonging to a regional maximum (hence c2(Ã) = 1−μA(y)+c1

Ã
(x, y)). Note that

c1(Ã) and c2(Ã) are not achieved for the same points. Roughly speaking, the
connectivity degree of a fuzzy set now depends on the depth of the deepest saddle
point in the fuzzy set. On the examples illustrated in Figure 2, it can be observed
that the fuzzy set in (c) is 0.25−connected (1−0.75), while the fuzzy set in (d) is
0.95−connected. In the later case, if one of the modes is progressively shrinking
to 0, the degree of connectivity will evolve smoothly towards 1. This is expressed
formally by the following result, using as a distance between two function f1 and
f2 from X2 into [0, 1]: d∞(f1, f2) = sup(x,y)∈X2 |f1(x, y) − f2(x, y)|.

Proposition 3. For fixed x and y, the mapping associating Ã to c1
Ã
(x, y) is

continuous and Lipschitz, and the mapping associating Ã to c2
Ã
(x, y) is contin-

uous and 2-Lipschitz. The mapping associating Ã to c2(Ã) is continuous and
2-Lipschitz.

3.2 Link with a Hyperconnection

We propose a new overlap measure, considering that two fuzzy sets do not overlap
if they “do not significantly overlap” (i.e. only low α-cuts can overlap), as follows:

⊥2
τ ({Ãi}) =

{
1 if ∀α ∈ [0, 1],

⋂
i{(μγxi

(Ãi))α | α ≤ hi − 1 + τ} 	= ∅
0 otherwise

(4)

where hi = maxx∈X μAi (the height of Ãi), xi is a point of X such that μAi(xi) =
hi, and γxi(Ãi) denotes the geodesic reconstruction by dilation of Ãi from the
marker δxi,hi (i.e. γxi(Ãi) = (δc(δxi,hi)∧μA)∞, where δc denotes the elementary
dilation on X , according to cd).

Let us now define H2
τ as: H2

τ = {Ã ∈ F | c2(Ã) ≥ τ}.

Proposition 4. H2
τ defines a hyperconnection for the overlap mapping ⊥2

τ .

These definitions lead to connected components that are more interesting than
using H1

τ , as seen next.

3.3 Connected Components

In the general framework of connections, connected components of an element
A of a lattice (L, ≤), relatively to a connection C on L, are the elements Ci of C
such that: Ci ≤ A and �C ∈ C, Ci < C ≤ A (i.e. the largest elements of C that
are smaller than A) [2].

This definition extends to hyperconnections [6]. Let H be a hyperconnection
on L. The hyperconnected components of A ∈ L are the elements Hi of H such
that: Hi ≤ A and �H ∈ H, Hi < H ≤ A. For any two hyperconnected compo-
nents Hi and Hj of A, either Hi = Hj or Hi⊥Hj = 0. Moreover,

∨
i Hi = A,
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where the supremum is taken over all connected components of A. If the over-
lap is taken as ⊥2

τ , we will speak of τ−hyperconnected component. In particular
the 1−hyperconnected components are exactly the reconstructions γxi(Ã) where
each xi is a representative point of a regional maximum of μA.

These notions are illustrated in Figure 3, for the hyperconnection H2
τ . Let Ã

be the fuzzy set in (a). It has four 1−hyperconnected components, correspond-
ing to each regional maximum of Ã, one of them being displayed in (b), two
0.5−hyperconnected components (c and d), and one 0.1−hyperconnected com-
ponent, equal to Ã. The computation of the hyperconnected components will
be explained in Section 3.4. The degree of connectivity of Ã is c2(Ã) = 0.2,
hence Ã is a connected component in the sense of H2

τ for τ ≤ 0.2. If we de-
note by Ã1 and Ã2 the two 0.5−hyperconnected components in (c) and (d), it
is easy to check that c2(Ã1) = c2(Ã2) = 0.5, hence they are elements of H2

0.5
(τ = 0.5). Let x1 be the maximum of Ã1 and x2 the maximum of Ã2. We
have h1 = μA1(x1) = h2 = μA2(x2) = 1. The two reconstructions γx1(Ã1) and
γx2(Ã2) overlap only until level α = 0.2, which is less than hi −1+ τ = 0.5. This
shows that they actually do not overlap in the sense of ⊥2

τ .

(a) (b) (c) (d)

Fig. 3. (a) Fuzzy set (equal to its τ−hyperconnected components for τ ≤ 0.2). (b) One
of the four 1−hyperconnected components. (c, d) The two 0.5−hyperconnected com-
ponents.

