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Résumé

L’interprétation d’images a pour objectif non seulement
de détecter et reconnaître des objets dans une scène mais
aussi de fournir une description sémantique tenant compte
des informations contextuelles dans toute la scène. Le
problème de l’interprétation d’images peut être formalisé
comme un problème de raisonnement abductif, c’est-à-
dire chercher la meilleure explication en utilisant une base
de connaissances. Dans ce travail, nous présentons une
nouvelle approche utilisant une méthode par tableau pour
la génération et la sélection d’explications possibles de
l’image donnée lorsque les connaissances, exprimées en
logique de description, comportent des concepts décrivant
les objets mais aussi les relations spatiales entre ces ob-
jets. La meilleure explication est sélectionnée en exploitant
les domaines concrets pour évaluer le degré de satisfaction
des relations spatiales entre les objets.

Mots Clef

Interprétation d’images, abduction, logiques de descrip-
tion, tableau sémantique, relations spatiales, représenta-
tions floues, domaines concrets.

Abstract

Image interpretation aims not only at detecting and recog-
nizing objects in a scene but also at deriving a semantic de-
scription considering contextual information in the whole
scene. Image interpretation can be formalized as an ab-
ductive reasoning problem, i.e. an inference to the best ex-
planation using a background knowledge. In this work, we
present a framework using a tableau method for generat-
ing and selecting potential explanations of the given image
when the background knowledge is encoded in description
logics, and includes concepts describing objects and their
spatial relations. The best explanation is selected accord-
ing to a minimality criterion based on the satisfaction de-
gree of spatial relations between the objects, computed in
concrete domains.

Keywords
Image interpretation, abduction, description logics, seman-
tic tableau, spatial relations, fuzzy representations, con-
crete domains.

1 Introduction
As advanced as AI has become, it still remains a big chal-
lenge for computers to accomplish complex understanding
tasks as humans do, one of which is how to accurately as-
sociate perceptual data with appropriate concepts. This
relation between visual percepts and high level linguistic
expressions is called semantic gap [20]. In this work, be-
yond a single object recognition based on low level features
such as color and shape, we focus on a complex description
which relies on contextual information like spatial relations
between objects as well as prior knowledge on the applica-
tion domain. We then formalize the interpretation task as
an abductive reasoning problem.
Abductive reasoning (abduction) is a backward chaining
inference from the observation to the best explanations
considering the expert knowledge of the domain. Interpre-
tation was considered as abduction for natural language un-
derstanding in [11]. Afterwards abduction was applied for
a robot system [19], scene understanding problems [17, 18]
and image interpretation [1]. A digital image is a numer-
ical representation which does not represent explicitly se-
mantic information. Prior knowledge is intensively used
by experts who interpret visually an image. It should then
also be used by machines to associate semantics with the
image. As illustrated in [1, 15, 17], high level semantics
extraction from an image benefits from prior knowledge,
such as sport or anatomical knowledge. Description Log-
ics (DLs) are a family of formal knowledge representation
formalisms [2] for structural prior knowledge, and was thus
used for abduction in [1, 5, 8, 17].
Our aim is to extract high level semantic information from
a given image and translate it at a linguistic level. Con-
cretely, we are interested in the interpretation of cerebral
images with tumors. High level information consists of
descriptions of pathologies as well as of brain structures



and spatial relations among them. For instance, according
to different levels of anatomical prior knowledge on brain
pathology, two possible hypotheses (explanations) could be
given for Figure 1:

• an abnormal structure is present in the brain,

• a peripheral non-enhanced tumor is present in the
right hemisphere1.

Figure 1: A slice of a pathological brain volume (magnetic
resonance imaging (MRI)), where some structures are an-
notated.

