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Abstract. This paper provides an updated formalization of the oper-
ation of contrast, and shows that, by applying it on conceptual spaces,
membership functions to categories as e.g. those captured by adjectives
or directional relationships emerge as a natural by-product. Because the
outcome of contrast depends not only on the objects contrasted (a target
and a reference, as for instance a prototype), but also on the frame in
which those are contained, it is argued that contrast enables a continu-
ous contextualization, offering a basis for “on the fly” predication. This
investigation is used for inferring general requirements for the applica-
tion of contrast and its generalization, and for comparison with current
practices in the conceptual space literature.
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1 Introduction

In its original formulation, the theory of conceptual spaces [1] assumes a generally
working association between regions and linguistic marks; because symbols are
associated with sets of points, the theory can be seen as relying on an extensional
semantics, in continuity with symbolic approaches. An alternative proposal, in-
troduced in [2], starts from the observation that predication (i.e. the production
of predicates about a certain object or situation) should follow principles of rel-
evance, which, from a descriptive point of view, means determining an object by
utilizing its distinctive features. Accepting this, predicates should be the result
of contrast operations made on the fly between conceptual objects. In a previous
paper [3], starting from this basis, and representing conceptual objects as points
in a conceptual space, we were able to explain, all in maintaining a geometric
view of psychological spaces, the misalignments between theoretical properties
and empirical observations of similarity judgments [4], concerning symmetry,
triangle inequality, but also the overlooked minimality axiom and diagnosticity
effect. Motivated by this result, part of our research has been directed towards
a more structured formalization of contrast, whose functional components were
only sketched before. This paper aims to present preliminary results of this effort
and considerations about future developments.
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The paper proceeds as follows. After a brief overview on the theory of con-
ceptual spaces, the contrast mechanism is explained on a simple case issued from
a mono-dimensional perceptual space (§ 2). These results are then generalized to
the multidimensional case, analyzing illustrative examples (§ 3). The paper ends
with a discussion, contextualizing our approach within the current practices in
the conceptual space literature, highlighting some open questions (§ 4).

1.1 Overview of the Theory of Conceptual Spaces theory

In the literature [1, 5], the introduction of conceptual space is motivated by the
observation that the meaning of words can be represented as convex regions in
a high-dimensional geometric space, whose dimensions correspond to cognitively
primitive features. In practice, conceptual spaces are usually modeled as vector
spaces (e.g. [6–8]). An object of a conceptual space is characterized by several
qualities or attributes:

(q1, q2, . . . , qn),∀i : qi ∈ Qi

where Qi are sets of possible values for each quality qi. Quality dimensions
correspond to the ways in which two stimuli can be considered to be similar or
different, depending on an ordering relation between them; they are usually mod-
eled on R, R2, . . . , N,N2, etc. but proposals exist to process nominal dimensions
(e.g. in [9, 10]). In agreement with the cognitive psychology literature, dimen-
sions are organized in domains or sets of integral dimensions, i.e. dimensions
that cannot be separated perceptually (e.g. for humans, the color dimensions
hue-luminosity-saturation). A conceptual space consists therefore of:

C = D1 ×D2 × . . .×Dm

where each Di is a domain. As each Di consists of a set of qualities, the re-
sulting structure is hierarchical. This representational infrastructure enables the
distinction between objects, i.e. points of the space (used to represent exemplars
and prototypes, i.e. exemplar-based and prototypical bodies of knowledge [9]),
and concepts, defined as regions of the space.

According to the original theory, natural properties emerge as convex regions
within a domain [1] to guarantee betweenness among similar elements. Concepts
generalize properties as weighted combinations of them, typically across multiple
domains, and should satisfy the convexity constraint.3 Prototypes can be seen
as centroids of concept (including property) regions. The other way around, the
division of conceptual spaces into regions can be seen as the result of a compe-
tition between prototypes, that might be captured by e.g. Voronöı tessellations;
this approach can be used for categorization. Following empirical evidence, the
theory suggests to measure the distance between points in the conceptual spaces
(i.e. distance between conceptual objects, exemplars or prototypes) through a
weighted Manhattan metric of the intra-domain distances.