3.4 Tree Representation

From an algorithmical point of view, the obtention of the hyperconnected com-
ponents and their processing can benefit from an appropriate representation.
Since the α-cuts are a core component of our definitions, we suggest to rely on
the usual max-tree [3] representation of a function. From now on, we assume
that the values of α are quantified, in a uniform way. For each level α of the
quantification, nodes of a tree are associated with the connected components (in
the sense of Cd) of the α-cut of the considered fuzzy set. Edges are induced by
the inclusion relation between connected components for two successive values
of α. A fuzzy set Ã is then bi-univoquely represented by a tree T (Ã), with:

– V the set of vertices of the tree (v denotes an element of V and h(v) denotes
its altitude, i.e. the value of α corresponding to this node),

– R the root of the tree,
– L the set of leaves,
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– E the set of edges of the tree (E ⊆ V ×V), defined from the inclusion relation,
– for e = (v1, v2) ∈ E , w(e) = |h(v1) − h(v2)|.

There are several algorithms for computing the tree, a recent one being of quasi-
linear complexity [13].

If it exists, the chain from v1 to v2 (a sub-tree of T (Ã)) is denoted by
CT (Ã)(v1, v2). Its nodes are v′i, i = 0...n from v1 to v2 such that ∀i, v′i ∈ V ,
v′0 = v1, v′n = v2, ∀i < n, (v′i, v

′
i+1) ∈ E , and h(v′i) − h(v′i+1) has the same sign

as h(v1) − h(v2) (i.e. {v′i, i = 0...n} is either a descending or an ascending path
from v1 to v2, depending on the relative altitudes of v1 and v2). Its edges are
(v′i, v

′
i+1), i = 0...(n − 1).

Let v1 and v2 two nodes such that h(v1) ≤ h(v2). We denote by d(v1, v2) the
length of the chain CT (Ã)(v1, v2), expressed as the sum of w(e), over all edges of
this chain. If the chain does not exist (typically if v1 and v2 are on two different
branches of the tree), then d(v1, v2) = ∞.

For any sub-tree G of T (Ã), we denote by DT (Ã)(G, ν) the dilation of G in
T (Ã) of size ν (ν ∈ [0, 1]), obtained by adding all ascending chains of length
less or equal than ν issued from a node of G. A pseudo-erosion ET (Ã)(G, ν) is
obtained by keeping all nodes v of G such that there exists at least one ascending
chain of length ν issued from v. An important remark here is that E is not a
true erosion (it does not commute with the infimum), and E and D are neither
dual nor adjoint (even for the same ν), hence their composition does not have
the usual property of an opening or a closing.

Proposition 5. The set {Ãi} of 1−hyperconnected components of Ã is isomor-
phic to L, and T (Ãi) = CT (Ã)(R, li), where li is the leaf associated with Ãi.

This result shows that it is possible to handle the 1−hyperconnected components
of a fuzzy set by processing the associated sub-tree.

Proposition 6. If G ⊆ T (Ã) is a sub-tree representing a τ−hyperconnected
fuzzy subset of Ã, then DT (Ã)(G, ν) represents a max(0, τ − ν)−hyperconnected
fuzzy subset and ET (Ã)(G, ν) a min(1, τ + ν)−hyperconnected fuzzy subset.

Proposition 7. The set of τ−hyperconnected components of a fuzzy set Ã is
isomorphic to the set of leaves of ET (Ã)(T (Ã), 1−τ). A τ−hyperconnected compo-
nent of Ã can then be obtained by a dilation of size (1−τ) of a 1−hyperconnected
component of ET (Ã)(T (Ã), 1 − τ).

Figure 4 illustrates in (b) the component tree T (Ã) of the fuzzy set shown in (a).
The 1−hyperconnected components (c–f) correspond to each regional maximum
of (a). The results of a pseudo-erosion of size 0.4 of T (Ã) and the dilation of
size 0.4 of one of its connected components are shown in (g) and (h), respec-
tively, providing exactly the sub-tree associated with one 0.6−hyperconnected
component of Ã. The corresponding 0.6−hyperconnected component in the im-
age is displayed in (i). Another 0.6−hyperconnected component is shown in (j)
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(a) (b) (c) (d)

(e) (f) (g) (h)

1

4

16

64

256

1024

4096

16384

65536

1 0,75 0,5 0,25 0

(i) (j) (k) (l)

Fig. 4. (a) Fuzzy set. (b) Component tree (the α-cuts are quantizied with a step 0.2),
with a chain from a leaf to the root shown in black. (c–f) 1−hyperconnected components
of the fuzzy set in (a). (g) Subtree corresponding to the pseudo-erosion of size 0.4 (in
black). (h) A 0.6−hyperconnected component (in black and red) obtained by dilation of
one connected component (in red) of the pseudo-erosion and the corresponding image
(i). Another 0.6−hyperconnected component in the tree (j) and the corresponding
image (k). (l) Number of τ -hyperconnected components of the noisy image as a function
of τ .

(subtree) and (k) (image). If the fuzzy set in Figure 4 (a) is degraded by a Gaus-
sian noise of variance 0.05, more than 20000 1−hyperconnected components are
obtained. The evolution of the number of τ−hyperconnected components as a
function of τ is displayed in (l), showing a grouping effect.

