
Hyperparameter Optimization of Deep Neural Networks:
Combining Hyperband with Bayesian Model Selection

Hadrien Bertrand∗1,2, Roberto Ardon2, Matthieu Perrot3, and Isabelle Bloch1

1LTCI, Télécom ParisTech, Université Paris-Saclay, France
2Philips Research, France

3L’Oréal R&I, France

Abstract

One common problem in building deep learning archi-
tectures is the choice of the hyper-parameters. Among
the various existing strategies, we propose to combine
two complementary ones. On the one hand, the Hyper-
band method formalizes hyper-parameter optimization
as a resource allocation problem, where the resource is
the time to be distributed between many configura-
tions to test. On the other hand, Bayesian optimiza-
tion tries to model the hyper-parameter space as effi-
ciently as possible to select the next model to train.
Our approach is to model the space with a Gaussian
process and sample the next group of models to evalu-
ate with Hyperband. Preliminary results show a slight
improvement over each method individually, suggest-
ing the need and interest for further experiments.

Keywords: Deep Learning, Gaussian Process,
Bayesian Optimization, Hyperparameter Optimization

1 Introduction

The most common strategy when trying to solve a task
using deep learning is to start from a well-known ar-
chitecture such as AlexNet [1] or VGG-16 [2], which
is usually enough to obtain decent results. The ques-
tion then is how to improve them. One possibility is
to acquire more data but this can be very costly de-
pending on the type of data and the task (for example,
segmentation of particular organs in medical images).

The other possibility is to change the architecture
of the network. This requires either understanding the
effect of each part of the network and how the different
parts work together, something obscure for both begin-

∗hadrien.bertrand@telecom-paristech.fr

ners and experts in the field, or trying many different
architectures in the hope of finding a better one.

Mathematically, we can pose the problem as follows.
The hyper-parameter space X can be seen as a hyper-
cube where each dimension is a hyper-parameter. Any
particular combination x in X determines a unique net-
work f that can be trained then evaluated according to
a loss function L. The goal is to find as fast as possible
the combination x∗ that minimizes the loss:

x∗ = argmin
x∈X

L(f(x)) (1)

Each evaluation of a combination is costly as it re-
quires training a neural network. Moreover, hyper-
parameters can be discrete or even categorical. It is
impossible to try all combinations as the number of
possibilities grows exponentially with each additional
hyper-parameter. Therefore smarter policies are re-
quired and this has given rise to the field of hyper-
parameter optimization. It has raised considerable de-
velopment effort in recent years due to its importance
in deep learning.

Let us make clearer the notion of speed in this con-
text. The search is allocated a total budget B in
minutes that each policy is free to allocate however
it wants. What matters is the best model that could
be found in this time. The choice of having a budget in
time means that the model will not be trained in epoch
as is the most common, but in minutes. This is a prac-
tical choice that allows to estimate accurately the total
time that will take the search, but it will have the ef-
fect of favouring small networks. Indeed, two models
trained an equal amount of time will not have seen an
equal amount of data if one model is bigger and thus
slower than the other.

The next section is an overview of the field, with
particular attention paid to its role in deep learning.

1

We then present in Section 3 two methods, Bayesian
optimization and Hyperband, which we will combine.
These methods are evaluated on a standard classifi-
cation dataset and results are discussed in Section 4.
We conclude by a discussion of the limitations of the
proposed methods and possible research directions in
Section 5.

2 State of the Art

The simplest method for hyper-parameter optimiza-
tion is random search [3]. It consists in picking com-
binations randomly in a pre-defined hyper-parameter
space until a good enough model is found or resources
are exhausted. It is easy to implement and to paral-
lelize. And it is surprisingly efficient. The reason is
that for most tasks there are only a handful of hyper-
parameters that have a significant effect on the loss,
meaning that the relevant hyper-parameter space is
actually of low-dimensionality. As a consequence it is
likely when picking combinations to choose one with
optimal values for the important dimensions.

It is not known in advance which hyper-parameters
are relevant to the task, otherwise we would discard
the ones with low impact when constructing the hyper-
parameter space. A better algorithm should be able to
spend an appropriate amount of attention to the hyper-
parameters in proportion of their impact on the task
at hand.

One such method is Bayesian optimization. A recent
review of the field can be found in [4]. The idea is to
construct a probabilistic model of the loss function and
update it sequentially as new combinations are tried.
An acquisition function will then take into account the
uncertainty of the model to guide exploration and se-
lect new combinations. Further details are given in
Section 3.1.