3 This is source of discussion: see for instance [11] about the consequent impossibility
of capturing correlation geometrically, and the various arguments provided in [12].
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1.2 Restarting from Predication

For its insistence on lexical meaning, approached by the association of linguistic
marks to regions, the original account of conceptual spaces can be seen as an
extension of the symbolic approach, in the sense that it follows an extensional
semantics. In contrast, the alternative proposal introduced in [2] considers that
predication should follow principles of relevance, which, from a descriptive point
of view, means describing an object by utilizing its distinctive features. Conse-
quently, predicates are hypothesized to be the result of contrast operations made
on the fly between conceptual objects.

This change of view carries interesting innovations. First, whereas practically
all other works rely on a global distance over all available dimensions (which po-
tentially are infinite), the use of contrast does not necessarily require a holistic
perspective, but restrains the focus to (adequately) distinctive dimensions. Sec-
ond, working with contrast would allow for the most to bypass the problem of
maintaining definite regions, so as to require in principle only access to the rep-
resentational level of points and some rough regional information. Third, it does
not refer to average lexical meanings emerging from usage, but it is computed
contingently with contrastors and prototypes grounded on the agent’s own expe-
rience (the association of specific symbols or anchoring [13, 14] remains deferred
at social level). The present contribution aims to develop further this approach.

2 Contrast

Consider coffees served in a bar. Intuitively, whether one of these coffees is pred-
icated as being “hot” or “cold” depends mostly on what the locutor expects of
coffees served at bars (ignoring effects due to her contingent state), rather than
a specific absolute temperature. In other words, the description of an object or
exemplar o (e.g. a coffee served in a bar) results from its contrast with a certain
prototype (of coffees served in bars) p. Naming the resulting output contrastor,
we can utilize its categorization as a basis for predication, at least for such mod-
ifiers. Then, for instance, denoting provisionally the operation of contrast with
−, and categorization with  , we would have:

o− p = c “hot”

Let us assume that conceptual spaces are vector spaces defined on Rn; as
for the moment we are focusing on the temperature dimension, we have n = 1.
If both left and right operands were simple points, and contrast corresponded
to vectorial difference, c would be a free vector, maintaining the same scale
of the input points. However, at least this last aspect is implausible, because
“modifying” categorizations resulting from contrast might be applied to very
different scales (cf. “small molecule” vs “small galaxy”). We need at least an
adequate scaling.



G. Sileno et al.

2.1 Scaling

Because prototypes are associated with a certain concept region, we might con-
sider some regional information as well. Following models dealing with imperfect
spatial information such as the egg-yolk model (e.g. [15]), we refer to two bound-
aries: an internal one (containing the yolk), computed as p±σ, and external one
(containing the egg), computed as p ± ρ, where p, the prototype point, is the
centroid of the region (for simplicity, egg and yolk regions are here supposed to
be symmetric). Elements falling within the yolk are typical, normal instances of
the concept associated with the prototype; within the egg but not in the yolk
are instances still associated with the same concept, but manifesting some dis-
tinctive characteristic; when elements are outside the egg, they are not directly
associated with the concept.4

Partitioning Let us consider a perceptive space made just by one dimension
(e.g. temperature), modeled as U = [−ρU , ρU ]; this is a bounded space (plausible
assumption in the context of finite cognitive resources), defined by two bound-
aries of opposite polarity. The neutral element, as well as center of the space,
is indexed by 0. We can denote U also as �ρU0 , i.e. a region centered on 0 of
radius ρU . This space may be naturally divided into partitions such as M2 =
{[−ρU , 0], [0, ρU ]} = {U−, U+}, or M3 = {[−ρU ,−ρU3 ], [−ρU3 ,

ρU
3 ][ρU3 , ρU ]}, etc.

Note that these constructions are made independently of any world semantics:
they are just based on the perceptual possibilities given by the space.

