
Pattern Recognition 34 (2001) 1785}1798

A cellular model for multi-objects multi-dimensional
homotopic deformations

Yann Cointepas�, Isabelle Bloch��*, Line Garnero�

�ENST, DeH partement TSI, CNRS URA 820, 46 rue Barrault, 75634 Paris, Cedex 13, France
�LENA, CNRS URA 654, 47 Bd de l'HoL pital, 75651 Paris, Cedex 13, France

Received 29 December 1999; received in revised form 23 May 2000; accepted 23 May 2000

Abstract

We deal in this paper with complex three-dimensional scenes, partitioned into several objects of any shape, and with
varying local dimensions. We propose a consistent topological modeling of such scenes, based on a cellular model. We
introduce a de"nition of simple elements for any adjacency graph-based geometrical structure. Then we prove a local
characterization of simple cells of a cellular model, in the case of two objects, and of any number of objects. This
characterization allows to de"ne homotopic deformations of a complex scene. � 2001 Pattern Recognition Society.
Published by Elsevier Science Ltd. All rights reserved.
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1. Introduction

Objects that can be modeled by a digital picture are
limited by several intrinsic topological properties of the
digital grid. Let us consider for instance the classical
cubic grid in a three-dimensional discrete space. The
smallest object that can be modeled is an elementary
cube (voxel). Therefore, it is not possible to model dir-
ectly structures thinner than a voxel such as a surface.
Moreover, attempts to develop a consistent topology
based on the adjacency graph failed due to the well-
known connectivity paradox [1,2]. This paradox can be
avoided in the case of scenes composed of a background
and of disjoint object components (by using two di!erent
connectivities). But if the scene is more complex and
contains for instance nested objects or more complicated
con"gurations, it is di$cult to get rid of the paradox [3].
This problem becomes even more complicated if one has
to apply deformations to the modeled objects.
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In order to go beyond the modeling limits of digital
pictures and to get rid of topological paradoxes, we
present a cellular complex-based model: the cellular
model. Complex scenes composed of many objects with
di!erent local dimensions can be represented in one
cellular model. This model is an extension of the model
we proposed for only one object in Ref. [4]. Then we
introduce a new theoretical framework which allows the
generalization of discrete homotopic deformation de"ni-
tions. With this framework, we prove that any scene
represented in a cellular model can be homotopically
deformed. At last, we propose an optimal implementa-
tion in order to use our theoretical results in real applica-
tions.

In Section 2, we address jointly two problems: one for
representing objects having parts of di!erent local di-
mensions (Fig. 3), and the other dealing with complex
topological arrangement of objects (Fig. 2). In Section 3,
we introduce a new de"nition of simple points which
is only based on adjacency graphs and can therefore be
applied to any geometrical structure provided with
a neighborhood relationship. This de"nition is used in
Section 3.3 to locally characterize the simple cells of a
cellular model. In Section 4, we extend the simple point
notion to the case of a scene composed of several objects.
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Fig. 1. The four neighborhoods of a cellular model: (a) the
neighborhood of a point, (b) the neighborhood of a segment, (c)
the neighborhood of a face and (d) the neighborhood of a cube.

Fig. 2. The connectivity problem. With a classical image, it is
not possible to "nd an appropriate connectivity for each object
to be connected, with a cellular model the scene can be repre-
sented.

Fig. 3. Representation of objects with di!erent local dimensions.
(a) Structures made up with voxels are always three-dimen-
sional. (b) Thin structures can be represented with a cellular
model.

As a result, all the modeling properties of cellular models
can be used jointly with homotopic deformations. Sec-
tion 5 describes how to implement a cellular model. And
we brie#y present an application in Section 6.

2. The cellular model

Several approaches have been proposed to de"ne dis-
crete surfaces in �� [5]. The methods which provide
a direct representation of a surface use a set of surfels
which is a set of faces between pairs of adjacent voxels
[6,7]. Such a structure, composed of both voxels and
surfels, allows for the representation of both volumes (set
of voxels) and surfaces (set of surfels) in the same model.
Unfortunately, such a structure is not free from topologi-
cal paradoxes, such as the non-respect of Jordan's the-
orem, which are well known in digital topology [2,8,9].
A more complex image structure can be introduced in
order to get rid of the topological paradoxes. This struc-
ture, "rst introduced and used in 2-D image processing
by Kovalevsky [10], is based on cellular complexes
[11,12].

