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Abstract

This paper presents a new method to segment both the
brain volume and the cortical surface from a MR image of
the head using a single model. This method is based on
an original deformable model which can handle jointly vol-
umes and surfaces using a cellular complex based represen-
tation. The model is initialized on the outer brain surface
and then deformed inside the cortex folds according to both
volumic and surfacic constraints, while preserving topol-
ogy.

1 Introduction

Segmentation of brain magnetic resonance (MR) images
is a significant research field in medical imaging. However,
the result of segmentation is, in general, only one stage
in a more complex process like, for example, detection
of pathologies, computer assisted surgery, or functional
study of the brain. The aim of segmentation is to obtain
a geometric representation of one or more structure. It
is therefore necessary that the representation corresponds
to the goals of the segmentation process. With regard to
the segmentation of brain MR, and more particularly of
the cortex, the various methods of segmentation can be
roughly divided into two classes: surface methods and
volume methods. Surface methods (e.g. [7, 8, 17]) are
often based on deformable models and provide one or
more surfaces that represent the limits between segmented
objects. Most volume methods (e.g. [1, 13, 15, 18]) use
a combination of different segmentation approaches (e.g.
[2, 3]) like, for example: thresholding and clustering
approaches, morphological approaches, knowledge based
approaches, etc.

The segmentation of both the cortex surface and the
brain volume is necessary for several applications includ-
ing electroencephalography (EEG) and magnetoencephalo-
graphy (MEG) studies. In order to regularize the inverse
problem in EEG/MEG, it is necessary to build a model of
cerebral structures of the subject or patient [6, 10, 14]. This
model must allow the representation of both the cerebral
volume and the surfaces which delimit this volume. This
dual volumic and surfacic representation is difficult to ob-
tain for the cortex surface because of the complexity of the
cortical ribbon shape. The cortex is a thin part of grey
matter of a few millimeters width located around the hemi-
spheres. It presents many folds which form the sulci and
the gyri. Inside the sulci, two distinct parts of the cortex
are in contact. Therefore, cortex surface can be divided into
two parts: the external surface which is the external surface
of the hemispheres and the internal surfaces which are the
parts of the cortex surface inside the folds (Figure 1).
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Figure 1. Diagram of a cortex slice.

Internal surfaces can disappear in MRI because of the
partial volume effect. Therefore, a voxel based volumic seg-
mentation cannot represent completely the cortical surface.
On the other hand, surfacic segmentations methods can rep-
resent the cortex surface but do not give an explicit repre-
sentation of the brain volume. In this paper, we introduce



a new segmentation method which is based on an original
deformable model using cellular complexes structure and
both surface and volume constraints. This modeling allows
the representation of both the brain volume and the cortex
surface in the same model. This is an original feature of our
approach since, in contrary to purely 3-dimensional objects,
the surface of the cellular model cannot be simply derived
from the inner volume, neither the contrary. Therefore, nei-
ther volume methods nor surface methods solve the whole
problem. In Section 2, we introduce the cellular deformable
model. In Section 3, we present our segmentation method.
Section 4 contains algorithmic considerations. The results
are presented in Section 5. And Section 6 proposes a dis-
cussion about this method and future work.

2 Homotopic 3D cellular deformable model

The cellular model we propose is a 3-dimensional ex-
tension of an image representation proposed by Kovalevsky
[12]. This representation is based on the structure of cellular
complexes. A cellular complex is composed of cells of dif-
ferent dimensions. In the 3-dimensional case there are four
different dimensions for the cells: 0-cells are points inIR3,
1-cells are curves joining two 0-cells, 2-cells are surfaces
which border is composed of 0- and 1-cells and 3-cells are
volumes which border is composed of 0-, 1- and 2-cells.

A cellular complex only defines a few geometrical
properties of the cells. To build the cellular model, which
has to represent objects inIR3, we must define the whole
geometry of the cells (shapes, locations, orientations, etc.)
in IR3 according to the MRI structure.