Centering Now, returning to our example of contrast, we aim to compare
our target with typical exemplars of the concept, which, by construction, are
contained in yolk region p ± σ.5 One way to do that is to perform a point-wise
contrast. Let us denote the extensional descriptions of o and p respectively by
O = {o} and P = {x : |x − p| ≤ σ} = �σp . Performing a point-wise vectorial
difference of the sets6 (here denoted with 	) we have:

O	P = {x−y : x ∈ O, y ∈ P} = {o−y : y ∈ P} = {−(y−o) : y ∈ P} = (P	O)s

where (X)s is the symmetric of X with respect to the origin. Observing that the
inner operation is a translation, we have: O 	 P = (�σp 	 {o})s = �σo−p.

4 In principle, the distinction of σ and ρ boundaries should reproduce the difference
in judgments about typicality and categorization observed in empirical settings [16].

5 In other words, σ captures a minimal distance that brings an object outside the
typicality zone centered on p, making it distinguishable. It can be used to express
a sort of indeterminacy of the prototype, which will be propagated to the output
contrastor.

6 Note that, in the general case, a point-wise difference of two sets of points is a
multi-set. Here, as O consists of a single point, it is a simple set.
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Fig. 1. The contrast operation concerns four elements: target and reference objects,
which are contained in a frame, and a final representational container. It consists of two
steps: centering (computing the difference of the target with respect to the reference),
and scaling (standardizing the frame to the representational container).

Scaling In order to exploit the full representational domain given by the per-
ceptual space, contextualized for objects of the same category of the target, we
might consider the egg region p± ρ, presumably containing all the exemplars of
the related concept. For doing that, given U = [−ρU , ρU ] = �ρU0 , and denoting
scaling with “∗” (�αx ∗ γ = �γαγx ), we need to use a scaling factor γ such that
γ · ρ = ρU . Let ρU be arbitrarily 1. Thus, in extensional terms, the contrastor C
obtained by contrasting an object o for its prototype p is given by:

C = contrast(o, 〈p, σ, ρ〉) = �σo−p ∗
1

ρ
= �σ/ρ(o−p)/ρ (1)

where 〈p, σ, ρ〉 specifies the region associated with the concept: the centroid, and
the internal and external boundaries. Figure 1 illustrates its computation.

2.2 Categorization

At this point we need to settle upon a categorization method, i.e. how to select
the category to which the contrastor belongs. When contrastors and categories
are seen as extensional objects, a typical method would consist in finding the
category with maximal overlap with the contrastor. Denoting the category label
with r, and its extension with M (r), the method amounts to solve:

arg max
r

|C ∩M (r)| (2)
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Fig. 2. Membership functions to categories captured (a) by M2, with M1 = [−1, 0],
M2 = [0, 1]; (b) by M3, with M1 = [−1,−1/3], M2 = [−1/3, 1/3], M3 = [1/3, 1].

The strength of a certain categorization can be computed as the following ratio:

strength(r) =
|C ∩M (r)|
|C|

(3)

Thus, the category with the maximal overlap with the contrastor (i.e. with the
maximal strength), if associated with a label, may be used to describe a distinc-
tive feature of the object (with respect to the prototype).

Natural categories Let us consider as an example the partitions issued from
the perceptual space, starting from the bipolar categorization captured byM2 =
{M1,M2}. Using the definition of contrastor with the strength equation given
above, we obtain Figure 2a. A relevant point is o = p, the case in which our
object is plainly prototypical, and then the contrastor is a region centered on
zero, capturing the same surface on the two dual partsM1 andM2. If we interpret
M1 as associated with “cold” and M2 to “hot”, we could say that, according to
this view, the coffee is as much cold as hot. However, this bipolar construction
would fail to sufficiently capture the graduality of judgment, in the sense that
a coffee may also be “ok”, condition which is usually not defined as being hot
and cold at the same time. Fortunately, to solve this we just need to add an
additional category, as in Figure 2b with M3. Note that all partitions M2n+1

similarly built provide a neutral category. Evidently, we do not need necessarily
to use such constructions, their use here is rather illustrative.