A cellular model M"(E, <, P) is a cellular complex-
based structure embedded in the three-dimensional cubic
grid. E is the set of elements (or cells) of di!erent dimen-
sions which compose the cubic grid. These elements are
the cubes (or voxels), the faces (or surfels) between two
cubes, the segments between two faces and the points
between two segments. < is a connectivity relationship
(<LE�E). Two cells are connected (or neighbors) if one
bounds the other. For example, a cube is bounded by six
faces, 12 segments and eight points. It has 26 neighbors.
A face is bounded by four lines and four points, and it
bounds two cubes, so it has 10 neighbors (Fig. 1). P is
a partition of E. Each element of P represents an object.

Unlike classical digital pictures where connectivity
depends on voxel labels [8], the underlying graph of
a cellular model is "xed. In other words, the connectivity
relationship of a cellular model M"(E, <, P) does not
depend on P. Therefore, in order to model an object with
a cellular model, one just has to decide which cells belong
to the object. The membership to the object of all the
cells is explicit. The presence of cells of lower dimension
makes it possible to control object borders precisely. For
example, if an object is composed of two cubes sharing an
edge, the membership of the edge determines if the object
is connected or not. Thus, if we compare the voxel con-
nectivities between a cellular model and a classical digital
pictures, we can say that the cellular model allows to
locally choose the adjacency. For example, a cellular
object can be composed of parts made of `8-connecteda
voxels and of parts made of `18-connecteda voxels. It is
therefore possible to model any scene composed of
voxel-based objects. This would have been impossible in
some cases with classical images [3] (Fig. 2).

The combination of cells of di!erent dimensions in
a cellular model makes it possible to represent objects
with di!erent local dimensions. Not only is it possible to
represent a volume by a set of voxels linked by two-, one-
and zero-dimensional cells, or represent a surface by a
set of surfels linked by one- and zero-dimensional cells,
but both volumes and surfaces can be mixed in the same
model. It is thus possible, for example, to have pure
two-dimensional structures and three-dimensional ob-
jects in the same model (Fig. 3).

The possibility to represent objects with di!erent local
dimensions can be useful in applications where complex
objects have to be modeled. For example, to build a
three-dimensional model of the brain it is necessary to
represent the thin parts of the cortex surface which are
located in the cortical folds (Fig. 4). A precise model of
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Fig. 4. Partial volume e!ect can hide cortical surface. (a) MR slice of the head. (b) Zoom on the white rectangle of image (a). A part of the
cortical surface is not visible in the MR image. (c) Diagram of the cortex surface superimposed with image (b).

the brain volume and of its surface (which is the cortex
surface) can be obtained from a magnetic resonance
image (MRI) with a cellular model [13].

Not only a cellular model makes it possible to over-
come the modeling limits of classical images, but it also
o!ers good topological properties which allow for the
de"nition of an homotopic deformation of a cellular
model. This de"nition, which is based on the character-
ization of simple cells, is presented in the following
sections.

3. Homotopic deformations

Discrete homotopic deformations are widely used in
image thinning processes [8,14}16]. The goal of image
thinning is to deform an object modeled by an image into
a skeleton having the same topology as the object. In
general topology, there is no unique de"nition of topol-
ogy-preserving deformations. But, in the three-dimen-
sional digital topology framework, this notion is usually
de"ned as the preservation of the number of connected
components and of the number of tunnels. The voxels (or
points) that can be modi"ed in an image without chang-
ing the topology are called simple points. Several authors
proposed a local characterization of simple points
[8,17}19]. The simplest local characterization consists in
counting the connected components in the neighborhood
of the considered point. In the following, we extend these
notions to cellular models. In order to be as general as
possible, we de"ne homotopic deformations for any
graph. Then, we use the local properties of the neighbor-
hood graph of the cellular model to "nd a local charac-
terization of simple cells.

3.1. Basic notions

De5nition 3.1. An abstract graph G is a pair (E, <) where
E is a discrete set of abstract elements and < is a set of
ordered pairs (x, y) where x3E and y3E. < is called
neighborhood relationship.

In the following we consider a non-oriented graph
G"(E, <). i.e. (x, y)3<� (y, x)3<, and such that ∀x3E,
(x, x)3<. The pair (E, <) of a cellular model is an
example of abstract graph. We note O a subset of E and
OM "E!O the complementary of O.

De5nition 3.2. Two elements x and y of O are neighbors
onO (denoted by x �� y) if and only if (x, y)3<. The set of
neighbors of an element s of E (not necessary in O)
belonging to O is denoted by N

�
(s).

De5nition 3.3. A path � of O is either the empty path �� , or
a series s

�
, s

�
,2, s

�
(n3�) of elements of O such that

s
�
�� s

���
∀i3[0, n!1]. The element s

�
(resp s

�
) is the

initial (resp. "nal) element of �. The set of paths of O is
denoted by �

�
.

