
Deep Graphics Encoder for Real-Time Video Makeup Synthesis from Example

Robin Kips1,2, Ruowei Jiang3, Sileye Ba1, Edmund Phung3, Parham Aarabi3, Pietro Gori2

Matthieu Perrot1, Isabelle Bloch4,
1 L’Oréal Research and Innovation, France

2 LTCI, Télécom Paris, Institut Polytechnique de Paris, France, 3 Modiface, Canada
4 Sorbonne Université, CNRS, LIP6, Paris, France

{robin.kips, sileye.ba, matthieu.perrot}@loreal.com, {irene,edmund,parham}@modiface.com
pietro.gori@telecom-paris.fr, isabelle.bloch@sorbonne-universite.fr

Abstract

While makeup virtual-try-on is now widespread,
parametrizing a computer graphics rendering engine for
synthesizing images of a given cosmetics product remains
a challenging task. In this paper, we introduce an inverse
computer graphics method for automatic makeup synthesis
from a reference image, by learning a model that maps an
example portrait image with makeup to the space of render-
ing parameters. This method can be used by artists to auto-
matically create realistic virtual cosmetics image samples,
or by consumers, to virtually try-on a makeup extracted
from their favorite reference image.

1. Introduction
Virtual-try-on technologies are now largely spread

across online retail platforms and social media. In par-
ticular, for makeup, consumers are able to virtually try-
on cosmetics in augmented reality before purchase. While
creating virtual makeup for entertaining purposes is easy,
parametrizing a rendering engine for synthesizing realistic
images of a given cosmetics remains a tedious task, and
requires expert knowledge in computer graphics. Further-
more, consumers are often prompted to select among a set
of predefined makeup shades, but they cannot try makeup
look from a reference inspirational images on social media.

In the past few years, the field of computer vision at-
tempted to provide a solution to this problem through ad-
vances in the makeup style transfer task. This task consists
in extracting a makeup style from a reference portrait im-
age, and synthesizing it on the target image of a different
person. State-of-the-art methods for this task [9, 10] are
based on a similar principle. First, makeup attributes are
extracted using a neural network and represented in a latent
space. Then, this neural makeup representation is decoded

Figure 1. Examples of lipstick transfer from example images using
our proposed method.

and rendered on the source image using a generative model,
such as GAN [4] or VAE [8].

The use of generative model for addressing rendering-
based problem, also denoted as neural rendering [14], al-
lows producing realistic results but suffers from various lim-
itations in practice. First, such approaches are currently im-
possible to use for real-time inference on portable devices.
Furthermore, training generative models for video data is
an emerging field, and even state-of-the-art models produce
sequences of frames with noticeable temporal inconsisten-
cies [2, 15]. Finally, generative methods are highly depen-
dent on the training data distribution and might fail in the
case of extreme examples, such as unusual makeup colors.
These drawbacks make the use of current makeup transfer
methods unusable in practice for consumer virtual try-on
applications.

On the other hand, computer graphics methods offer
symmetric advantages. Even though the most advanced
rendering techniques require intensive computations, many

ar
X

iv
:2

10
5.

06
40

7v
1 

 [
cs

.C
V

] 
 1

2 
M

ay
 2

02
1



Figure 2. Left: training procedure of our model. We sample a graphics parameters vector gi and render a corresponding image using a
renderer R and a random source image Xi. Then, the inverse graphics encoder E is trained to map the image to the space of graphics
parameters with minimum error. Right: inference pipeline. A reference image Xref is passed to the inverse graphics encoder to estimate
the corresponding makeup graphics parameters. Then this code can be used as input to the rendering engine, to render the reference makeup
on videos in real-time. To facilitate training and increase the proportion of relevant pixels in the image, E is trained on crops of eyes and
lips.

graphics-based methods can be used to produce realistic im-
ages in real-time, even on portable devices. As opposed
to generative methods, graphics-based methods do not rely
on training data, and can render videos without time in-
consistency issues. However, they need to be carefully
parametrized to render a given cosmetic product in a realis-
tic manner. In practice, this is a tedious work that requires
expert knowledge in computer graphics.

Recent works on inverse rendering introduced methods
for estimating graphics attributes using differentiable ren-
dering [7]. Such methods [3] propose to estimate parame-
ters such as shape or BRDF by computing a forward ren-
dering using an engine with differentiable operations, as-
sociated with gradient descent to optimize the graphics at-
tributes with respect to one or multiple example images.
However, this class of problem is often ill-posed, attempt-
ing to compute high-dimensional BRDF from RGB images.
Furthermore, most real-time renderers are not differentiable
in practice, and would require costly changes in computer
graphics methods or implementation choices. To the best of
our knowledge, there is no previous work in inverse com-
puter graphics for makeup.