Choice of parameters In the previous sections the choice of the parameters
was given qualitatively: σ captures the most typical exemplars, whereas ρ in
principle covers all exemplars belonging to the same category of objects O (here
defined on one dimension). A simple way to compute the radius ρ would be:

ρ =
maxo∈O o−mino∈O o

2
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One way to decide σ could be by relying on the standard deviation, thus in-
troducing information concerning the relative frequencies amongst individuals.
Alternatively, it could be calculated just as ρ, but considering a core subset of
O centered on p. Note that the definitions given so far should be modified if we
relax the assumption of symmetrical regions.

Adaptation The region parameters could be modified in two ways:

– unsupervised : when an exemplar o, not within the current boundaries of the
category of objects O, results to be more similar to the prototype p of O
than to prototypes of other categories, it is then labeled as belonging to p,
implying a redefinition of ρ and σ;

– supervised : the user provides a new exemplar o explicitly labeled as O, going
beyond the current boundaries of the category; ρ and σ are then recomputed.

In both cases, the process implies an effect of relativization: providing more
contrastive exemplars, those which were highly contrastive before become less
contrastive. Conversely, if the number of maintained exemplars is bound, and
pruning occurs on objects acquired more remotely in time–or, more plausibly,
adaptation mostly concerns recent objects with an aggregated prototype–we can
also observe a hardening effect: the region will recenter around the most recent
elements.

General application The previous specification has been introduced to con-
trast an exemplar, represented as a point, with a prototype, represented with
a point and two boundaries. Additional cases of application may be imagined,
such as contrasting two exemplars, or two prototypes (two regions). In order to
handle them, we can generalize the previous formulation, considering that four
elements play a role in practice: the target (e.g. o) and the reference (e.g. �σp )
are in the foreground; the frame (e.g. �ρp) provides background in which the
first two are contextualized, and it is used to control the scaling with respect
to the representational container (e.g. �1

0). In principle foreground inputs may
be points or regions; on the other hand, frame and container cannot be points.
Note that the frame in general could not be centered on the reference region,
but it is plausible to require it to contain both the target and the reference.

One way to take into account regions with the previous method is to discretize
them, or better, to consider points as regions of minimal granularity, similarly to
what happens with digital images. In effect, the assumption of limited cognitive
resources implies not only the boundedness of the perceptual space, but also its
finite granularity. In principle, we could apply a contrast as defined in (1) for each
point of the target region and then aggregate the results (see § 3.1). Alternatively,
to avoid to specify aggregation, we could rescale the smallest region at stake
(normally the target) so that it behaves like a point. Suppose that the container
[−1, 1] contains 2N grains, and so has granularity 1/N. Similarly, a certain frame
with radius ρ, assuming it exploits all the representation, has minimal granularity
ρ/N. Now suppose we have a region centered on o with radius τ ; expressed in
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grains, the region is long (2τN)/ρ. To represent it as a single grain, all values
should be divided by this value. Using this idea, we can reformulate contrast in
terms of target, reference and frame regions as:

C = contrastR(〈t, τ〉 , 〈r, σ〉 , 〈f, ρ〉) ≈ contrast

(
b t

2τ
c,
〈
b r

2τ
c, b σ

τ
c, b ρ

τ
c
〉)

(4)

where b·c is an approximation to the nearest integer value. Note that f , the
center of the frame, plays only an indirect role, for the condition that the frame
region should contain the target and reference.

Requirements for contrast So far, we assumed that objects, prototypes, etc.
are specified on (a subset of) R, and that we can compute an algebraic difference
of two points, necessary for the “centering” step. The function of difference
here can be expressed as follows: it produces an object that, added (as inverse
operation) to the reference point, reproduces (at least to a certain extent) the
target. The “scaling” step can be seen instead as one of decontextualization
from the magnitudes at stake for the type of objects given in inputs. These
requirements could in principle be abstracted, in order to consider the contrast
operator as a higher-level function over other types of representation:

– to provide a relative order between inputs, the perceptual dimension could
be represented for instance as a complete lattice, i.e. a partially ordered set
for which all subsets have a supremum and an infimum;

– the “difference” between two objects should return an object, that, used
as parameter with an “addition” operator, enables an adequate reconstruc-
tion of the target object from the reference. The presence of these specific
roles makes clear that we are not in front of the usual algebraic operations.
Denoting them to highlight their asymmetric roles, we have:

a−C b ≡ d such that b+B d ≈ a

This should hold in particular when a, b, d are points.
– the “scaling” within the contrast operation should tune this parameter to

be neutral from the frame within which the objects are placed.