2.1 Cellular model

MR images are made up of voxels which are cubes or
parallelepipeds inIR3. In order to avoid to re-sample the
MRI data, we build a structure that is close to the cubic grid.
We represent all the parts of different dimensions which
compose the voxel (Figure 2): 3-cells are cubes correspond-
ing to the voxels, 2-cells are the facets of voxels, 1-cells are
the segments that delimit the facets and 0-cells are the end
points of segments.

Figure 2. The cellular model

The cells are linked together by a connectivity relation-
ship which forms a graph structure. Two cells are neighbors

(or connected) if one is part of the border of the other (this
defines a symmetrical neighborhood relationship). For ex-
ample, Figure 2 shows the neighborhood of a cube. Con-
sequently, two cells of the same dimension are never di-
rectly connected. This model allows the representation of
objects with different local dimensions (Figure 3). It is pos-
sible to represent objects composed of volumes, surfaces
and curves.

3-dimensional
structures

1-dimensional
structures

2-dimensional
structures

3-dimensional
structures

(a) (b)

Figure 3. Representation of objects with dif-
ferent local dimensions. (a) Structures made
up with voxels are always 3-dimensional. (b)
Thin structures can be represented with a cel-
lular model.

In addition to the modeling advantages of the cellular
model, its topological properties allow us to build a homo-
topic deformable model.

2.2 Homotopic deformations of the cellular model

A scene represented with a cellular model can be
deformed while keeping its initial topology. The homotopic
deformations are based on the simple cells, which are
cells that can be added or removed from the scene without
changing its topology. We have shown that a local criterion
can be used to detect simple cells [5]. This local criterion
detects a simple cell according to its direct neighborhood:
a cell is simple if and only if its neighborhood is composed
of one object connected component and one background
connected component (Figure 4). Therefore, it is possible
to homotopically deform the model by iteratively modify-
ing simple cells.

In the following section we present a cellular model
based method to segment both the cortical surface and the
volume of the hemispheres with the same model.



(a) (b)

Figure 4. 2-dimensional simple cells exam-
ple. (a) The central point is not simple since
there is no background connected compo-
nent in its neighborhood. (b) One cell has
been removed. The central point is simple
and there is one object connected component
and one background connected component
in its neighborhood.

3 Cortex segmentation

The segmentation process is based on a deformable
model initialized on the external surface of the hemi-
spheres and deformed towards the inside of the cortex
gyri (Figure 5). The use of a cellular model gives a direct
geometric representation of the cortical surface and of the
hemispheres volume. Moreover, cellular models allows
the use of homotopic deformation. It is thus possible to
impose the initial model topology and preserve it during the
deformation process. This property is important because
the cortex has the same topology as a sphere. By preserving
the topology during the deformation, the deformation space
of the model is reduced and thus the complexity of the
segmentation is decreased.

(a) (b) (c)

Figure 5. Diagram of the deformation process.
(a) The model is initialized on the external
brain surface. (b) The model is “dug” towards
the inside of the sulci. (c) Final state, the
model surface is into the cortex folds and the
initial topology is preserved.

3.1 Cellular model initialization

To initialize the model it is necessary to segment the
brain and the hemispheres. To segment the brain we use a
method proposed by Mangin [13]. We developed a method
to segment the brain stem, the cerebellum and the hemi-
spheres in the segmented brain image. This method is based
on mathematical morphology operators (Figure 6) and is not
further detailed here. To impose the 3-dimensional model
topology, we fill the 2-dimensional holes of the hemisphere
volume slice by slice. We thus obtain an object with the
same topology as a filled sphere. Then, the cellular model
is initialized with the following algorithm:

(a) (b)

Figure 6. 3-dimensional views (obtained with
IDL) of the segmentation result for the brain
(a) and for the hemispheres (b).

To initialize the cellular model, we use the following al-
gorithm:

Set all cells to the labelbackground .

For each hemisphere voxelv:

Set the cube corresponding tov and all its neigh-
boring cells (which dimensions are lower than 3)
to the labelobject .