The problem of hyper-parameter optimization can
be seen from the perspective of a multi-armed bandit,
where each combination is an arm and there is only a
finite amount of resources (training time) to allocate
to each arm. This has given rise recently to Hyper-
band [5], see Section 3.2 for details.

Neuro-evolutionary algorithms have also been ap-
plied to hyper-parameter optimization. Modern ap-
proaches on the subject [6] [7] allow a great flexibility
on the architecture but require a lot of resources. They
also do not stop training prematurely like Hyperband.

Recently reinforcement learning based approaches
have been developed. One neural network is trained
to construct other neural networks optimal for a given

task [8] [9]. Like evolutionary algorithms, the main
advantage is the greater variability of the tested archi-
tectures but at a higher cost in resources to train the
controller network.

One major advantage of the last two approaches is
the ability to use conditional hyper-parameters, i.e.
hyper-parameters that must be chosen only if another
hyper-parameter was chosen at a particular value.
Bayesian Optimization and Hyperband have no sim-
ple way to integrate such hyper-parameters.

3 Methods

3.1 Bayesian Optimization
The procedure of Bayesian optimization is as follows
(see [4] for a review of the topic and [10] for an ap-
proach closer to ours): we model the loss function of
our hyper-parameter space using a probabilistic model,
here a Gaussian process. We then compute an acquisi-
tion function, which takes into account the model pos-
terior to select the next combination to evaluate.

Figure 1: Bayesian Optimization on a one dimensional
function. The orange curve is the true loss function,
the blue one is the prediction of the Gaussian process.
The green curve is the acquisition function. The next
evaluation will be at the maximum of the green curve.

A Gaussian process [11] is a supervised learning
model that gives a Normal distribution on each pre-
dicted point. It is specified by its covariance function,
which we choose to be a Squared Exponential Kernel:

k(x, x′) = exp

(
−||x− x

′||2
2l2

)
(2)

Here l is a vector of the same dimensionality as the
input x. It specifies the length scale of each dimen-
sion. It is found at training time by optimizing the
log-marginal likelihood:

log p (y|x, l) = −1

2
yTK−1y − 1

2
log |K| − n

2
log 2π (3)

whereK is the Gram matrix of all training points, such
that Kij = k(xi, xj).

2

Our chosen acquisition function is the Expected Im-
provement [12], which uses the improvement function
I [4]:

I(x) = (y∗ − µ(x))1 (y∗ > µ(x)) (4)

where x represents a given configuration, y∗ is the min-
imum loss found so far and µ is the mean returned by
the Gaussian process. It will be 0 if the predicted mean
is lesser than the best loss found so far (which means
there is no improvement), otherwise its proportional
to the gap between the predicted mean and best loss.
From there, the Expected Improvement is:

EI(x) = E[I(x)] = s(x)[uΦ(u) + φ(u)] (5)

with
u =

y∗ − µ(x)

σ(x)
(6)

where σ is the variance returned by the Gaussian pro-
cess, and Φ and φ are the normal cumulative distribu-
tion and density function, respectively.

This function offers a good compromise between ex-
ploration of regions with high uncertainty and exploita-
tion. Moreover, it does not add any hyper-parameter
to tune. Once we have computed EI for each configu-
ration, we do not pick the argmax as classically done
in the literature but we normalize the results to make
a distribution from which we sample the next configu-
rations to test.

One important aspect of this method is that the
training time of the model is a dimension of the hyper-
parameter space. This means that the method is free
to choose how long to train each model. In practice we
found that it prefers longer training time, even though
it looks like a lower training time is enough to get a
good estimate of the worth of the model and would al-
low the evaluation of more models. This is a flaw of
the method, which lacks an explicit notion of budget
and a way to best exploit it.

3.2 Hyperband
The idea behind Hyperband [5] is to pick a group of
models uniformly in X , train them for a certain time,
then discard the worst performing ones, and repeat un-
til a few combinations remain. The problem is how to
decide when to evaluate the models. If this is done too
early, we cannot differentiate the good from the bad
ones, and if too late, we waste valuable training time
on bad models.

Hyperband addresses this by creating brackets, each
with the same total budget. The brackets differ in
when they start to evaluate models. The first one will

do so after, e.g. 1 minute, the next bracket after 3 min-
utes and so on. As a consequence, the first bracket will
try many more models than the last one, but might
discard some good models too early.