The second requirement implies that most methods introduced in the literature
relying on distance are unfortunately not sufficient for defining contrast, because
we need an output that enables reversibility. To find back the target point from
the reference we require, in addition to distance, a sign for a single linear di-
mension, or a versor (unitary vector) for a multidimensional Euclidean vector
space. In the general lattice case, additional parameters might be needed.

3 Multi-dimensional contrast

The previous section focused on objects specified by a single linear dimension. For
practical uses, the previous result should be extended to the more general case
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of n dimensions. Suppose these dimensions to be perceptually independent : the
sensory input coming from one of them cannot be specified (not even partially)
by another one or any composition of the others. Objects are then described by
a tuple of values like o = (o1, . . . , on), where oi is the value perceived by sensory
module i. Similarly, assume concepts to be formed as structures 〈p, σ, ρ〉, where
each item is defined on multiple dimensions p = (p1, . . . , pn), σ = (σ1, . . . , σn)
and ρ = (ρ1, . . . , ρn). We consider that a multidimensional contrast corresponds
to the application of contrast on each dimension:

C = (C1, . . . , Cn) = (contrast(o1, 〈p1, σ1, ρ1〉), . . . , contrast(on, 〈pn, σn, ρn〉))

This output furnishes a contrastive description of the target object; each local
contrast could be associated with a category with a certain strength, and the
object could be described—with respect to its prototype—by the labels of the
modifying categories with the greatest strengths.

3.1 Example of perceptual contrast: directional relationships

As a first example of application of multidimensional contrast, we consider the
description of directional relationships (e.g. “left-of”) holding between visual
objects. In this case, entities are perceptually defined on a single perceptual
domain. Let us consider an image space S ⊆ N2 and two binary objects A
(target) and B (reference). If A is a single point, we could in principle apply
the same formula of point-region contrast (1), where the frame might be e.g. a
circular region or bounding box containing A and B. By drawing all vectorial
differences between reference points and target point, we could visualize the
contrastor as an image as well, representing in practice all translations that each
point of B should perform to produce A.

When A consists of a set of points, we might consider discretization as in
§ 2.2, but in general this is not possible; considering for instance the case of A
being a long, thin curve. In these cases, we can still apply the point-wise contrast
iteratively; each of the points of A can be used to produce a contrastor image,
and an aggregation of these images (e.g. a normalized sum) would produce a
synthetic information about the (point-wise) modifications to be performed to
obtain (each point of) A from (each point of) B. In practice, this corresponds to
accumulating the point-wise differences during the iteration, to count them and
to normalize their counts. More formally, the accumulation set is captured by:

H(A,B)(z) = {a ∈ A, b ∈ B | a− b = z}

The normalized cardinality of this set corresponds to a histogram-like function,
and, noting that H is the set resulting from the point-wise difference of A and
B, we override the previous notation A	B:

µA	B(z) =
|H(A,B)(z)|

maxw |H(A,B)(w)|
(5)
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Fig. 3. Application of contrast on two binary images: the resulting contrastor can be
compared with a “left of” region to evaluate the strength of the relationship.

With this reformulation A 	 B results to be a gradual representation in the
general case. Contrast of regions can be redefined accordingly, for cases in which
discretization cannot be used:

C = contrastR(A,B, 〈f, ρ〉) = (A	B) ∗ 1

ρ
(6)

Then, similarly to the monodimensional case, we may consider natural par-
titions on the perceptual space; for instance by dividing a 2D container in four
regions, we could obtain rough models of “left of”, “right of”, “above of” and
“below to”. By comparing the contrastor object with these models we can decide
which predicate corresponds to the directional relationship(s) holding between
the objects. Figure 3 reports an example of this application: the target is con-
trasted by the reference, obtaining a contrastor visual object, whose overlap is
maximal with the “left of” region, therefore the target is described as “left of”
the reference (c.f. [17]).