De5nition 3.4. Two elements x and y of O belong to the
same connected component of O (denoted by x�� y) if and
only if there exists a path in �

�
of which x is the initial

element and y the "nal element. The number of connected
components of O is denoted by N

��
(O).

De5nition 3.5. The concatenation of two paths �"s
�
,

s
�
,2, s

�
and ��"s�

�
, s�

�
,2, s�

�
of �

�
, such that s

�
�� s�

�
,

is the path � ) ��"s
�
, s

�
,2, s

�
, s�

�
, s�

�
,2, s�

�
. The empty

path is the null element for concatenation: ∀�,
�� ) �"� ) ��"�.

De5nition 3.6. A loop � of O is a series s
�
,2, s

�
, n3�,

of elements of O, such that s
�
�� s

�
and ∀i3[0, n!1],

s
�
�� s

���
. The set of loops of O is denoted by �

�
.

In order to de"ne topological equivalence between two
objects we need to be able to characterize a tunnel. There
is a tunnel in an object if it contains a loop which cannot
be continuously deformed into a point. Therefore we
need to de"ne continuous deformation for loops in
a graph. We will use the notion of elementary deforma-
tion of a loop which is, intuitively, the smallest possible
continuous deformation. The iteration of elementary
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Fig. 5. Elementary deformation of a loop. The loop
�
�
.s
�
.s
�
.s
�
.�

�
is equivalent to the loop �

�
.s
�
.s
�
.�

�
.

Fig. 6. (a) Example of invalid mapping between a graph and
a geometrical structure. According to De"nition 3.7, the loop
s
�
.s
�
.s
�

can be deformed into the loop s
�
.s
�
. This is not equiva-

lent to a continuous deformation since the loop in the geometri-
cal objects going through the points s

�
, s

�
and s

�
cannot be

continuously deformed to a loop going through s
�

and s
�
. (b)

A valid mapping: any loop can be continuously deformed to any
other loop.

Fig. 7. Loops �
�
, �

�
and �

�
are all equivalent since �

�
and �

�
(resp. �

�
and �

�
) are equivalent by elementary deformation.

deformations on a loop forms a set of deformations that
are similar to the continuous deformations.

De5nition 3.7. Two loops � and �� of O are equivalent
up to an elementary deformation (denoted by � �� ��)
if at least one of the following conditions is true:

� ���� �, (1)

� �
�"s

�
.�.s

�
where �3�

�
,

��"s
�
.s
�
.�, s

�
, s

�
3O,

(2)

� �
�"�

�
.s
�
.s
�
.s
�
.�

�
where �

�
, �

�
3�

�
,

��"�
�
.s
�
.s
�
.�

�
, s

�
, s

�
, s

�
3O.

(3)

Condition (1) imposes symmetry on the relation. Con-
dition (2) allows two loops that di!er only by a circular
permutation on their elements to be equivalent. Condi-
tion (3) de"nes an elementary deformation as a `small
deviationa of a loop on three elements which are mu-
tually neighbors (Fig. 5).

An abstract graph has no geometrical basis. Therefore,
it is important to de"ne in what sense the elementary
deformation can be seen as a continuous deformation.
A mapping between a graph and a geometrical structure
associates each element of the graph with a geometrical
object (cells of a cellular model for example). The arcs of
the graph indicate an adjacency between two geometrical
objects. De"nition 3.7 cannot be used on any geometrical
mapping (Fig. 6). In order to be valid, a mapping must
respect some rules. In our de"nitions, the neighborhood
relationship is a proximity relationship. In other words,
two elements are neighbors if they are `as close as pos-
siblea. Formally, any geometrical structure composed of
three or less mutually neighboring elements must have
the topology of a "lled sphere (i.e. one connected com-
ponent and no tunnel). In this case, any loop in the object
corresponding to a pair of neighbors (x, y) can be con-
tinuously deformed into any other loop in the object
corresponding to a triplet of neighbors (x, y, z). There-
fore, the elementary deformation can be seen as a con-
tinuous deformation.