The method is governed by only two hyper-
parameters: the maximum amount of resource that
can be given to a single model R and the proportion
of models discarded at each evaluation η. We chose
R = 27 minutes and η = 3, meaning that we keep 1/3
of models at each evaluation. The time resource pa-
rameter R was chosen so low because the networks we
are training are small and the task is simple enough
so that 27 minutes is sufficient for most of them to
converge.

3.3 Combining approaches

Bayesian optimization and Hyperband being orthogo-
nal approaches, it seems natural to combine them. Hy-
perband chooses the configurations to train uniformly
and intervenes only during training. On the other side,
Bayesian optimization picks configurations carefully by
modelling the loss function, then let them train with-
out interruption.

As a result, Hyperband does not improve the quality
of its selection with time, and Bayesian optimization
regularly loose time training bad models.

The combination is straightforward and fixes those
two problems. Model selection is done by Bayesian op-
timization as described in Section 3.1, then Hyperband
train them as described in Section 3.2.

The proposed algorithm is as follows: we pick the
first group of configurations uniformly and evaluate
them with Hyperband. All subsequent selections are
done by training a Gaussian process with a squared-
exponential kernel on all evaluated models. We then
compute the expected improvement of all untested
combinations, normalize it to make a probability dis-
tribution from which we sample the next group of con-
figurations.

4 Experiments and Results

We compare the three methods presented above:
Bayesian optimization, Hyperband, and Hyperband us-
ing Bayesian optimization. The algorithms were imple-
mented in Python using scikit-learn [13] for the Gaus-
sian processes and Keras [14] as deep learning frame-
work.

Comparison was done on the CIFAR-10 dataset [15],
which is a classification task on 32x32 images. The

3

image set was split in 50% for the training set used to
train the neural networks, 30% for the validation set
used for the Bayesian model selection and the rest as
test set used for the reported results below.

Each method had a budget of 4000 minutes of train-
ing on a NVIDIA TITAN X. The choice to constrain in
time instead of epoch means that the quantity of data
seen by the models depends on the GPU in addition to
the consequences pointed in the introduction.

The chosen architecture was a standard convolu-
tional neural network with varying number of lay-
ers, number of filters and filter size per layer. Other
hyper-parameters involved in the training method are:
the learning rate, the batch size and the presence of
data augmentation. In the end there were 6 hyper-
parameters to tune for a total of 19 200 possible con-
figurations.

The metric that matters when comparing methods
is the minimum loss of all models tried at a given
time, and is illustrated in Fig. 2 for the two individual
methods and their combination (one run each). These
results suggest that Bayesian optimization performs
slightly worse than both other methods, and that Hy-
perband with Bayesian selection finds a better model
quicker than Hyperband. However, due to the random
nature of the methods, many runs would be needed to
draw definite conclusions from Fig. 2.

It might be more informative to look at the running
median of the loss of all models trained at a given time
as in Fig. 3. Even if in the end only the best model mat-
ters, the running median gives us an idea of the quality
of the models tried. Both methods using Bayesian op-
timization start with a higher median which decreases
with time, while Hyperband has a lower median which
stays flat and is eventually beaten by Hyperband with
Bayesian selection.

One possible explanation is that Bayesian optimiza-
tion is very exploratory at first and most boundaries
of our hyper-parameter space are bad models. It then
becomes better as the variance of the Gaussian process
diminishes and better combinations are selected.

The fact that Bayesian optimization performs worse
in both losses might mean that it is more important to
try many models and discard them very quickly over
trying less combinations but training them longer.

5 Discussion

Due to the part of chance in all three methods, one run
is not enough to draw definite conclusions on which
of them is best. Ideally we would have used cross-

validation on each method and compared the methods
on other tasks but lack of time prevented us from doing
so and this is left for future work.

In any case, the results for Hyperband and Bayesian
Optimization were consistent with the literature. With
a low budget, Hyperband will perform better on aver-
age than Bayesian Optimization and should be pre-
ferred. It also has the advantage of being easier to
implement and to parallelize.

At the end, each policy has trained many models
from which we select only one. However we have a few
high performing models with very similar error rates
but a good diversity in architecture. Selecting the top
five or ten and making an ensemble with them would
give a very robust classifier. We can even consider ap-
plying model distillation on the ensemble to keep the
advantages of a small network.