3.2 Example of conceptual contrast: fruit concepts

At this point, we want to investigate the use of contrast on a scenario involving
multiple perceptual domains. Let us take the simple case utilized in [18], in
which some concepts about fruits are specified as regions on three perceptually
independent dimensions (normalized to [0, 1]): hue (a quality dimension of the
color domain), roundness (of shape) and sweetness (of taste). The resulting
conceptual space consists of three mono-dimensional domains. The conceptual
regions are defined as following:

concept
region prototype (center)

hue roundness sweetness hue roundness sweetness

pear 0.50–0.70 0.40–0.60 0.35–0.45 0.60 0.50 0.40
orange 0.80–0.90 0.90–1.00 0.60–0.70 0.80 0.95 0.65
lemon 0.70–0.80 0.45–0.55 0.00–0.10 0.75 0.50 0.05
granny smith 0.55–0.60 0.70–0.80 0.35–0.45 0.575 0.75 0.40
apple (green type) 0.50–0.80 0.65–0.80 0.35–0.50 0.65 0.725 0.425
apple (yellow type) 0.65–0.85 0.65–0.80 0.40–0.55 0.75 0.725 0.475
apple (red type) 0.70–1.00 0.65–0.80 0.45–0.60 0.85 0.725 0.525

Let us suppose we can obtain more abstract concepts by unifying these regions,
as for instance the “apple” concept (including green, yellow and red types), or



Computing Contrast on Conceptual Spaces

the fruit concept (or better, a partial version of it, as it includes only some fruits).
Possible holes in the union are filled, implicitly assuming that it is possible for
an object to be in that position. The prototype points for these new concepts
could be computed in two ways: (a) as the center of the concept region (domain-
induced prototype), or (b) as the average (i.e. weighted center or centroid) of
the prototypes of the given sub-concepts (group-induced prototype).

concept
region prototype (center/centroid)

hue roundness sweetness hue roundness sweetness

apple 0.50–1.00 0.65–0.80 0.35–0.60 0.75/0.75 0.725/0.725 0.475/0.475
fruit 0.50–1.00 0.40–1.00 0.00–0.70 0.75/0.72 0.70/0.70 0.35/0.42

At this point, we apply contrast to identify the most pertinent (here in the
sense of discriminatory) features. As the application of contrast requires a frame,
we can choose a more abstract concept containing all inputs to be contrasted. We
could consider for instance the “fruit” concept for all concepts, or the “apple”
concept for the three types of apple. These regions provide both the reference
(a prototype point, e.g. the center, in this case) and the frame (the concept
region). The following table reports for instance the centers of the contrastors
obtained by contrasting fruit concepts as “apple” with respect to the “fruit”
concept (using discretization and taking σ = 0.5ρ):

concept hue roundness sweetness red green blue

pear −0.6 −0.7 0.1 −0.3 1.0 0.0
orange 0.4 0.8 0.4 1.0 0.0 −1.0
lemon 0.0 −0.7 −0.4 0.8 0.8 −1.0
apple 0.0 0.1 0.2 0.0 0.0 0.0

The “roundness” and “sweetness” columns are easy to be interpreted. Ac-
cording to the given conceptual space, the orange is the sweetest fruit, the lemon
the least. Pear and lemon are the least round, while orange is the most. Apples
occupy almost neutral categories in all dimensions. The interpretation of “hue”
is more complicated, because, by computing the difference as an algebraic dif-
ference (i.e. interpreting angles in terms of rotation), we require to utilize the
reference to identify a specific color. In [3] we have considered an angular inter-
pretation that in principle would solve this issue, but we have also acknowledged
a problem with the scaling phase that, unfortunately, does not have a solution
yet. Alternatively, we might consider to re-transform the hue dimension into the
red-green-blue dimensions, which form a cartesian space, obtaining the three ad-
ditional columns reported in the table above.7 From these we are able to infer
that the pears are characterized by being the greenest fruits with respect to the
color spectrum of the given fruits; oranges by being the reddest (and least blue),
lemons the most yellow (and least blue), whereas the concept of “apple” is not