The terminological knowledge of pathological anatomy is
formalized in Description Logics and the observation of
the scene is represented as instances of the terminologies.
The reasoning process is based on a tableau method [2] in
order to generate a set of consistent hypotheses, and the
best explanation is selected based on preference criteria.
Semantic and cardinality minimality are two most common
criteria in Description Logics [3, 5, 8]. The ranking of ex-
planations is performed in weighted abduction by assign-
ing a cost value to literals in the logic formalism, and in
probabilistic abduction by modeling the prior distribution
of concepts. In image interpretation, the localization and
the spatial relations between the objects are reliable infor-
mation to derive a description of the spatial entities in a
complex scene [4]. Concrete domains are useful to link
real world data and abstract reasoning. In [10, 14], De-
scription Logics with concrete domains were proposed for
qualitative spatial reasoning, as an efficient way to connect
conceptual terminologies to spatial entities and spatial re-
lations in the image domain. In this work, we propose a
new preference criterion based on spatial relations to select
the best explanation in our context. We evaluate the satis-
faction degree of qualitative spatial descriptions of a gen-
erated hypothesis in the concrete domain (image), hence
this evaluation ranking can be used to select the best expla-
nation among the candidates. In particular, the qualitative
spatial relations involved in the knowledge representation
are encoded in a fuzzy set framework and computed in the
image domain. This fuzzy set framework bridges the gap
between the concepts and real world data, useful for spatial
reasoning. In addition, this allows us to derive a quantita-
tive estimation of the degree of satisfaction of the relations

1We use the classical “left is right” convention for display. The “right”
structure is on the left side in Figure 1 (i.e. on the right side of the brain).

involved in a high level conceptual hypothesis, and thus an
evaluation of the hypothesis itself leading to the ranking
mentioned above. For example, in the context of medical
imaging, obtaining a description of an abnormal structure
in a brain requires to derive a hypothesis from the evidence
in the image and from anatomical knowledge. The pre-
ferred explanation of the observation is then selected based
on spatial restrictions such as localization and spatial rela-
tions with respect to other structures.
We first present the whole framework of abduction for im-
age interpretation and the related notions in Section 2. We
then detail the logical inference process to derive preferred
explanations in Section 3. The computation process for
estimating the degree of satisfaction of qualitative spatial
relations is presented in Section 4. In Section 5 an illus-
trative example is explained, and we end with a conclusion
and future directions in Section 6.

2 Image interpretation as an abduc-
tion problem

2.1 Image interpretation framework
Figure 2 shows the major components of our framework
in this work. The main components encompass an input
image to be interpreted, a prior knowledge base of the ap-
plication domain and the reasoning service for the purpose
of image interpretation. The input image is first trans-
lated into symbolic representations in terms of logical for-
mulas. This preprocessing step can be performed either
manually or using segmentation and recognition methods
as in [9, 16]. The image space is also the concrete do-
main in which spatial knowledge will be represented. The

Figure 2: A general diagram of the image interpretation
framework.

segmented structure is denoted by an individual associated



with a spatial region in the concrete domain. Hypothe-
ses are formulated with the help of the reasoning process
taking both the observation (here the image or segmented
structures) and the background knowledge into account.
The preferred hypothesis depends on the satisfaction of
spatial relations in the concrete domain.

2.2 Knowledge representation
In order to represent qualitative spatial relations as well
as the inverse and transitive properties useful to reason on
such relations, we consider ALCHIR+ including inverse
roles, symmetric roles and transitive role axioms [12] in
this paper. This language supports the transitive and in-
verse role properties such as r ≡ s− (inverse role) and
r ◦ r v r (transitive role axiom). Accordingly, spatial rela-
tions are represented by roles and the spatial properties can
be modeled via role axioms. The terminological knowl-
edge is represented using a set of general concepts inclu-
sion (GCIs), in the form C v D where C and D are two
concepts built from a pair of disjoint finite sets Nc (atomic
concepts) and Nr (atomic roles), and constructors includ-
ing concept negation ¬, concept conjunction u, concept
disjunction t, existential restriction ∃r.C and universal re-
striction ∀r.C.
The semantics is given by an interpretation I = (∆I , ·I),
where ∆I is a non-empty set which indicates the entire
“world" of the application domain, and ·I is an interpreta-
tion function which maps concepts and individual symbols
to ∆I and roles to ∆I ×∆I .
The knowledge base used in our framework is a triplet
K = {T ,R,A}, where terminologies (TBox, denoted by
T ) describe basic axioms of the background knowledge,
role axioms (RBox, denoted by R) consist of role proper-
ties, and assertions (ABox, denoted byA) involve the facts
in the observation (such as information extracted from an
image).
An example of a knowledge base referring to brain
anatomy is as follows, where LV l and LV r denote left
and right lateral ventricles, and CNl and CNr left and
right caudate nuclei.