We are now able to continuously deform a loop by
using a series of elementary deformations. This gives us
the following equivalence relationship between loops:

De5nition 3.8. Two loops � and �� of �
�

are equivalent
by deformation if and only if at least one of the following
conditions is veri"ed (Fig. 7):

� ���� � (4)

� there is a series �
�
, �

�
,2, �

�
(n3�) of loops of O

such that

� �� �
�
, �

�
�� �

�
,2, �

���
�� �

�
, �

�
�� �� (5)

The `equivalence by deformationa relationship is an
equivalence relationship on �

�
. The transitivity is an

immediate consequence of Eq. (5). The symmetry is
a consequence of the symmetry of � �� ��. The re#exivity
is a consequence of the re#exivity of the neighborhood
relationship. For any � in �

�
, the equivalence class of

loops of O which contains � is denoted by [�]
�
.

In order to characterize tunnels we need to use the
deformation of a loop into a point. Therefore, we need
the following de"nition.

De5nition 3.9. A loop � of �
�

is reducible in O if and
only if there exists a loop ��3[�]

�
such that ��"s, s3O.

Otherwise the loop is said to be irreducible (Fig. 8).

3.2. Simple elements in a neighborhood graph

According to the previous de"nitions, we "rst de"ne
simple elements and their local characterization in the
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Fig. 8. Loops �
�

and �
�

are equivalent and reducible on O.
Loop �

�
is irreducible on O because the central point does not

belong to O.

Fig. 9. In the neighborhood of s, there are two distinct connec-
ted components.

case of two objects. In Section 4, we extend these notions
to any number of objects. An element of a graph is simple
if it can be removed or added to an object of the graph
without changing the topology of the scene. Objects of
the scene are represented by a partition of the elements of
the graph: each element of the partition represents an
object. The number of elements in the partition is "xed.
Thus, if the partition has two elements, removing an
element from an objectO means adding the element to its
complementary OM . Therefore, we only de"ne the simple
elements that can be removed fromO since adding simple
elements to O can be done by exchanging the roles of
O and OM .

Let G"(E, <) be an abstract graph, and O a non-
empty subset of E. We note OM "E!O the complement-
ary ofO. The set of simple elements of O, denoted by S

�
, is

a subset of O such that ∀s3S
�
, the following conditions

are true:

� �x3O!�s� such that x�� s, (6)

� �x3OM such that x�&��M ���� s, (7)

� ∀x, y3O!�s�, x�� yNx�&������ y, (8)

� ∀x, y3OM , x �	��M yNx�	��M ����y, (9)

� ∀�3�
�
, � is irreducible in ON (10)

� ���3[�]
�

such that ��3�
�����

and
� � is irreducible in O!�s�,

� ∀�3�
�����

, � is irreducible in O!�s�N (11)

� is irreducible in O,

� ∀�3�
�M ����

, � is irreducible in OM #�s�N (12)

� ���3[�]
�M ����

such that ��3�
�M

and

� �� is irreducible in OM ,

� ∀�3�
�M
, � is irreducible in OM N (13)

� � is irreducible in OM #�s�.

The conditions can be divided into two groups: Eqs.
(6)}(9) ensure the preservation of the number of connec-
ted components, and Eqs. (10)}(13) ensure the pre-
servation of the number of tunnels. Eq. (6) prevents the
disappearance of an isolated element of O; Eq. (7) pre-
vents the appearance of an isolated element in OM , Eq. (8)
prevents the separation of one connected component in
O, Eq. (9) prevents the fusion of two connected compo-
nents of OM , Eq. (10) prevents the deletion of a tunnel in O,
Eq. (11) prevents the appearance of a tunnel in O, Eq. (12)
prevents the appearance of a tunnel in OM and Eq. (13)
prevents the disappearance of a tunnel on OM .

We now introduce a condition that is necessary for
a graph element to be simple. We then show that this
condition is not su$cient in the general case.

Proposition 3.10. If s is a simple element of O, then
N

��
(N

�
(s)!�s�)"N

��
(N

�M
(s))"1.

Proof. Let s be a simple element of O.
If N

��
(N

�
(s)!�s�)"0, condition (6) is not veri"ed.

If N
��

(N
�M
(s))"0, condition (7) is not veri"ed.

If N
��

(N
�
(s)!�s�)*2 then there exist two distinct

connected components C
�

and C
�

on N
�
(s)!�s�.

Therefore, there are two possibilities:
Either C

�
and C

�
are not connected in O!�s�, then

�x3C
�

and �y3C
�

which do not verify Eq. (8), because
C

�
and C

�
are connected in O through s. Therefore s is

not a simple element of O.
Or, ��3�

�
, �s

�
3C

�
, �s

�
3C

�
such that �"

s
�
.s.s

�
.�3�

�
(Fig. 9). For any number n of deformations

applied to �, we will always obtain, except for a circular
permutation, a loop �

�
such that

�
�
"�

�
.s�
�
.s.s�

�
.�

�

where s�
�
3C

�
, s�

�
3C

�
and �

�
, �

�
3�

�
(14)

Proof. Let us prove it by recurrence on n. If n"0, we
have immediately �

�
by putting s�

�
"s

�
, s�

�
"s

�
,

�
�
"�� , �

�
"�. If condition (14) is true for n"N with

N3� then it is true for n"N#1 because an elementary
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Fig. 10. Two possibilities for elementary deformation of a loop.