End for

3.2 Cellular model deformation

To deform the cellular model, we must choose among
the simple cells which ones can be modified in order to
guide the model inside the cortex folds. The modification
of a cell influences the “simpleness” of its neighbors.
Therefore, the order in which the cells are modified is
important because it can influence the segmentation result.
This problem is common to all the deformation methods
based on topology preserving deletion of elements like, for



example, homotopic thinning of a binary image [4, 11, 16].
But, with a cellular model, it is possible to reduce the
effect of the traversing order. Indeed, two cells of the same
dimension are never neighbors, therefore one can modify
all the cells of a given dimensiondim at the same time.
The influence of the traversing order is not completely
suppressed because the order in which the dimensions are
traversed can influence the result. But the order effect does
not privilege any traversing direction.

The model we use is composed of one object which is
initialized on the hemispheres. Since the cortex is a part
of the hemispheres, then the desired result is included in
the initial object. Therefore, we only need to remove cells
from the object during the deformation process. Hence, the
deformation algorithm is the following:

Fordim = 0 to 3

For each simple object cells of dimensiondim

If check removal(s) is true

removes from the object

End if

End for

End for

The key point of the algorithm is the definition of the
boolean functioncheck removal. This function takes the
decision to remove a cell from the object in order to guide
the model towards the desired result. The removal decision
is based on two types of information:

� Internal information which is obtained from the prop-
erties of the modeled object. This information allows
us to guide the deformation according to geometric and
topological properties of the modeled object.

� External information which is issued from a priori
knowledge about the cerebral tissues and from mea-
surements on the MRI.

These two types of information are detailed in the next
sections.

3.2.1 Internal information

We use two different types of internal information. The
first one, called evolution direction, is a set of local vec-
tors located on the model surface and oriented in the direc-
tion which the model should takeaccording to the surface
shape. The second information is a local criterion used to
regularize the surface shape.

Evolution direction

Cortical topology allows us to use the cortex surface to
estimate the direction of the folds. Indeed, the parts of the
cortex folds which are close to the outer cortex surface are
oriented in a direction close to the normal of this surface.
While moving away from this surface, the direction may
change, although not drastically [7]. It is therefore neces-
sary to distinguish external surface and internal surfaces to
define the evolution directions. The evolution directions
of the external surface are normal to this surface, whereas
the evolution directions of the internal surfaces are locally
tangent to these surfaces at their border (Figure 7).

Cortex

Internal surface

External surface

Figure 7. Diagram of the evolution directions
of the model surface.

We developed an algorithm to compute an evolution di-
rection for each facet (i.e. 2-cell) belonging to the model
surface. This algorithm is made of two stages: in the first
one a local direction is computed for each facet, in the
second stage these local directions are smoothed along the
model surface. To compute the local direction between two
cells, the algorithm uses the centers of the cells, we denote
center(s) the gravity center of a cells. The computation of
the local evolution direction for a facetf is done with the
following algorithm:

result = null vector

For each neighbors of f

If s is an object cube

result = result+(center(s)�center(f ))

Else ifs is a segment and there is no facet of the
surface, exceptf , in the neighborhood ofs

result = result+(center(s)�center(f ))

End if

End for

Normalizeresult



The first condition in this algorithm is used to compute
the local direction for the facets of the external surface.
Such facets have only one object cube in their neighbor-
hood, this cube allows the detection of the object interior.
Therefore, the local evolution direction for an external facet
is normal to the facet and directed towards the interior of
the model.

The second condition detects the borders of internal sur-
faces. Each border adds a contribution to the facet to which
it belongs. The contribution of all the borders of one inter-
nal facet are added to compute the local evolution direction
of this facet (Figure 8).