3.5 Connected Filters

One of the main interests of the tree structure is that it allows finding efficiently
the hyperconnected components, and therefore applying connected filters on the
image. Let f : F → {0, 1} be an increasing function defining a filtering criterion
(e.g. on the size of the connected components). A connected filter according to
criterion f is then defined as:

ξ(Ã) =
∨

{h̃ ∈ H2
τ | h̃ ≤ Ã and f(h̃) = 1}. (5)

This defines an increasing and idempotent operator and thus a morphologi-
cal filter. In this particular form, it is moreover anti-extensive, and thus a
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morphological opening. Such a filter can be implemented in a very efficient way
based on the tree structure.

4 Illustrative Example

In order to illustrate the proposed definitions, we consider the problem of seg-
menting brain structures in 3D MRI images. An axial slice is displayed in Fig-
ure 6 (a). Typically, we may want to segment connected objects such as the ven-
tricular system or internal grey nuclei. As in our previous work [14,15], we rely on
anatomical knowledge expressed as spatial relations between structures [16], and
on grey level information. As illustrated in Figure 6, this knowledge is translated
into fuzzy representations in the image space, that drive the segmentation and
the recognition. Here we show how to include additional connectivity criteria in
this procedure.

For each anatomical structure Si, we define two fuzzy sets P̃i and Ñi, cor-
responding to an over-estimation and an under-estimation of Si, respectively:
Ñi ≤ Si ≤ P̃i. This idea is close to the concept of fuzzy rough sets. At the
beginning of the procedure, Ñi is empty and P̃i is the whole space. Exploiting
the available knowledge then allows reducing P̃i and extend Ñi so as to get as
close as possible to the structure of interest. For instance for Si = SLV being
the lateral ventricle, we define P̃GlLV representing the knowledge on grey levels,
so as to have S̃LV ≤ P̃GlLV (Figure 6 (b)). Once the brain has been segmented,
it becomes possible to represent the central location of the ventricules inside the
brain (Figure 6 (c)), so as to guarantee S̃LV ≤ P̃SpLV . The conjunctive fusion of
P̃SpLV and P̃GlLV is shown in Figure 6 (d), and provides an including fuzzy set
P̃LV . Although the over-estimation has been strongly reduced, it still exhibits
several connected components. A connectivity contraint can now be introduced,
via a connected filter based on a marker.

The criterion f used in the filter (Equation 5) relies on the inclusion of a
marker Ñ in h and the inclusion of h in P̃ . Here, for the first inclusion, we con-
sider actually a degree of inclusion (as in Section 3.1), to achieve more robustness
with respect to the position of the marker. The filter then writes:

ξÑ (P̃ ) =
∨

{h̃ ∈ H2
τ | max

x∈X
μh(x) ≤ μ≤(Ñ , h̃) and h̃ ≤ P̃}. (6)

Note that the criterion is not increasing in this case. However it is increasing if
maxx∈X μh(x) is constant. Equation 6 can thus be decomposed as a supremum
over all possible values of this maximum (i.e. all levels of the quantification),
and each term of this supremum can then be handled efficiently using the tree
representation, as explained in Sections 3.4 and 3.5.

Proposition 8. Let α = maxx∈X μN (x). The result of the connected filter de-
fined in Equation 6 is (α − (1 − τ))−hyperconnected.

A 1D example is shown in Figure 5, where a fuzzy set is progressively filtered
by a marker getting larger and larger. Intuitively, hyperconnected components
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(a) (b) (c) (d)

Fig. 5. Progressive filtering of the fuzzy set of Figure 3 (a) by a marker of increasing
size (in red). The result is displayed in blue.

verifying the inclusion constraint are kept, while the other ones are reduced to
a level corresponding to the degree of satisfaction of the constraint.

We illustrate now the effect of this connected filter, applied to P̃LV , based on a
marker Ñ defined as a fuzzy set having a support reduced to one point centered
in the right lateral ventricle, with a membership value taking values 1, 0.75, 0.5
and 0, respectively (Figure 6 (e–h)). A potential application of this approach is
to perform a filter, preserving connectivity properties, and being more or less
strong depending on the confidence we may have in the marker. This may lead
to more robustness and can be used as a preliminary step in a segmentation
process. This will be further explored in future work.

(a) (b) (c) (d)

(e) (f) (g) (h)

Fig. 6. (a) One axial slice of a 3D brain MRI. (b) Grey level information: P̃GlLV . (c)
Central location inside the brain: P̃SpLV . (d) Conjunctive fusion. (e–h) Connected filter
results using a marker centered in the right ventricle, with maximal value 1, 0.75, 0.5,
0, respectively.

5 Conclusion

In this paper we have introduced a new definition of fuzzy connectivity, based on
the notion of hyperconnection, that overcomes some drawbacks of previous defi-
nitions, and that has in particular nice continuity properties. We have shown that
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a representation as a max-tree can lead to efficient extraction of hyperconnected
components, and processing with connected filters. An illustrative example on
a brain image has been shown. Future work aims at exploring other properties
of the proposed definitions, and at developing a complete applicative framework
for brain segmentation, including pathological cases.
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