7 To obtain color values that were plausible from those given as inputs, we computed
h = [(1− hue) · 360◦ − 30◦]/360◦ and then converted the hls tuple 〈h, 0.5, 1〉 to rgb.
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distinctive with respect to color, as there are red, green and yellow apples (its
distinctiveness would increase if e.g. a truly blue fruit was included in the “fruit”
concept.)

Intuitively, starting from a similar table, possibly including some regional
information, we could define some weights reifying the salience of these qual-
ities for the formation of a concept, by settling an adequate measure of their
discriminatory power.

Finally, we observe that the results of contrast may be used also for asso-
ciating the object to a category. For instance, within the frame of fruits, one
can easily compute that “granny smith” is nearest to the concept of apple, or
even more to the green type of apple. Intuitively, the perceptual independence
hypothesis supports the use of the Manhattan distance. However, an additional
filtering may be needed when many dimensions are present to consider only
adequately distinctive dimensions.

3.3 Examples of conceptual merge: “red brick” vs “brick red”

To complete the operational cycle, we present a small example concerning the
interpretation of simple linguistic expressions. Despite the richer spectrum illus-
trated in Gärdenfors’ books [1, 5], most works on conceptual spaces focus on the
intersective type of concept composition, i.e. relying on conjunction of concepts,
as with symbolic approaches; e.g. a “red brick” refers to an object that belongs
to the class of “red” objects and to the class of “brick” objects.

An approach to predication based on contrast, instead, naturally implies an
asymmetry between the roles of the modifier concept (“red”) and the modified
or reference concept (“brick”) in the formation of the composed concept (“red
brick”), in alignment with the modifier-head phenomenon observed in cognitive
psychology [16]. We call merge, here provisionally denoted with +, the operation
inverse to contrast, and revisit some of the examples brought by Gärdenfors. Let
us consider the two merges associated to “red brick” and “brick red”. Suppose
“red” is a label anchored to a concept defined on the color dimension, and
“brick” anchors to a multidimensional concept including a color dimension. As
in [3], we consider a void value • when a certain dimension is not applicable (an
object does not have a certain quality, or a prototype cannot be formed on that
dimension). Two intuitive properties of merge can be identified (note how merge
is not commutative):

– category consistency : dimensions which are not in the reference should not
be added (for instance, we want a “brick red” to be a color):

(.., •, ..) + (.., a, ..) = (.., •, ..)

– locality : merge applies modifier concepts locally, i.e. not modifying dimen-
sions irrelevant to the modifier (e.g. a “red brick” is merely a brick more red
than the prototype brick):

(.., a, ..) + (.., •, ..) = (.., a, ..)
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The general application of these properties makes however clear that addi-
tional cognitive mechanisms are at stake. For the first property, consider pred-
icates as “stone lion”, or “stuffed gorilla”. These are examples of merges that
“break” the reference category. As there is no lion animal which is made of stone,
a plausible repair would be “a stone object similar to a lion”. Then, because the
similarity between a stone object and a lion can be only constructed along the
shape dimension (the only available comparison ground [3] between “stone ob-
ject” and “lion”), we conceptualize a lion-like statue. For the second property,
implicit correlations within dimensions do provide additional information; e.g.
the “young” in “young man” does not seem to simply modify the age, leaving
intact the other values: it seems that the merge on one dimension causes a recal-
ibration of the prototype with this new information. Alternatively, this could be
explained by assuming that a (sub)-concept “young man” is already available,
and its prototype is activated by the merge (cf. the notion of lexical compounds
[16]). Consider again the “red brick” case. For a layman, a red brick is simply
a brick more red than the others; for an expert person, a red brick might be
also e.g. more isolating than the average. An operationalization of this mecha-
nism could explain part of the process of alignment of linguistic semantics with
conceptual semantics.