In this paper, we introduce a novel method based on deep
inverse computer graphics for automatically extracting the
makeup appearance from an example image, and render it in
real-time, for a realistic virtual try-on on portable devices.
Examples of our results are illustrated in Figure 1. Our con-
tributions can be summarized as follows:

• We introduce a simple but powerful framework for
learning an inverse graphics encoder network that
learns to map an image into the parameter space of a
rendering engine, as described in Figure 2. This is a
more efficient and compact approach than inverse ren-
dering, and does not require the use of a differentiable
renderer.

• We demonstrate the effectiveness of this framework for
the task of makeup transfer, outperforming state-of-

the-art results, and achieving high resolution real-time
inference on portable devices.

2. Method
2.1. Computer graphics makeup renderer

To achieve a realistic makeup rendering, we use a
graphics-based system, that considers rendering parameters
of color and texture features of any given cosmetics, such
as described in [11]. Figure 3 illustrates the complete ren-
dering pipeline for lipstick simulation.

Table 1. Descriptions of rendering parameters used in our graph-
ics parameters vector representing the makeup material. The com-
plete rendering engine includes a total of 17 parameters.

Description Range

Makeup opacity [0, 1]
R,G,B J0, 255K

Amount of gloss on the makeup [0,+∞)
Gloss Roughness [0, 1]

Reflection intensity [0, 1]

To obtain real-time inference, we first estimate a 3D lips
mesh from estimated 3D facial landmarks. The rendering
is then completed in two parts: 1) lips recoloring; 2) a two-
step texture rendering based on environment reflection es-
timation and other controlled parameters. A similar ren-
dering pipeline also applies to other makeup products. Ta-
ble 1 describes the major rendering parameters used for rep-
resenting a makeup product.

2.2. Inverse Graphics Encoder

We introduce a simple yet powerful framework to train
an inverse graphics encoder that learns to project an exam-
ple image to the parameter space of a rendering engine. In
the case of makeup image synthesis, this allows us to auto-
matically compute the renderer parametrization in order to
synthesize a makeup similar to that of a reference example
image.



Figure 3. Our computer graphics rendering pipeline. While the makeup parameters are fixed prior to rendering, some parameters such as
the lip mesh and the illuminant are estimated on each frame to render.

The training procedure of our framework is described in
Figure 2. We denote by R the computer graphics rendering
engine, taking as input a portrait image X and parametrized
by g, the vector of parameters representing the makeup ma-
terial that we name the graphics parameters. Each com-
ponent of g is described in Table 1. Our objective is to
train an encoder E, so that given an example makeup image
Xref , we can estimate the corresponding graphics parame-
ters ĝ = E(Xref ) to render images with the same makeup
appearance.

Since the renderer R is not differentiable, we do not
use the inverse rendering approach and propose to learn E
through optimization in the space of graphics parameters.
This is a more compact problem than inverse rendering or
material appearance extraction, and does not require a time-
consuming gradient descent step for inference. Instead, we
train a special-purpose machine learning model that learns
an accurate solution for a given renderer and graphics pa-
rameters choice. Mathematically, we denote by gi a ran-
domly sampled graphics parameters vector, and Xi a ran-
dom portrait image. Thus, our model E is trained to mini-
mize the following objective function :

Lgraphics =
1

n

n∑
i=1

‖gi − E(R(Xi, gi))‖2

Our approach does not depend on a training dataset of
natural images, but only on a sampling of graphics param-
eters that we control entirely at training time. Therefore,
in comparison to existing methods, our model is not sensi-
tive to bias in available training datasets. Instead, we can
select a graphics parameters distribution that samples the
entire space of rendering parameters, which leads to better
performance specially in cases of rare and extreme makeup
examples. In our experiments, we used an EfficientNet B4
architecture [12] to represent E, replacing the classifica-
tion layer by a dense ReLU layer of the same dimension
as g. This light architecture is chosen in order to obtain a
portable model with real-time inference. We construct two
synthetic datasets by sampling n = 15000 graphics param-
eters vectors for eyes and lips makeup, and rendering them

on random portrait images from the ffhq dataset [6], using
the renderer described in Section 2.1. To obtain a realis-
tic data distribution, the graphics parameters are sampled
using a multivariate normal distribution fitted on real ren-
dering parameters set by makeup experts to simulate real
cosmetics. Furthermore, we also sample graphics parame-
ters using a uniform distribution, in order to reinforce data
diversity and improve our model performance on extreme
makeup examples. Finally, our model is trained on crops of
lips and eyes in order to increase the proportion of relevant
pixels in the training image.