Fig. 11. (a) s is a simple element ofO. (b) s is not a simple element
of O because the loop s

�
.s
�
.s
�
.s
�

is reducible on O but not on
O!�s�. In both cases, N

��
(N

�
(s)!�s�)"N

��
(N

�M
(s))"1.

Fig. 12. The di!erent neighborhoods of a cellular complex.
Three-dimensional representation of the elements connected to
a central element.

deformation cannot delete s from the loop, because
s�
�

and s�
�

are not neighbors. Moreover, the elementary
deformation can only delete s�

�
(resp. s�

�
) if there exists s


in C
�

(resp. C
�
) which would become the new prede-

cessor (resp. successor) of s in �
���

(Fig. 10). �

Therefore, if N
��

(N
�
(s)!�s�)*2, any loop of [O]�

contains s and at least two other distinct elements, and
therefore is irreducible and cannot belong to �

�����
.

Thus � is irreducible in O and this contradicts Eq. (10).
Therefore, s is not a simple element of O.

If N
��

(N
�M
(s))*2 we can prove in the same way as

before that Eq. (12) is not respected and therefore s is not
a simple element of O. �

The reciprocal of Proposition 3.10 is not true. If
N

��
(N

�
(s)!�s�)"N

��
(N

�M
(s))"1, the four connect-

ivity conditions (6)}(9) are true. Moreover, let us show
that Eq. (10) is true. If Eq. (10) was false, we would have

��3�
�

such that � is irreducible in O

and such that ∀��3�
�����

�[�]
�
,

�� is irreducible in O!�s�. (15)

If �� exists, since it is equivalent to � and irreducible in
O, then � is irreducible in O. It contradicts Eq. (15).
Therefore �� does not exist, that means that all loops
in [�]

�
contain s and either s is isolated

(N
��

(N
�
(s)!�s�)"0), or there are at least two distinct

connected components in N
�
(s)!�s�. It contradicts the

assumption that N
��

(N
�
(s)!�s�)"N

��
(N

�M
(s))"1.

Therefore Eq. (10) is true.
It is possible to prove in the same way that Eq. (12) is

also true. But it is possible to "nd a set E, a neighborhood
relationship < and a subset O3E such that
N

��
(N

�
(s)!�s�)"N

��
(N

�M
(s))"1, and Eq. (11) is false

or Eq. (13) is false (Fig. 11). This is because it is not
possible to detect the appearance or disappearance of
a tunnel with only the neighborhood of an element. To
make it possible, it is necessary to have more assump-
tions about E and <.

3.3. Homotopic deformations of a cellular model

The neighborhood graph of a cellular model makes
Proposition 3.10 a necessary and su$cient condition.
The neighborhood of a cellular model element depends
on the type of this element. There are four types of
elements: cubes, faces, lines and points. But if we see the
neighborhoods as a graph where the vertices are the
elements of the complex and the arcs are the connectivity
relationships, we can notice that there are only two
di!erent neighborhood graphs. Fig. 12 shows that the
di!erent neighborhood types form only two distinct
polyhedron shapes when we represent the connectivity
graph. The polyhedra are made up of triangles.

Proposition 3.11. If the neighborhood in E of an element
s of O can be represented as a polyhedron made up with
triangles, then N

��
(N

�
(s)!�s�)"N

��
(N

�M
(s))"1 � s is

simple.

Proof. We suppose N
��

(N
�
(s)!�s�)"N

��
(N

�M
(s))"1.

We have seen that we only have to show that conditions
(11) and (13) are true. We will prove it for condition (11),
the demonstration for Eq. (13) is similar. We will need the
following lemma:

Lemma 3.12. If s3E is an element whose neighborhood in
E can be represented by a polyhedron made up with tri-
angles and such that N

��
(N

�
(s)!�s�)"N

��
(N

�M
(s))"1,

we have ∀�3�
��������	

, � is reducible in N
�����

(s).