The approach of modelling the hyper-parameter
space could also be used for transfer learning. One
application would be for the same task, but with a big-
ger dataset containing more data and classes. It can be
expected that the model of the hyper-parameter space
learned before would be informative for the new dataset
and would allow us to find a good model faster.

Closer to the authors’ interest would be similar tasks,
for example in a medical imaging context, where the
methods would have been applied to the classifica-
tion of images from a particular modality, say MRI
as in [16], and we would now like to apply them to the
classification of images from another modality, ultra-
sound for example.

References

[1] A. Krizhevsky, I. Sutskever, and G. Hinton, “Im-
agenet classification with deep convolutional neu-
ral networks,” in Advances in Neural Information
Processing Systems 25, pp. 1097–1105, 2012.

[2] K. Simonyan and A. Zisserman, “Very deep con-
volutional networks for large-scale image recogni-
tion,” CoRR, vol. abs/1409.1556, 2014.

[3] J. Bergstra and Y. Bengio, “Random search for
hyper-parameter optimization,” J. Mach. Learn.
Res., vol. 13, pp. 281–305, Feb. 2012.

[4] B. Shahriari, K. Swersky, Z. Wang, R. P. Adams,
and N. de Freitas, “Taking the human out of the
loop: A review of Bayesian optimization,” Pro-
ceedings of the IEEE, vol. 104, pp. 148–175, Jan
2016.

4

Figure 2: Loss of the best model found at a given time
by each method.

Figure 3: Running median of the loss of all tested mod-
els for each method.

[5] L. Li, K. G. Jamieson, G. DeSalvo, A. Ros-
tamizadeh, and A. Talwalkar, “Efficient hyperpa-
rameter optimization and infinitely many armed
bandits,” CoRR, vol. abs/1603.06560, 2016.

[6] E. Real, S. Moore, A. Selle, S. Saxena, Y. L. Sue-
matsu, Q. Le, and A. Kurakin, “Large-Scale Evo-
lution of Image Classifiers,” arXiv:1703.01041 [cs],
Mar. 2017.

[7] R. Miikkulainen, J. Liang, E. Meyerson, A. Rawal,
D. Fink, O. Francon, B. Raju, A. Navruzyan,
N. Duffy, and B. Hodjat, “Evolving Deep Neu-
ral Networks,” arXiv:1703.00548 [cs], Mar. 2017.
arXiv: 1703.00548.

[8] B. Baker, O. Gupta, N. Naik, and R. Raskar, “De-
signing Neural Network Architectures using Rein-
forcement Learning,” arXiv:1611.02167 [cs], Nov.
2016.

[9] B. Zoph and Q. V. Le, “Neural Architecture
Search with Reinforcement Learning,” in Inter-
national Conference on Learning Representations,
2017.

[10] J. Snoek, H. Larochelle, and R. P. Adams, “Prac-
tical bayesian optimization of machine learning
algorithms,” in Advances in Neural Information
Processing Systems 25, pp. 2951–2959, 2012.

[11] C. E. Rasmussen and C. K. I. Williams, Gaussian
Processes for Machine Learning (Adaptive Com-
putation and Machine Learning). The MIT Press,
2005.

[12] D. R. Jones, “A Taxonomy of Global Optimiza-
tion Methods Based on Response Surfaces,” J. of
Global Optimization, vol. 21, no. 4, pp. 345–383,
2001.

[13] F. Pedregosa, G. Varoquaux, A. Gramfort,
V. Michel, B. Thirion, O. Grisel, M. Blondel,
P. Prettenhofer, R. Weiss, V. Dubourg, J. Van-
derplas, A. Passos, D. Cournapeau, M. Brucher,
M. Perrot, and E. Duchesnay, “Scikit-learn: Ma-
chine learning in Python,” Journal of Machine
Learning Research, vol. 12, pp. 2825–2830, 2011.

[14] F. Chollet, “Keras.” https://github.com/
fchollet/keras, 2015.

[15] A. Krizhevsky and G. Hinton, “Learning multiple
layers of features from tiny images,” Technical re-
port, University of Toronto, 2009.

[16] H. Bertrand, M. Perrot, R. Ardon, and I. Bloch,
“Classification of MRI data using deep learn-
ing and Gaussian process-based model selection,”
in IEEE International Symposium on Biomedical
Imaging, 2017.

5

https://github.com/fchollet/keras
https://github.com/fchollet/keras

	Introduction
	State of the Art
	Methods
	Bayesian Optimization
	Hyperband
	Combining approaches

	Experiments and Results
	Discussion

