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Abstract. In this paper, we propose a new method to segment the sub-
cutaneous adipose tissue (SAT) in whole-body (WB) magnetic resonance
images of children. The method is based on an automated learning of ra-
diometric characteristics, which is adaptive for each individual case, a
decomposition of the body according to its main parts, and a minimal
surface approach. The method aims at contributing to the creation of
WB anatomical models of children, for applications such as numerical
dosimetry simulations or medical applications such as obesity follow-up.
Promising results are obtained on data from 20 children at various ages.
Segmentations are validated with 4 manual segmentations.

1 Introduction

This paper is a first step towards the development of semi-automatic approaches
for WB magnetic resonance images (MRI) segmentation and designing 3D mod-
els of the anatomy of children. These models are meant for dosimetry studies, to
assess the children exposure to electromagnetic fields. We propose to build a set
of models representing children at different ages, and suitable for deformations in
order to test different postures during dosimetry studies, and hence generating
a larger set of models from an existing set.

Our purpose is thus the realistic modeling of the human body in a semi-
automatic way, since manual processing of the data is time consuming and cannot
ensure to obtain topologically correct and smooth structures due to slice by
slice processing. The process relies first on identifying the main body subparts
by analyzing the body silhouette. Then, we propose to decompose the subject
anatomy by segmenting SAT, the muscles and the bones, which represent about
80% of the subject body mass. In this article we describe the first step of this
approach and SAT segmentation. In the context of realistic modeling, accuracy
is not the main expected feature of the method since the segmentation is not
aimed at providing an exact individual model of each patient. What is important
is that the fat is well located, topologically correct, and approximately fits the
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actual thickness (an approximate thickness is sufficient, since it will be prone to
modifications during deformations).

WB MRI consists of an important amount of data and semi-automated seg-
mentation methods are desirable to process them. However, only few works have
been dedicated to this task since it is an emerging modality. Most approaches
rely on low level methods and were developed for adults’ images. For instance,
T1-weighted MRI data are thresholded, and SAT is identified through region
growing in the early work presented in [3]. A fuzzy c-means following intensity
correction is used in [10] to identified AT and an active contour model allows
to separate SAT and VAT (visceral adipose tissues) afterwards. Data acquired
with the DIXON sequence are processed by means of thresholding, mathematical
morphology tools and connected component extraction in [9]. The most sophis-
ticated method is proposed in [6], where anatomical landmarks such as the spine
are identified to constrain the segmentation of both SAT and VAT. However,
this work only focuses on the abdominal region of the subject’s anatomy. This
approach has later been adapted to the case of children (5 years old) in [7] where
the reduced amount of fat is challenging. Whole-body images are considered but
only the abdominal region is segmented.

Here a patient-adaptive method for the WB SAT segmentation is proposed.
Our contribution is to propose a method to segment SAT in the whole-body at
once. Furthermore, the proposed approach does not require data homogenization
thanks to the regularization. The study concerns images of children between 10
and 17 years old and the proposed method is therefore the first one dealing with
SAT in WB children images.

2 MRI Database

Fig. 1. Slices of WB im-
ages of two patients

WB MRI images of children have been acquired thanks
to collaborating hospital, within protocols dedicated
to the exploration of suspected autoinflammatory dis-
eases such as chronic recurrent multifocal osteomyelitis
(CRMO). These acquisitions are emerging thanks to
shorter sequence durations. A set of 20 images has been
acquired with the same Siemens scanner (1.5T) using
T1 (TR = 675ms, TE = 11ms) sequence, using multi-
ple coils. Examples of images are displayed in Figure 1.
The table stops at each station. Depending on the pa-
tient, around 32 coronal slices are acquired with a slice
thickness of 6mm. The reconstructed voxel size for all
images is 1.3 × 1.3 × 7.2 mm3. The total scan time is
97s for T 1 acquisitions. Due to the strong anisotropy,

the data exhibit a lot of partial volume effect. Due to the use of multiple coils,
images actually result from the composition of 4 or 5 images (depending on the
patient height), and some artifacts may appear such as missing parts due to field
size or lower intensity at the transition between two images. An example of the
latter can be seen at the arms level in Figure 1 on the left.
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3 SAT Segmentation

The proposed method for SAT segmentation is based on a minimal surface ap-
proach. To make the method automatically adaptive to each patient, the grey
level histogram is first analyzed to separate the background. Then a key feature
of the method consists in using prior spatial information on the SAT location
to define two regions, included in SAT and in the rest of the body, respectively:
each voxel on the surface of the body is considered as fat and each voxel far
enough from the surface is considered as belonging to the other class. A minimal
surface approach is finally applied to estimate the best boundary between these
two initial regions. Note that the hypothesis that the fat is the first tissue on
the surface of the body is an approximation which is justified by the resolution
of the images and their anisotropy, which make the skin not visible (its 1mm
thickness cannot be properly imaged with a voxel of 1.3 × 1.3 × 7.2mm3).