Proof. We will use a geometrical approach that uses
recurrence on the number n of elements of N

�M
(s).
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Fig. 13. Planar representation of a neighborhood.
Fig. 14. Di!erent types of (A, B)-deformations. (a) Objects
A and B. (b) Simple deformation. (c) A-simple deformation. (d)
B-simple deformation. (e) Non-simple deformation. (For sim-
plifying the illustrations, we use pixel-based representation and,
in con"guration where no topological ambiguities occurs, we
assume 8-connectivity for all objects.)

Fig. 15. Simple points depend on several objects of a scene.
(a) A scene with three objects. A and B are considered with
4-connectivity (just here for sake of illustration), C is considered
to be 8-connected. (b) The simple points of the scene.

If n"1, there exists only one element s� of OM in N
	
(s).

SinceN
	
(s) can be represented as a polyhedron and since

s� is a vertex of the polyhedron, the other vertices are
elements of O and can be represented as a planar struc-
ture made up with triangles. In this structure only the
external vertices are connected to an element of OM
(Fig. 13). This structure represents the elements of
N

�����
(s) and is made up with triangles that represent

triplets of elements, any pair of which being neighbors.
Since an elementary deformation of a loop is based on
such a triplet of elements, we can deduce that any loop of
N

�����
(s) is irreducible.

Let us suppose that the lemma is true for n"N where
N*2. To increment n by one, we must move an element
from N

�����
(s) to N

�M
(s). On the planar representation it

is done by removing a point on the boundary of the
structure because only the external points are connected
to N

�M
(s). Thus, we do not change the properties of the

planar structure and therefore any loop of N
�����

(s) is
reducible.

To prove Proposition 3.11, we will suppose that Eq.
(11) is false: ��3�

�����
such that � is irreducible in

O!�s� and reducible in O. Therefore, � is reducible in
ON���3[�]

�����
��

�� ��	����
. According to the lemma,

�� is reducible in N
�
(s)!�s�, therefore � is reducible in

O!�s�, which contradicts the supposition. �

4. Homotopic deformation of several objects

The de"nition of simple elements and the local charac-
terization can be extended to a scene composed of more
than two objects.

4.1. Simple deformations and homotopy sets

Given a graph G"(E, <) we de"ne an object as an
element of a partition P of E. Thus, P represents a com-
plete scene. We de"ne the deformation of a scene as
a one-to-one mapping between two partitions of E. In
this case, the `simplesta deformation consists in moving
an element from an object A to an object B. Such an
elementary deformation is called an (A, B)-deformation.
An (A, B)-deformation is said simple if it does not change
the topology of neither A nor B, it is said A-simple if it

changes only the topology of B, it is said B-simple if it
changes only the topology of A and it is said not simple
if it does not preserve the topology of neither A nor
B (Fig. 14).

In order to be homotopic, an (A, B)-deformation must
preserve the topology of all the objects. Therefore, the set
of all simple (A, B)-deformations for allA and B represent
all the elementary homotopic deformations. The set of all
homotopic elementary deformations that can be applied
to an element of E can be used to de"ne simple elements
in a scene composed of several objects:

De5nition 4.1. Given a graph G"(E, <), a partition P of
E and a non-empty subset Q of P, an element e3E is said
Q-simple if for all (A, B)3Q�Q, any (A, B)-deformation
of e is simple (Fig. 15).

Since Q is a subset of a partition, it represents a set of
objects. In other words, De"nition 4.1 says that an ele-
ment of E is Q-simple if changing its membership to any
object of Q does not change the topology of the scene. An
immediate consequence of this de"nition is that union
and intersection of sets of objects preserve `simplenessa:

Proposition 4.2.

∀e3E, ∀QLP, ∀RLP, if e is Q-simple and e is R-

simple then e is (Q�R)-simple and e is (Q�R)-simple. (16)
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The union of all sets QLP (i.e. the maximal set) such
that e is Q-simple is called the homotopy set of e and is
denoted H



. This set completely de"nes the homotopic

properties of an element according to the entire scene
because it contains exactly all objects in which e can be
deformed without changing the topology of the scene:

Proposition 4.3. Given a graphG"(E, <), a partition P of
E and two elements A and B of P, an (A, B)-deformation
d of an element e3A is simple if and only if B belongs toH



.

Proof. If d is simple, then e is �A, B�-simple and therefore
B is in H



.