(a) (b)

Figure 8. Computation of local directions for
an internal surface. (a) Each border of the
surface adds a contribution to the direction
of the facet to which it belongs. (b) Local
directions resulting from the borders contri-
butions. Facets which are not on the border
have null local directions

The evolution directions need to be less local than the lo-
cal directions in order to take into account the surface shape.
Therefore, we compute, for each surface facet, the mean of
the local directions on a geodesic neighborhood along the
surface. The “smoothed” directions obtained are the evolu-
tion directions. These directions are used jointly with exter-
nal information to guide the deformations (Section 3.2.2).

Regularization

The purpose of the second type of internal information is
to regularize the shape of the internal surface. Indeed, if
the deformations were not constrained enough, the surface
could evolve in many directions and thus it could present a
lot of irregularities. To limit this problem, we prevent the
internal surfaces to split into several branches by imposing
that a segment cannot be neighbor to more than two sur-
face facets. This condition is used directly in the algorithm
which decides to remove an object cell.

3.2.2 External information

External information is used to combine the information
given by the MR image and the a priori knowledge about
the cortical topology. This information is used to guide the
model deformation inside the cortex sulci and is expressed
as cost functions which are combined together to take the
final decision (section 3.2.3). Three different pieces of ex-
ternal information are used:

� A classification is used on the hemisphere image to
build a membership to the cortex for each cube of the
model.

� We use the hypothesis that the cortex width is almost
constant to guide the internal surfaces in the cortex
folds. We thus build a function which evaluate the cor-
tex width around an internal facet.

� The location of the cerebro-spinal fluid (CSF) inside
the brain is a good indicator of the cortex surface loca-
tion. The brain is immersed into the CSF and the CSF
goes into the cortex gyri. Therefore, we use the CSF
inside the gyri to guide our model.

Membership to the cortex

To make some measurements on the cortex, we build an
image which represents the membership value to the cortex
for each voxel of the hemisphere volume. To build this im-
age, we perform a grey level based classification of the brain
image with the k-means algorithm, then we extract the cor-
tex label and apply a mean filter to account for imprecision
on the cortex delineation (Figure 9). The membership to
the cortex (�cortex) is normalized between 0 and 1. It is
used directly to take the decision to remove a cube from the
model: if the membership to the cortex of a cube is too low,
the cube is removed. Thus, the object is being dug where
the sulci are wide enough to appear on the MRI. We also
use�cortex to evaluate the cortex width around an internal
facet.

Cortex width

In MRI, the cortical surface can disappear because of the
partial volume effect. Under the hypothesis that the cortex
width is almost constant, these locations can be detected be-
cause they are about twice wider than the cortex (Figure 10).
The detection of the wide structures is used to guide the de-
formations of the internal surfaces into the sulci. To do this
we build a cost function (�width) which indicates if an in-
ternal facetf is in a wide structure or not. This function
represents the smallest cortex width around the facet:



(a) (b)

Figure 9. Slice of a 3D volume. (a) Classifica-
tion of the hemispheres image. (b) Image of
the membership to the cortex ( �cortex).

�width(f) = min
�!
d 2f�!n ;��!n ;

�!e g

cwidth(center(f);
�!
d ; l)

where :

l is an estimation of the cortex width
�!n is a normal tof
�!e is the evolution direction off

Figure 10. Diagram of the cortical ribbon. On
the left, the object presents a structure twice
wider than the rest of the ribbon. On the right,
the surface of the cortex has been prolonged
to make the ribbon width constant.

The functioncwidth(p;
�!
d ; l) evaluates the cortex thick-

ness along the segment starting at pointp with a lengthl in
the direction

�!
d . This value is obtained by calculating the

mean value of�cortex along the segment. If the segment
is not completely in the object (for example if it is across
an internal facet) then only the point of the segment located
betweenp and the obstacle are considered. We use the fol-
lowing algorithm to calculatecwidth(p;

�!
d ; l):

result = 0

t = length of the smallest edge of a voxel of the MRI
(voxels are often not cubic)

points = sampling of the segment(p;
�!
d ; l) with a

stept

If the segment(p;
�!
d ; l) is across a background cell,

then keep only the object points of the segment which
are connected top

For each pointq in points

Projectq in the image of the membership to the
cortex and add the value toresult

End for

result = result
l

t

Location of cerebro-spinal fluid in sulci

The last external information used to guide the model de-
formation is based on the detection of the cerebro-spinal
fluid into the cortex sulci. To detect the CSF located in the
sulci, we use a method proposed by G´eraud [9] which is
based on watershed and mathematical morphology opera-
tors (Figure 11).