TBox = {BrainTumor vBrainDisease

LV l vBrainStructure

LV r vBrainStructure

CNl vBrainStructure

CNr vBrainStructure

SmallDeformingTumor vBrainTumor u ∃hasEnhancement.NonEnhanced}

RBox = {rightOf ≡ leftOf
−

above ≡ below
−

closeTo ≡ closeTo
−

farFrom ≡ farFrom
−

isPartOf ◦ isPartOf v isPartOf

hasPart ◦ hasPart v hasPart

isPartOf ≡ hasPart
−}

ABox = {a : BrainTumor

b : NonEnhanced

〈a, b〉 : hasEnhancement}

2.3 Concept abduction
In this paper, we consider the image interpretation as a con-
cept abduction problem to derive a high level description of
the observed tumor. The objects in the observed image are
recognized and represented as individuals in the ABox. An
ABox abduction problem can be seen as a set of concept
abduction problems with respect to each individual. In this
work, we focus on the high level description of the obseved
tumor. The concept to be explained is constructed on the
basis of the individual describing the detected tumor and
contextual information in the ABox.

Definition 1 (Concept Abduction). Let L be a DL, K =
{T ,R,A} be a knowledge base in L, and C,D two con-
cepts in L, supposed to be satisfiable with respect to K.
The concept abduction problem P in DL is expressed as
follows: given an observation conceptO, a satisfiable con-
cept H with respect to K is an explanation if K |= H v O
andH 6|= O.

The observation concept in concept abduction is a most
specific concept of the individual to be explained.

Definition 2 (Most specific concept [1]). Given a TBox T
and an associated interpretation I = (∆I , ·I) in a DL L,
let X ⊆ ∆I be a subset of the interpretation space and E
a defined concept of L. The concept E is defined as the
most specific concept of X with respect to I if:

• X ⊆ EI ,

• for every defined concept F ∈ L with X ⊆ F I , we
have T |= E v F .

Taking the ABox in the previous subsection as an example,
the most specific concept of aI is:
BrainTumor u ∃hasEnhancement.NonEnhanced

Definition 3 (Subconcept [12]). The set sub(D) of the sub-
concepts of a concept D contains all the concepts occur-
ring in D, and is defined recursively as:

sub(A) = {A} for concept names A ∈ NC

sub(C u E) = {C u E} ∪ sub(C) ∪ sub(E)

sub(C t E) = {C t E} ∪ sub(C) ∪ sub(E)

sub(∃r.C) = {∃r.C} ∪ sub(C)

sub(∀r.C) = {∀r.C} ∪ sub(C)

For example,

sub(∃leftOf.CNl u ∃closeTo.CNl) = {∃leftOf.CNl u ∃closeTo.CNl,

∃leftOf.CNl,

∃closeTo.CNl,

CNl}



2.4 Fuzzy concrete domain
Definition 4 (Fuzzy concrete domain). A concrete domain
is a pair D = {∆D,ΦD}, where ∆D is a subset of the
image domain S (S being Z3 for a 3D image), and ΦD is
a set of functions containing:

• a mapping function f associating an individual in the
ABox with a fuzzy region of ∆D;

• an evaluation function etr assigning to a pair of indi-
viduals (r, t) a satisfaction degree of a spatial rela-
tion, where r is the reference object and t is the target
object.

For example, a region in a MR image is recognized to be
the right lateral ventricle. Then, an individual c : LV r
is initialized in the ABox. The region f(c) is associated
with c by the mapping function. To estimate a satisfac-
tion degree of a relationship rightOf of the target object
a : BrainTumor with respect to c : LV r, eac (rightOf)
is computed by evaluating the satisfaction degree of the
proposition “the region f(a) is to the right of the region
f(c)” in the image domain.

2.5 Spatial restriction criterion
Minimality criteria are required to select the best hypothe-
sis among the candidate ones. Semantic minimality is one
of the most common minimality criteria. Other minimality
criteria are discussed in [3] in the context of the DL EL.