At the inference time, an example makeup image is
passed to our inverse graphics encoder to estimate a corre-
sponding graphics parameters vector. These parameters can
then be used to render the extracted makeup attributes on
any source video in real-time using R. Since the graphics
parameters are fixed for each makeup, the inverse graphics
encoder only needs to be run once per reference makeup
image, and can then be used to render later video for any
consumer. The inference pipeline is illustrated in Figure 2.

3. Experiments and Results
3.1. Qualitative experiments

In order to obtain a qualitative evaluation of our frame-
work, we compare our approach to two state-of-the-art
methods of makeup transfer: BeautyGAN [10] and CA-
GAN [9]. We extract makeup from multiple reference im-
ages with various colors and glossiness levels, and synthe-
size makeup on the same source image, as illustrated in Fig-
ure 4. Our method produces more realistic results than ex-
isting makeup transfer methods, and is capable of accurately
rendering the appearance of lipsticks and eye-shadow with
various colors and textures, without any loss of image reso-
lution. Furthermore, since our method is not dependent on
the distribution of a training dataset, it largely outperforms
other methods on extreme makeups such as blue lipstick or
yellow eye-shadow, as shown in Figure 4.

In our problem formulation, the eye-shadow application
zone and intensity are not part of the estimated graphics pa-



Figure 4. Qualitative comparison on lipstick and eye-shadow synthesis against state of the art makeup transfer methods. Our method is
capable of reproducing realistic rendering in high resolution for makeup with various colors and textures. The eye-shadow application zone
and intensity are not part of the estimated graphics parameters, but set by the user at rendering time according to their preferences.

Table 2. Quantitative evaluation of the makeup transfer perfor-
mance using a dataset of groundtruth triplet images.

Model L1 1-MSSIM [16] LPIPS [17]
BeautyGAN [10] 0.123 0.371 0.093

CA-GAN [9] 0.085 0.304 0.077
Ours 0.083 0.283 0.060

rameters, but set by the user at rendering time according to
their preferences. This choice allows for an increased user
control on the makeup style, at the cost of not reproducing
automatically the entire eye makeup style of the reference
image. Finally, to give the reader more insight about our
model, we provide example videos as supplementary mate-
rials, as well as an interactive demo application for lipstick
transfer.

3.2. Quantitative experiments

In order to compare our results with existing methods,
we reproduce the quantitative evaluation of makeup transfer
performance on lipstick, introduced in [9]. More precisely,
we use the dataset provided by the authors with 300 triplets
of reference portraits with lipstick, source portraits without
makeup, and associated ground-truth images of the same
person with the reference lipstick. We compute the accuracy
of our model over various perceptual metrics and report the
results in Table 2. These results confirm that our framework
outperforms the existing makeup transfer methods.

3.3. Inference Speed

An important limitation of generative-based methods for
makeup transfer is their inference speed with limited re-
sources, especially on mobile platforms. For instance, the
StarGAN [1] architecture used in CA-GAN takes 18 sec-
onds to synthesize a 256x256 image on an Ipad Pro with
a A10X CPU. Even though some optimization is possible
using GPU or neural inference special-purpose chips, this
makes the use of generative models currently prohibitive for
real-time consumer applications.

In comparison, our method uses a neural network not on

every frame of the source video, but only once to compute
the graphics parameters vector sent to the renderer. Fur-
thermore, our graphics encoder is based on EfficientNet-
lite-4 [12], an architecture adapted to mobile inference, re-
portedly reaching an inference time of 30ms per image on
a Pixel 4 CPU [5]. Thus, the additional computational time
introduced by our graphics encoder can be considered neg-
ligible when generating a video. To illustrate the inference
time of our video solution, we profile our computer graph-
ics pipeline on different mobile devices. We use the land-
marks detection model described in [11] and convert it to
NCNN [13] to make it runnable on mobile platforms. To
get accurate profiling results, we skip the first 100 frames
and average the results of the next 500 frames for each de-
vice. As shown in Table 3, our system is able to achieve
excellent performance even on old devices such as Galaxy
S7.

Table 3. Profiling of our graphics rendering pipeline on 3 different
devices. Since our graphics encoder is only used once before the
rendering and not at each frame, we consider its time is negligible
in the video synthesis.