Figure 11. Detection of the cerebro-spinal
fluid located into the sulci.

The CSF image (csf) is used to build a cost function
�csf which represents the mean value of CSF in the neigh-
borhood (NO) of a facetf :

�csf (f) =

P
v2NO(f) csf(v)

jNO(f)j

The two functions�cortex and�csf are combined to-
gether in a weighted sum to take the decision to remove
an internal facet. This is detailed in the following section.

3.2.3 Decision algorithm

The functioncheck removal, introduced in section 3.2,
makes the distinction between three simple cell types. Each
cell type has its own removal criterion:



� A simple cell which belongs to the surface of the object
is always removed. This is done because if one wants
to dig into an object, one must dig through its surface
first. If the 0-, 1- and 2-cells composing the object
surface were not removed, one could not dig into the
model while preserving its topology.

� A simple cubec is removed if�cortex(c) is lower than
a given thresholdsvolume. When the sulci are wide
enough, they contain cerebro-spinal fluid. In the MRI,
the CSF is darker than the cortex and therefore the
�cortex value of the CSF voxels is low. Hence, by re-
moving the cubes with low�cortex values, the model
is deformed inside the folds that are large enough to
contain CSF voxels.

� In the places where the cortex folds are tightened, the
cortical surface disappears from the MRI due to partial
volume effect. To guide the internal surfaces inside the
sharp parts of the sulci, we use two kinds of external
information: �width and�csf . An internal facetf is
removed if(1��):�width(f; l)+�:�csf (f) is greater
than a given thresholdssurface and if the regulariza-
tion criterion is true (see Section 3.2.1 above). The
valuesl and� are parameters of the algorithm.l is
an estimation of the cortex width and is used evaluate
the cortex width around the facetf (see section 3.2.2
above). � is used to select the importance of�width
and�csf in the guiding process.

The deformation algorithm is rather short but the amount
of data contained by a cellular model imposes to optimize
its implementation.

4 Implementation considerations

It is possible to use a simple array as a data structure
to represent a cellular model [5]. Such a structure has
two main advantages. On the one hand, the array contains
only information about the cells. No memory is used to
represent the relationship between the cells. Therefore, this
is an optimal representation for memory usage. As a result,
a cellular model based on a 3-dimensional image uses eight
times the amount of memory used by the image. On the
other hand, the neighborhood relationships are represented
as offsets in the array. Hence, almost no computing time is
needed to traverse the graph structure of the cellular model.
As a result, the significant computing time of the cellular
model based algorithm is not increased because of the
implementation. Therefore, one can build fast algorithms
in spite of the amount of data used by the cellular model.

The data structure used to represent a cellular model
gives the possibility to optimize the deformation algorithm
which heavily uses the neighborhood relationship. For
example, we reduced by ten the time of the simple cell
detection algorithm by using offsets arrays representing
frequently used neighborhood structures. Moreover, the
deformation algorithm considers only simple cells which
are much fewer than the total cell number because they are,
by definition, located at the limit between the object and
the background. When a simple cell is modified by this
algorithm, only the neighboring cells are influenced by this
modification. Therefore, the deformation process is fast
enough to be implemented on actual computers.

The segmentation process is more time consuming than
the raw deformation process. This is due to the computing
of the information needed to guide the model towards the
desired result. Most of the algorithm time is spent in com-
puting the evolution direction and in evaluating the cortex
width. As a result, it is therefore necessary, when build-
ing a process based on homotopic deformation of a cellular
model, to take into account the intensive use of the guid-
ing criteria in the deformation algorithm. Therefore, only
fast computing criteria can be used. As an example, the full
segmentation process (i.e. brain segmentation, hemispheres
segmentation and cortex segmentation) for a MR image of
the head takes approximatively two hours and half on a Sun
Ultra-2 workstation.