Definition 5 (Semantic minimality). For an abduction
problem P = 〈T ,H,O〉, and {H1, . . . ,Hn} a set of po-
tential hypotheses, Hi is a v −minimal explanation if
there does not exist an explanation Hj for P such that
Hj v Hi.

The most general hypothesis is selected based on the se-
mantic minimality with respect to the hierarchy of the
knowledge base. However, this selection criterion does
not reflect the spatial information in the image. Therefore,
we propose a preference criterion for hypotheses ranking
based on spatial relations restrictions in concrete domains
(image domain). The spatial restriction criterion is a quan-
titative estimation of a concept C involving spatial descrip-
tions ∃sr.D or ∀sr.D where sr is a spatial relation role
such as leftOf , closeTo. The satisfaction degree SD is
computed as follows:

• given an instance a : C, E = ∃sr.D and E ∈
Sub(C), and a set of instances I , where i ∈ I is
an instance of a concept D in the ABox (i : D),
SD(E) = supi∈I(eai (sr));

• given an instance a : C, E = ∀sr.D and E ∈
Sub(C), and a set of instances I , where i ∈ I is
an instance of a concept D in the ABox (i : D),
SD(E) = infi∈I(eai (sr));

• for a conjunction of spatial descriptionsC = uj∈JCj ,
SD(C) = infj∈J(SD(Cj));

• for a disjunction of spatial descriptions C = tj∈JCj ,
SD(C) = supj∈J(SD(Cj)).

3 Abductive reasoning using seman-
tic tableau method

In this section, we present the concept abduction method
using the semantic tableau method, inspired from [5]. The
best explanation is then selected based on the spatial re-
striction criterion. As all observed objects in the ABox can
be formulated by the most specific concept, our problem is
modeled as a concept abduction.
We present several auxiliary definitions that will be used
later.

Definition 6 (Negation normal form). Negation normal
form (NNF) is a concept expression such that the nega-
tion constructor appears only before atomic concepts. The
rules of transformation are described as follows:

• ¬(¬C) ≡ C,

• ¬(C tD) ≡ ¬C u ¬D,

• ¬(C uD) ≡ ¬C t ¬D,

• ¬(∃r.C) ≡ ∀r.¬C,

• ¬(∀r.C) ≡ ∃r.¬C

For example, the negation normal form of the
concept ¬(BrainStructure u ∃leftOf.CNl) is
¬BrainStructure t ∀leftOf.¬CNl.

Definition 7 (Conjunctive normal form [6]). Conjunctive
normal form (CNF) is a concept expression where complex
concepts are replaced by the conjunction of their super-
concept taking TBox axioms into account. For a concept C
and a TBox T = {C v D}, CNF (C, T ) = C uD.

For example, the conjunctive normal form of the con-
cept SmallDeformingTumor with respect to the TBox
described in Section 2 is SmallDeformingTumor u
BrainTumor u ∃hasEnhancement.NonEnhanced.

Definition 8 (Internalized concept [2]). Let T be a TBox
and a set of axioms formulated as Ci v Di. The internal-
ized concept of the TBox is defined as follows:

CT ≡ u(CivDi∈T )(¬Ci tDi)

For example, the internalized concept of the axiom LV l v
BrainStructureu∃(rightOfucloseTo).CNl is¬LV lt
(BrainStructure u ∃(rightOf u closeTo).CNl).
We reformulate the subsumption in terms of satisfiability:
the concept H u ¬O is not satisfiable with respect to T ,
whereH is a hypothesis, O is an observation, T is a TBox.
This problem can be reduced by testing the satisfiability of
a conceptH u¬OuCT , where CT is the internalized con-
cept of T . The tableau algorithm is an efficient decision



procedure for the concept satisfiability problem [2]. This
method tries to construct a model of a concept C with re-
spect to the given terminological knowledge. All the con-
cepts are required to be expressed in negation normal form.
A concept H that causes unsatisfiability of H u ¬O u CT
is a potential hypothesis, i.e. the tableau built from this
concept is closed. We follow this strategy and propose an
extension of the work by Colucci et al. in [5].