Conversely, let us assume that B3H


. Since d is an

(A, B)-deformation, then e3A before the deformation
because an (A, B)-deformation moves an element from
A to B. An (A, A)-deformation does not change the scene
and therefore preserves the topology. As a consequence,
H



containsA. Thus A and B belong to H



. Therefore, by

De"nition 4.1, d is simple because e is H


-simple. �

The homotopy set of an element contains all the ob-
jects to which the element can belong without changing
the topology of the scene. Therefore, it contains at least
the object to which the element belongs in the scene. If
it contains no other object, no elementary homotopic
deformation can be applied to the element. On the
contrary, if it contains more than one object, the element
can be moved to any of these objects without changing
the topology of the scene. Thus, the homotopy set of an
element can be used to "nd all the elementary homotopic
deformations of this element. Therefore, the homotopy
sets of all elements de"ne the set of elementary
homotopic deformations of a scene. As for simple ele-
ments in scenes composed of two objects, the modi"ca-
tion of a scene changes its homotopy properties and
therefore can modify the homotopy sets of the scene.
Thus, it is not generally possible to modify two elements
in parallel. A global homotopic deformation of a scene
must be done by iteratively applying elementary
homotopic deformations. Two scenes are topologically
equivalent if there exists a series of elementary simple
deformations transforming one of the two scenes into the
other. Thus, simple (A, B)-deformations are the basis of
topological equivalence. Since there is an equivalence
between the set of all simple (A, B)-deformations and
homotopy sets (Proposition 4.3), both can be used when
dealing with homotopic deformations. The homotopy
sets are more general than (A, B)-deformations since the
homotopy sets of an element e makes it possible to "nd
all the simple deformations of e but the contrary is not
true.

In the binary case, it is possible to locally characterize
simple elements. The simple elements correspond to the
elementary simple deformations of a scene having two

objects. We show in the following section that it is possible
to extend the local characterization of simple elements in
order to locally characterize the elementary homotopic
deformations and the homotopy sets of a scene.

4.2. Local characterization of the homotopy set

In this section, we consider the local characterization
of simple elements in the case of two objects presented in
Section 3.3 and we apply it to each object of a scene
composed of any number of objects in order to obtain
a local characterization of the homotopy sets of the
scene.

We de"ned topology preserving deformations for an
object O embedded in a background OM . If we consider
O as an element of a partition P of E and OM as the
complementary of O in E (i.e. the union of the elements of
all other objects of the partition), we obtain directly
a de"nition of homotopy for a unique object of a parti-
tion. In the general case, an elementary deformation does
not only modify one object but it cannot modify the
topology of more than two objects. An (A, B)-deforma-
tion can only change the topology of A or B because any
other object C remains unchanged and its background
CM on E is also unchanged by this transformation because
all the elements of A and B belong to CM , thus moving an
element from A to B does not change the elements of CM .
Therefore, it is possible to locally characterize simple
(A, B)-deformations by checking topology preservation
for both A and B:

Proposition 4.4. An (A, B)-deformation d of an element e
is simple if and only if N

��
(N

�
(e))"N

��
(N

�M
(e))"

N
��

(N
�
(e))"N

��
(N

�M
(e))"1.

Proof. If d is simple, it does not change neither the
number of connected components nor the number of
tunnels of A. Therefore N

��
(N

�
(e))"N

��
(N

�M
(e))"1

(Proposition 3.11). It is the same for B, therefore
N

��
(N

�
(e))"N

��
(N

�M
(e))"1.

The reciprocal is also a direct consequence of Proposi-
tion 3.11. If N

��
(N

�
(e))"N

��
(N

�M
(e))"N

��
(N

�
(e))"

N
��

(N
�M
(e))"1, then the number of connected compo-

nents and the number of tunnels are preserved for
a modi"cation between A and AM and between B and BM .
Since ALBM , BLAM and d is a deformation between
A and B, therefore d is simple because it preserves the
topology of all objects of the scene. �

With Proposition 4.4, it is possible to locally character-
ize the homotopy set of each element of a scene:

Proposition 4.5. Given a graph G"(E, <), a partition P
of E and an element e of E, we have ∀B3P, B3H



if and
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Fig. 16. Possible implementation of an adjacency graph. (a) The
elements are numbered. (b) Each element is provided with a set
of index o!sets. Each o!set represents a neighboring element.

only if e3B or N
��

(N
�
(e))"N

��
(N

�M
(e))"N

��
(N

�
(e))"

N
��

(N
�M
(e))"1 where A denotes the element of P such that

e3A.

Proof. If B3H



either e3B then the proposition is
veri"ed, or e � B; in that case any (A, B)-deformation
is simple (Proposition 4.3). Therefore, according to Pro-
position 4.4, N

��
(N

�
(e))"N

��
(N

�M
(e))"N

��
(N

�
(e))"

N
��

(N
�M
(e))"1.