3.1 Identification of the Body Silhouette

Figure 2(a) presents the histogram of the image displayed in Figure 1(a). Simi-
lar histograms are observed on the whole database. Values corresponding to the
background form a peak which decreases quickly. A second peak corresponds
to the intensities of the muscles and the soft tissues (such as abdominal or-
gans). The background mask is obtained by thresholding the original image.
The selected threshold corresponds to the lowest value between the two iden-
tified peaks, and is determined automatically as the first valley of a filtered
version of the histogram. The result (Figure 2(b)) separates the body from the
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Fig. 2. Automatic method to extract the body silhouette. The threshold is obtained
from histogram analysis. (a) Histogram of a WB T1 MRI and threshold value (in
red). (b) The thresholding result separates the background and some internal parts
of the body, such as air-filled organs like lungs (in white). (c) Identification of the
body silhouette. (d) The remaining dark components in the body. (e) Analysis of the
silhouette of the body from the head to the feet: Each point represents the surface of
the corresponding axial slice of the binary mask. The marked points correspond to the
neck, the armpit, the waist and the hips.
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background, except components filled with air, liquid, or bones corticals (LCR,
cortical bones, airways, lungs, part of the stomach, the heart and the intestine).
A hole filling applied to the body allows us to add some of these components
but a few others such as airways are directly connected to the background and
thus cannot be filled. These components are disconnected using a morphological
closing of the body component. A result is presented in Figure 2(c). The radius
of the structuring element has been manually set and the same value is used for
all images (5mm). This operation adds unwanted parts in the mask such as fine
space between the arms and the abdomen. Among the remaining components
in the body (Figure 2(d)), the lungs may be identified as the biggest one (both
lungs are generally connected in these images).

3.2 Separation of the Main Parts of the Body

As mentioned above, it is possible to consider that each voxel on the surface of
the body belongs to SAT. To identify the body surface, the body mask alone is
not sufficient since during the acquisitions the patient’s hands lie on the thighs,
the arms are sometimes in contact with the abdomen, and thigh fat may be
in contact. Therefore, we propose to roughly separate the body into its main
parts, namely head, thorax, abdomen, shoulders, arms, forearms, hips, thighs
and legs. This identification allows us to cope with unwanted connections and
to guarantee that different parts that should be separated are actually so.

The information on the image orientation is used to analyze the silhouette
of the body, following a central axis from the top of the head to the feet. For
each axial slice orthogonal to this axis, the area inside the body is computed.
Figure 2.e presents the curve of these values. Reference points are then identified:
the first peak corresponds to the middle of the head, the first valley to the neck.
The shoulders (second peak), the hips (highest remaining peak) and the waist
(lowest valley between shoulder and hips) are also identified. Peaks and valleys
are detected on a filtered version of the curve (using a simple median filter). The
curve is similar for all images in our database, which allows us to automate this
step for all images.

A first automatic body parts identification is achieved using these reference
points and results in a labeling of the main body parts illustrated in Figure 3(b).
The shoulders region labeling also uses the segmentation of the lungs and more
local analysis of the body mask. The initial labeling is then manually corrected
to separate the arms from the abdomen and the thighs (see Figure 3(c,d)). Other
errors are corrected at the same time. This connection step is the only manual
step in our approach.

3.3 Initialization of SAT Segmentation

The minimal surface approach used for the final segmentation is optimized using
a graph-cut method, and is based on two hard constraining regions, one included
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Fig. 3. (a) A slice of an image. (b) Automatic labeling: the arms have the same label
as the thorax and the abdomen. The hands have the labels of hips. (c) Separation of
the hands from the thighs. (d) Corrected labeling. Each forearm (including the hand)
has its own label. (e) Connections between body parts.

a)

c)

b)

d) e)

Fig. 4. Initialization derived from the labeling. Each
voxel on the surface of the body is marked as SAT. Vox-
els far enough from the surface are marked as non-fat.
(a) Here the arms are in contact with the abdomen. Each
body part given by the previous step is processed inde-
pendently. (b) The abdomen is merged with anatomically
neighboring body parts (such as thorax or hips, but not
arms). (c) Distance map from the background. (d) Ex-
traction of border and inside classes for the selected body
part. (e) Results from each part are merged to provide the
initialization: each voxel in green belongs surely to SAT
while each voxel in brown belongs to the inside class. The
remaining voxels (in red) are not classified yet.

in SAT and one included
in non-fat regions, called
“inside region”. These
two regions will be the
seeds of the graph model
and constitute the initial-
ization of segmentation.

For SAT, each bound-
ary voxel of the body
is considered as part of
it, as explained before.
The previous body part
identification allows us
to detect the body sur-
face by considering each
part independently. For
each voxel of the bor-
der of a region, there are
three possibilities: (i) it
has a neighbor in the
background, (ii) it is con-
nected to an authorized
label and thus the voxel
is considered inside the
body, (iii) it is connected

to a non-authorized label and thus the voxel is on the surface of the body. For
example a voxel which is in the arm and neighbor of a background voxel is
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always on the surface of the body. If a voxel of the arm is neighbor of an ab-
domen voxel, then this voxel is also on the surface of the body. But if a voxel of
the arm is neighbor of a shoulder voxel, then it is not on the surface of the body.