Definition 9 (A tableau for ALCHIR+ ). Let D be an
ALCHIR+ concept in NNF and let RD be the set of roles
in ALCHIR+ . A tableau T for D is defined as a triplet
(S,L, E), where S is a set of interpretation elements; L
relates each interpretation element to a set of concepts oc-
curring in D (L : S → P(sub(D)) 2); E relates each
pair of interpretation elements to a set of roles in RD

(E : S× S→ P(RD)).
Let x and y be two interpretation elements in S (x, y ∈ S),
C,E be two concepts occurring in D and r ∈ RD. The
tableau to check the satisfiability of D is constructed as a
tree structure where each node corresponds to an element
of interpretation x ∈ ∆I . The node is labeled with a set
of concepts L(x). The edge between the nodes x and y
is labeled with corresponding roles r ∈ E(〈x, y〉). The
following rules are applied for the construction:

1. if C ∈ L(x), then ¬C /∈ L(x);

2. if C u E ∈ L(x), then C ∈ L(x) and E ∈ L(x);

3. if C t E ∈ L(x), then C ∈ L(x) or E ∈ L(x);

4. if ∃r.C ∈ L(x), then there exists some y ∈ S such
that r ∈ E(〈x, y〉) and C ∈ L(y);

5. if ∀r.C ∈ L(x), then for all y ∈ S such that r ∈
E(〈x, y〉), C ∈ L(y);

6. if ∀r.C ∈ L(x) and r is a transitive role, then for all
y ∈ S such that r ∈ E(〈x, y〉), ∀r.C ∈ L(y).

7. r ∈ E(〈x, y〉) iff r− ∈ E(〈y, x〉).

8. if r ∈ E(〈x, y〉) and r v v (or r− v v−) then v ∈
E(〈x, y〉).

Definition 10. (Clash) A branch contains a clash (i.e. the
branch is closed), when {C,¬C} ⊆ L(x) for a node x and
a concept C.

L(x) = {C, ¬C}

�

A branch is said to be complete when there exists a clash
in some node x or none of the rules mentioned above
can be applied in the tableau. For a given concept D,
D is satisfiable if all the branches in the tableau are

2P(sub(D)) is the power set of sub(D).

complete and at least one branch is open, otherwise D is
unsatisfiable. By applying expansion rules, the construc-
tion process of the tableau is performed until no more rule
can be applied or a clash occurs. The hypotheses are gener-
ated by constructing a conjunctive concept H including at
least the complement of one concept in each open branch.
In the selection process, the best explanation is selected
among a set of consistent hypotheses. In our example, we
prefer a high level description of the pathology, which is
most specific and has a maximal satisfaction degree of the
spatial relations involved in the concept description. Sup-
pose that H1, · · · ,Hn are n most specific candidates. Ev-
ery H can be written in CNF with respect to T . An es-
timation is then performed in the concrete domain (image
domain) and SD(CNF (Hi)) can be computed. We will
choose the one with maximal value of the satisfaction de-
gree as the best explanation. The evaluation of the spatial
criterion will be detailed in the next section.

4 Fuzzy representations of spatial re-
lations

In this work, we consider the spatial relations as constraints
to evaluate the satisfaction of a hypothesis. The estima-
tion is performed in the concrete domain (image space) us-
ing mathematical morphology operators [4] in a fuzzy set
framework. The computation aims at answering the ques-
tion “to which degree a spatial relation is satisfied between
two objects”.
Let S denote the image space, typically Z3 for 3D im-
ages. A fuzzy set in S is defined by a membership function
µ : S → [0, 1] where for x ∈ S, µ(x) represents the de-
gree to which x belongs to the fuzzy set. For a crisp set,
membership degrees take only values 0 and 1. When using
spatial representations of spatial relations, µ(x) will repre-
sent the degree to which a spatial relation is satisfied at x
with respect to a reference object.