4 Discussion

The present paper reports on ongoing research stemming from an alternative
view on conceptual spaces, rooted on relevant predication [2]. This account in-
sists on the importance of discriminatory aspects not only for individuation, but
also for the formation of concepts. Recent, additional support for this hypothe-
sis comes from cognitive studies in image recognition [19] proposing (predictive)
recognition models based on internal discriminatory features such as the spa-
tial organization of visual elements (cf. § 3.1). Not less importantly, as shown
by the preliminary results presented here, by using contrast, the membership
of an exemplar to a certain category—and therefore the possible consequent
predication—is effectively contextualized on the fly, because the application of
contrast requires always the intervention of background elements (conceptual
frame and representational container), in addition to foreground elements (tar-
get and reference objects). By changing of pragmatic context, certain conceptual
frames might become more accessible than others, and this would determine
changes of interpretation for the same linguistic marks.

Additionally, the present proposal offers a computational model naturally
implementing modifier-head concept combination [16], which, in our model, can
be seen as including the intersective case (cf. “red book” vs “red dog” [3]).
Gärdenfors [1, 5] presents an informal solution by referring to contrast classes,
summarized by the concept combination rule [1]: “The combination CD of two
concepts C and D is determined by letting the regions for the domains of C, con-
fined to the contrast class defined by D, replace the values of the corresponding
regions for D.” This means that the domains of the modifier (e.g. temperature



G. Sileno et al.

for “hot”) are scaled to compatible domains of the reference (e.g. temperature
for “coffee”), determining a new region identifying the compound concept (“hot
coffee”). This is very similar to the operations suggested here, but there are dif-
ferences too. First, instead of maintaining definite regions, we give priority to
points and to rough regional information, in order to capture a sort of “inten-
sity” of the modification. Second, by building upon contrast, conceptualization
and conceptual composition become two sides of the same function, rather than a
separate cognitive machinery. In short, the introduction of the operation of con-
trast might provide alternative foundations to the theory of conceptual spaces,
and could be used to make explicit some of the internal mechanisms taken as
given and to rely as less as possible to external parameters.

Evidently, many points still remain to be investigated. For instance, we aim
to derive the salience of quality dimensions with respect to the formation of a
certain concept from the conceptual structure, rather than being captured by ex-
ternally given weights, and precisely by capturing the strength of their contrastive
or discriminatory power. Thus, in addition to a refinement of the formalization
and more detailed specifications of the methods (e.g. for directional dimensions),
we aim to better understand the intertwining between perceptual independence
and statistical independence. Perceptual independence is an important assump-
tion for the distribution of contrast along independent dimensions. Because we
cannot express something about a certain dimension in any other way than say-
ing something about that dimension, a measure to quantify an aggregate contrast
seems to be intuitively captured by a Manhattan distance. However, in the case
of artificial devices, the internal configuration of sensors is not a consequence
of evolutionary adaptation and may be the most various. For instance, cloned
temperature sensors may receive the same information while being perceptually
independent. Discovering a strong (or perfect) correlation has important conse-
quences, in a way opposite to the introduction of new dimensions as e.g. children
learn to do by separating volume from height of a container.

Furthermore, we would like to investigate in detail the convexity constraint,
or more plausibly, the star-shaped constraint on concept regions; we expect it
should naturally emerge from a categorization based on contrast. At a more
fundamental level, while working on this paper, we acknowledged that by settling
the functioning of contrast, conceptual spaces can be seen as emerging from
contrastive functions. Stated differently, by defining contrast, we need also to
define the inverse operation merge, the application of merge produces order
relations between concepts, and the resulting lattice is in practice a conceptual
space. Future investigations will target the formalization of this idea.

Finally, an additional track that we are currently studying concerns the use
of the morphological operators erosion and dilation [20] for implementing ap-
proximate methods for contrast and merge, motivated by the observation that
operators embedding non-linear functions as max and min carry computational
advantages, and are cognitively more plausible than aggregations by average as
those used in § 3.1.
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