For the inside class, each region is considered again and merged with the
neighbor regions having an authorized connection (as defined above). Figure 4(b)
shows the merging of the abdomen and its neighbors (thorax and hips). A dis-
tance map to the background is computed (Figure 4(c)) and used to perform an
erosion whose size depends on the body part: sequential erosions are performed
with an unitary ball until a given ratio of the initial body part volume is kept.
For elongated body parts such as legs, the structuring element is a disk in the
axial plane and not a ball. The eroded region is then masked by the original
region mask to provide the inside class (for the abdomen in our example). This
is repeated for each body part. The obtained initialization is illustrated in Fig-
ure 4(e) where voxels in green belong surely to fat and voxels in light brown
belong to the inside class. Voxels in red are not assigned yet to any class, and
the aim of the segmentation will be to find the best segmentation surface within
this red region.

3.4 Segmentation by Minimal-Surface Approach

The final segmentation is performed using a minimal-surface method, minimizing
the following energy function: E(l) =

∑
p D(p, lp) + β

∑
p,q V (p, q) with p and

q two points, lp a label, D() a data fidelity term, β a fixed coefficient and V
a regularization term. The data fidelity term is defined for each voxel except
for the background using the a priori information previously defined. For each
unclassified voxel, the probability for this voxel to belong to each class is given
by a Gaussian distribution of the intensity of each class (muscles and tissues
on the one hand, AT and bone narrow on the other hand) previously computed
on the whole image. The minimal surface is computed generally between these
two classes and the regularization allows us to separate SAT from other AT
or bones.

The regularization term is defined as follows: V (p, q) = 1
max{(1.0−gradpq),ε} |lp−

lq| with gradpq an estimation of the normalized gradient between p and q which
takes into account the image anisotropy. The parameter ε is set to 10−6 in our
experiments. The parameter β is also fixed in our experiments and the same
value is used for all images (0.75).

This energy is minimized using the graph-cut approach described in [1,5,2]
using the α-expansion algorithm until convergence.

4 Results and Discussion

Experiments have been conducted on our MRI database. Figure 5 present results
on three cases, where the manual segmentation appears in green, the SAT seg-
mentation appears in blue, and 3D reconstructions of the two classes are shown
as well. The first patient is a 10 year old girl, the second one a 13 year old
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Fig. 5. Manual segmentation (in green), SAT segmentation (in blue): 10 year old girl
(left) and overweighted 13 year old girl (right)

overweighted girl. The last one is a 17 year boy with very little fat. The results
have been reviewed by radiologists, who confirmed their good quality, and the
correct detection of all SAT locations. Moreover, the obtained results answer
the needs raised by the foreseen applications: SAT is generally well recognized,
it has the required topology (by construction, since the approach guarantees the
topology of an empty sphere), and the fat thickness is approximately preserved.
Some errors are inherent to the method: each voxel on the surface of the body
is marked as fat, therefore small extremities such as fingers or ears are entirely
considered as fat. Note that this will be corrected in a further step, since a
skin layer will then be introduced on higher resolution reconstructions, before
dosimetry simulations. Other errors are due to the poor resolution of the images
in the coronal direction, making the transition between fat and bone sometimes
unclear. Therefore some parts of the tibias are often marked as fat. Parts of the
clavicles are also often classified as fat.

Fig. 6. 14 years
old girl model

A quantitative evaluation of the segmentation was achieved
thanks to 4 manual segmentations of SAT on the whole-body,
including the 3 cases presented in Figure 5. Each segmentation
has been achieved by an expert user and takes approximately
4h per image. Manual segmentations have been reviewed by
other radiologists. Table 1 presents the mean distance between
the automated segmentation and the manual one for each of
the 4 cases, as well as the similarity index. The best results
are for the over-weight girl and the lowest for the skinny boy.
The very low amount of fat in this case along with the par-
tial volume effect make the manual segmentation challenging
even for an expert. The resulting segmentation guarantees the
topology, even if there is no fat to show. This may be a lim-
itation of the method. When considering only the abdomen
and the hips, results are better. The results on the 16 other
images of our database show a similar quality, according to a
visual inspection performed by medical experts.
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Table 1. Automated segmentation vs manual segmentation for 4 cases

details Whole Body SAT Abdominal SAT

Corpulence Age Mean dist (vox) Similarity Mean Dist (vox) Similarity

p1 normal 13 1.18 87.40% 0.99 92.67%
p12 over-weight 13 1.28 88.11% 1.06 92.71%
p15 skinny 17 1.94 65.44% 1.22 77.42%
p16 normal 10 1.12 82.46% 1.54 88.14%

These results are a useful first step towards the design of realistic WB models
of children for numerical dosimetry simulations. Future work aims at segment-
ing more tissues and organs to complete these models. An illustration of one
of these models is presented in Figure 6. Beside the primary goal of dosimetry
simulations, interesting medical outcome could be derived from this segmenta-
tion. As pointed out in [4], the body fat distribution could be studied to analyze
the body mass index and monitor therapy for obesity, or evaluate its change
according to pathologies. Differentiating SAT from VAT is then important. Also
body fat automatic segmentation allows fat distributions comparison in studies
such as in [8].
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