Inclusion Since roles such as is part of and has part
are often involved in structural descriptions, inclusion is an
important spatial relation. In the crisp case, the inclusion
satisfaction degree of “X is a part of Y ” often takes val-
ues 0 (X 6⊆ Y ) or 1 (X ⊆ Y ). It can also be defined
as a number in [0, 1], e.g. ](X∩Y )

](X) , where ]() computes
the volume of the object. In the fuzzy case, the satisfac-
tion degree of an inclusion relation of a fuzzy object u in
a fuzzy object v is defined using fuzzy set operations [7]:
infx∈S I(u(x), v(x)), where I is a fuzzy implication. The
extension of the volume based definition can be formalized
as:

∑
x∈S min(u(x),v(x))∑

x∈S u(x) .

Directions Qualitative directional relationships, such as
left of, in front of, above, are frequently used in expert
knowledge representations (particularly in brain anatomi-
cal knowledge [4, 13]) to describe a relative location with
respect to a reference object. Such relationships are im-
precise even for crisp objects. Fuzzy representations are
suitable to model these imperfections in the image domain,



and can be defined using fuzzy dilation [4]. For instance
for “right of”, the reference object is dilated using a fuzzy
structuring element modeling the semantics of “right of”,
defining the region of space to the right of it. Then the in-
clusion of the target object in this fuzzy region is evaluated.

Figure 3: Region to the “right of” the right caudate nucleus
(red region).

Distances Distances give metric information in the spa-
tial domain. Qualitative representations of relations such
as close to and far from are also frequently used in anatom-
ical knowledge. Each qualitative distance value can be rep-
resented as a fuzzy set on the real line as illustrated in Fig-
ure 4. For example, the relation far from is an increasing
function that maps a distance value to a satisfaction degree
in [0, 1]. This function can then be used to define the re-
gion of space far from the reference object, e.g. the fuzzy
region of far from with respect to the right lateral ventri-
cle, as shown in Figure 5a, where the brightness of pixels
represents the degree of far from with respect to the refer-
ence object. The degree to which another object is close
to the reference object can then be computed. This satis-
faction degree can also be computed as µfar(d), where d
is the distance between the two objects (minimum, average
or Hausdorff distance), as shown in Figure 5b and µfar the
fuzzy set defining “far” on the real line as in Figure 4. In
our experiments we use this second approach.

0 16 32 48 64 128 192 256
0

1

distance

µ
(x

)

close to
far from

Figure 4: Membership functions of qualitative distance val-
ues.

5 An illustrative example
In this section, we give an example to show how the pro-
posed image interpretation framework can be used for a

(a) Fuzzy region “far from”
the right lateral ventricle
(the object with red con-
tour).

(b) Distance measurement
between two objects (mini-
mum, average or Hausdorff
distance can be used).

Figure 5: Two methods of distance computation.

high level semantic description extraction in a patholog-
ical brain image context. The following TBox describes
a pathological anatomical knowledge and the ABox rep-
resents the parsing results of the structures detected using
image processing tools [9, 16]. We take the same RBox as
in Section 2.2 for the illustration.

TBox = {Hemisphere v∃isPartOf.Brain
BrainStructure v∃isPartOf.Brain
BrainDisease v∃isPartOf.Brain u ¬BrainStructure
BrainTumor vBrainDisease

LV l vBrainStructure
LV r vBrainStructure
CNl vBrainStructure
CNr vBrainStructure

PeripheralRegion v∃isPartOf.Brain
SubCorticalRegion v∃isPartOf.Brain

SmallDeformingTumor vBrainTumor u ∃hasEnhancement.NonEnhanced
PeripheralSmallDeformingTumor vSmallDeformingTumoru

∃isPartOf.PeripheralRegionu
∃farFrom.(LV l t LV r)

SubCorticalSmallDeformingTumor vSmallDeformingTumoru
∃isPartOf.SubCorticalRegionu
∃rightOf.CNr}

ABox = {a : BrainTumor

b : NonEnhanced

〈a, b〉 : hasEnhancement

c : CNr

d : CNl

k : LV r

m : LV l

p : PeripheralRegion

s : SubCorticalRegion}

Figure 6 shows a slice of the global segmentation of the
observed image. The instances in the ABox such as
a, c, d, k, m, p and s are associated with subsets of the
concrete domain. These regions are presented in Figures 7
and 8.
We aim at extracting a high level description of the tu-
mor in the terminological language. As illustrated in
Section 2, the most specific concept of aI is formalized
as BrainTumoru∃hasEnhancement.NonEnhanced.
The semantic tableau method is then applied for generating
consistent hypotheses. A possible hypotheses set is: Small-
DeformingTumor, PeripheralSmallDeformingTumor, Sub-



Figure 6: A segmentation of the observed MRI volume.
The color shapes represent different structures segmented
in the MRI volume. The blue region (respectively the gray
region) represents the subcortical region (respectively the
peripheral region) in the brain.