5 Results

To present the results and evaluate the localization of the
model surface in the brain, we developed a visualization
tool allowing the superimposition of the model surface on
an image slice. This method displays, over the slices, the
surface facets (either internal or external) which are located
in the slice and which are perpendicular to it. We present
the surface superimposed on the membership to the cortex
image in order to visualize the model surface location as
compared to the cortex folds locations.

Figure 12 presents the results on a part of the brain.
It shows the model evolution at different steps of the
algorithm. One step corresponds to the traversing of all the
simple cells of the model. The surface topology is preserved
during the deformation process. Although the resulting
model surface is irregular and seems to be disconnected on
the 2-dimensional slices, the 3-dimensional connectivity
is preserved (it is difficult to see on a 2-dimensional
representation). Unfortunately, irregularities on the surface



prevent the use of a 3-dimensional visualization.

The segmentation algorithm uses several parameters
which influence the results. The thresholdsvolume on the
membership to the cortex is quite easy to select because it
can be visually selected on�cortex image and because small
modifications onsvolume do not change the results drasti-
cally. The three other main parameters are used to guide
the deformations of internal surfaces. They are linked to-
gether and therefore their tuning is more difficult than the
one ofsvolume. The estimated cortex widthl must represent
a compromise between detection and regularization. If it is
too small, the internal surfaces are more sensitive to small
structures with high�cortex, therefore the internal surfaces
are more sensitive to noise. Ifl is too large, some sulci can-
not be detected by the deformation algorithm. The weight
� represents the compromise between guidance on CSF and
guidance on cortex width. If� = 1, the internal surfaces are
only guided by the detection of CSF in the sulci, whereas if
� = 0, only the detection of wide cortex structures guides
the surfaces. Agood compromise is� ' 0:7 because
lower values makes more irregular surfaces. The threshold
ssurface is also set according to a compromised between
noise and detection. The results of Figure 12 were obtained
with the following values:svolume = 0:3, ssurface = 0:65,
� = 0:7 andl = 4mm.

6 Discussion

In this paper, we presented a new segmentation method
based on an original deformable model. We built a ho-
motopic deformable model based on the cellular complex
structure. Such a model allows to represent and to deform
complex objects composed of structures with different
local dimensions. Cellular model based representations
give a direct 3-dimensional tessellation of both the volumes
and the surfaces of the modeled objects. The use of a
homotopic cellular deformable model is well adapted to
the segmentation of complex objects which have a known
topology, such as the cortical ribbon.

The segmentation results present a good localization
of the cortex surface in both the wide and the thin parts
of the sulci. The guiding criteria allow a good detection
of the cortex surface. However, the resulting surface is
irregular, it is therefore necessary to introduce a more
robust regularization method in the deformation algorithm.
The regularization could be based, for example, on discrete
differential geometry operators in order to introduce
constraints on curvature and on torsion.

Initial state

Step 10

Step 30

Step 50

Sagittal slicesCoronal slices

Figure 12. Model evolution during the
segmentation process. Parameters are:
svolume = 0:3, ssurface = 0:65, � = 0:7 and
l = 4mm.

The cellular deformable model based segmentation can
be useful in several domains. For example, a tessellation
of the cerebral tissues which is both volumic and surfacic
is useful for solving the direct problem in EEG and MEG.



Moreover, in this framework, a realistic model of the corti-
cal surface can be used to regularize the inverse problem by
computing some geometrical values such as normals to the
surface and geodesic distances along the surface.
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[9] T. Géraud.Segmentation des structures internes du cerveau
en imagerie par r´esonance magn´etique tridimensionnelle.
PhD thesis, Ecole Nationale Sup´erieure des T´elécommuni-
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