Device Detection Rendering Display Time

Galaxy S21 11.97ms 14.95ms 2.12ms
Pixel 4 18.32ms 19.54ms 2.23ms
Galaxy S7 27.89ms 58.55ms 10.68ms

4. Conclusion
We introduced a method for learning a special-purpose

inverse graphics encoder that maps an example image to the
space of a renderer parameters, even in the absence of a dif-
ferentiable renderer. We showed that our framework can be
applied to the task of makeup transfer, allowing non-expert
users to automatically parametrize a renderer to reproduce
an example makeup. In the future, we intend to improve our
framework with a larger definition of the graphics parame-
ters, such as including the estimation of the eye makeup
application region.



References
[1] Yunjey Choi, Minje Choi, Munyoung Kim, Jung-Woo Ha,

Sunghun Kim, and Jaegul Choo. Stargan: Unified genera-
tive adversarial networks for multi-domain image-to-image
translation. In CVPR, 2018. 4

[2] Mengyu Chu, You Xie, Jonas Mayer, Laura Leal-Taixé,
and Nils Thuerey. Learning temporal coherence via self-
supervision for gan-based video generation. TOG, 2020. 1

[3] Duan Gao, Xiao Li, Yue Dong, Pieter Peers, Kun Xu, and
Xin Tong. Deep inverse rendering for high-resolution svbrdf
estimation from an arbitrary number of images. TOG, 2019.
2

[4] Ian J Goodfellow, Jean Pouget-Abadie, Mehdi Mirza, Bing
Xu, David Warde-Farley, Sherjil Ozair, Aaron Courville, and
Yoshua Bengio. Generative adversarial networks. arXiv
preprint arXiv:1406.2661, 2014. 1

[5] Google. Tensorflow blog : higher accuracy on vision models
with efficientnet-lite. https://blog.tensorflow.
org/2020/03/higher-accuracy-on-vision-
models-with-efficientnet-lite.html, Last
accessed on 2021-04-15. 4

[6] T. Karras, S. Laine, and T. Aila. A style-based generator
architecture for generative adversarial networks. In CVPR,
2019. 3

[7] Hiroharu Kato, Deniz Beker, Mihai Morariu, Takahiro
Ando, Toru Matsuoka, Wadim Kehl, and Adrien Gaidon.
Differentiable rendering: A survey. arXiv preprint
arXiv:2006.12057, 2020. 2

[8] Diederik P Kingma and Max Welling. Auto-encoding varia-
tional Bayes. ICLR, 2014. 1

[9] R. Kips, M. Perrot, P. Gori, and I. Bloch. CA-GAN: Weakly
supervised color aware GAN for controllable makeup trans-
fer. In ECCV Workshop AIM, 2020. 1, 3, 4

[10] T. Li, R. Qian, C. Dong, S. Liu, Q. Yan, W. Zhu, and L. Lin.
BeautyGAN: Instance-level facial makeup transfer with deep
generative adversarial network. In ACM Multimedia, 2018.
1, 3, 4

[11] T. Li, Z. Yu, E. Phung, B. Duke, I. Kezele, and P. Aarabi.
Lightweight real-time makeup try-on in mobile browsers
with tiny CNN models for facial tracking. CVPR Workshop
on CV for AR/VR, 2019. 2, 4

[12] M. Tan and Q. Le. Efficientnet: Rethinking model scaling
for convolutional neural networks. In ICML, 2019. 3, 4

[13] Tencent. NCNN, high-performance neural network inference
framework optimized for the mobile platform. https://
github.com/Tencent/ncnn, 2018. 4

[14] Ayush Tewari, Ohad Fried, Justus Thies, Vincent Sitzmann,
Stephen Lombardi, Kalyan Sunkavalli, Ricardo Martin-
Brualla, Tomas Simon, Jason Saragih, Matthias Nießner,
et al. State of the art on neural rendering. In Computer
Graphics Forum, 2020. 1

[15] H. Thimonier, J. Despois, R. Kips, and Perrot. Learning long
term style preserving blind video temporal consistency. In
ICME, 2021. 1

[16] Zhou Wang, Eero P Simoncelli, and Alan C Bovik. Mul-
tiscale structural similarity for image quality assessment.

In Asilomar Conference on Signals, Systems & Computers,
2003. 4

[17] Richard Zhang, Phillip Isola, Alexei A Efros, Eli Shechtman,
and Oliver Wang. The unreasonable effectiveness of deep
features as a perceptual metric. In CVPR, 2018. 4

https://blog.tensorflow.org/2020/03/higher-accuracy-on-vision-models-with-efficientnet-lite.html
https://blog.tensorflow.org/2020/03/higher-accuracy-on-vision-models-with-efficientnet-lite.html
https://blog.tensorflow.org/2020/03/higher-accuracy-on-vision-models-with-efficientnet-lite.html
https://github.com/Tencent/ncnn
https://github.com/Tencent/ncnn