(a) Segmented
brain tumor.

(b) Right lateral
ventricle.

(c) Left lateral
ventricle.

Figure 7: Segmented brain tumor and lateral ventricles.

CorticalSmallDeformingTumor. Obviously, PeripheralS-
mallDeformingTumor, SubCorticalSmallDeformingTumor
are two more specific hypotheses compared with Small-
DeformingTumor. In addition, the spatial restriction cri-
terion is considered to find the best explanation. The two
hypotheses are represented in CNF:

PeripheralSmallDeformingTumoruSmallDeformingTumoru
∃isPartOf.PeripheralRegionu
(∃farFrom.LV lt
∃farFrom.LV r)

SubCorticalSmallDeformingTumoruSmallDeformingTumoru
∃isPartOf.SubCorticalRegionu
∃rightOf.CNr

For example, the hypothesis PeripheralSmallDe-
formingTumor consists of three spatial descriptions:
∃isPartOf.PeripheralRegion, ∃farFrom.LV l,
∃farFrom.LV r. Therefore, we can estimate the
satisfaction degree of inclusion between fuzzy repre-
sentations of BrainTumor and PeripheralRegion
as well as the distance between fuzzy representations
of BrainTumor and LV l, LV r. Here, we take the
volume based method to estimate the satisfaction degree
of the inclusion, and we measure the distance using the
average Euclidean distance. The overall aggregation
satisfaction degree of PeripheralSmallDeforming-
Tumor is min(eap(isPartOf), max(eak(farFrom),
eam(farFrom))) = min(0.89,max(0.13, 0.34)) = 0.34.
Similarly, the satisfaction degree of SubCorticalSmall-
DeformingTumor is min(eas(isPartOf), eac (rightOf))

(a) Right caudate nucleus. (b) Left caudate nucleus.

(c) Subcortical region (con-
taining the gray nuclei).

(d) Peripheral region (con-
taining the cortex).

Figure 8: Caudate nuclei, subcortical region and peripheral
region.

= min(0.81, 0.11) = 0.11. As a result, the Periph-
eralSmallDeformingTumor is considered as the best
explanation.

6 Conclusion
We have exploited abductive reasoning based on spatial
concrete domains for image interpretation. The proposed
framework involves Description Logics for knowledge rep-
resentation and a semantic tableau method for generating
consistent hypotheses for abduction. The best explanation
is measured based on a spatial restriction criterion in the
image domain. The quantitative estimation is computed
based on fuzzy representations of spatial relations in con-
crete domains (image domain) for qualitative spatial rela-
tions defined in the knowledge base. This contribution il-
lustrates a concrete criterion in decision making for image
interpretation to tackle the semantic gap.
At this stage, the semantic tableau method produces a large
number of hypotheses. However, most of them are irrele-
vant or unsatisfiable. In addition, the concrete domains are
only used in the explanation selection. In order to reduce
the size of the hypotheses set and improve the efficiency of
the inference process, an iterative method will be consid-
ered in the future to integrate the selection process using
concrete domains in an iterative way. Instead of adding all
internalized concepts to the tableau, only relevant axioms
are added to corresponding branches that cause a closure.
This action can avoid generating unsatisfiable hypotheses.
Since the observation is a conjunction of the concepts, the
partial hypotheses in each branch will be ordered according
to the minimality criterion based on concrete domains. The



selection process for the “best” explanation will be directly
embedded into the tableau construction process.
Fuzzy logic is also a useful ingredient in knowledge repre-
sentation dealing with imprecision and vague information.
Another strategy to integrate fuzzy set theory into knowl-
edge representation is to add fuzzy values to terminological
and assertional knowledge at the logical level.
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