We showed in the proof of Proposition 4.3 that
H



contains the object which contains e. Thus, if e3B

then B3H


. If N

��
(N

�
(e))"N

��
(N

�M
(e))"N

��
(N

�
(e))

"N
��

(N
�M
(e))"1 then any (A, B)-deformation of e is

simple (Proposition 4.4), therefore B3H



(Proposi-
tion 4.3). �

Local characterization of simple elements in the case of
a scene composed of several objects is not more complic-
ated than in the binary case. The only di!erence comes
from the possibility for an element to belong to several
objects after a modi"cation. It is therefore necessary, for
each modi"cation from an object A to an object B, to
locally check topology preservation of both A and B.

The local properties of the adjacency graph of the
cellular model make it possible to use local characteriza-
tion of homotopy sets (see Section 3.3). It is therefore
possible to homotopically deform any scene that can be
modeled by a cellular model. In the following section we
present a cellular implementation method which is opti-
mized for both size of the data and speed of the algo-
rithms using heavily the adjacency graph such as
homotopic deformation algorithms.

5. Cellular model implementation

A cellular model M"(E, <, P) can be separated in,
at least, two distinct parts. The "rst part represents the
model structure and is composed of the set of cells E and
the adjacency relationship <. The second part contains
P and represents a scene embedded in the structure
(E, <). Thus, we obtain a framework similar to classical
images. The structure of an image is composed of a set
of elements (pixels or voxels for example) provided with
one adjacency relationship. The image data represent the
other part of the framework. This similarity is not just
theoretical, it makes it possible to build a computer
implementation which is similar to many classical images
implementations.

5.1. Implementation of the cellular model structure

To implement the structure of the cellular model, we
"rst order the set of cells by choosing a one-to-one
mapping between the set of cells and �0, 1,2, N!1�

where N is the number of cells. Once ordered, each cell
s of the set can be identi"ed by its index i

�
. In this case

given a cell s as a reference cell, any cell s� of the set can be
uniquely identi"ed by i

�

!i

�
. Therefore, the set of cells

which are neighbors of s can be expressed by a set of
index o!sets. This gives a possibility to represent the
adjacency graph of the cellular model by providing each
cell with a set of index o!sets (Fig. 16). In this case, the
amount of data needed to represent the graph is impor-
tant and grows with the number of cells. But it is possible
to "nd an order which allows to use the same structure
with only a small "xed size data structure.

We can order the cells with the aim of having only
a few di!erent sets of index o!sets for all cell neighbor-
hoods. Thus we only need to have these few sets of
neighbors in memory and to link each cell to the appro-
priate one. An appropriate order can be found by isolat-
ing a group of cells which can be used as a basis to build
the whole cellular model. Fig. 17a shows such a group of
cells (called basic cells). It is possible to build a cellular
model by putting a group of basic cells on each node of
the cubic grid (Fig. 17b). This structure gives an easy way
for choosing an order for all the cells. First, the groups of
basic cells are sorted. Since they are on a cubic grid we
can use a classical order based on coordinates: a group of
coordinates (x, y, z) in a cubic grid of size S


�S

�
�S

�
is

given the index g"x#y.S

#z.S


.S

�
. Then, the basic

cells in every group are sorted with a unique order. We
use the order presented in Fig. 17c. With the group
indices and the basic cell index in its group, we can give
a unique index to every cell of the cellular model. Since all
groups have exactly eight elements, a cell s whose group
index is g and index in the group is t, can be given the
index i

�
"8.g#t.

With this order, the number of di!erent set of index
o!sets needed to represent neighborhoods is reduced to
eight. Therefore, we only need to have these eight neigh-
borhood sets in memory instead of one set for each cell.
Moreover, all cells which have the same index in the
group of basic cells have also the same neighborhood set.
In other words, there is a one-to-one mapping between
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Fig. 17. (a) Group of basic cells used to build a cellular model.
(b) Cellular model obtained by repeating the group of (a) in
a 3�3�3 cubic grid. (c) Order of the basic cells.

Fig. 18. Implementation of the cellular model graph structure.
Only eight neighborhood sets are in memory.

the basic cells and the neighborhood sets. Therefore, we
can compute very easily the link between a cell s and its
neighborhood set with only the index i

�
. The index in the

basic cells group of s is i
�
modulo eight. This group index

can be used directly to "nd the appropriate neighbor-
hood set (Fig. 18). Thus, implementation of the adjacency
graph of the cellular model uses a very small "xed size
amount of memory. Moreover, algorithms using this
implementation use only a low computation time to go
through the adjacency graph. Given a cell of index i

�
,

only a few basic operations are needed to "nd the index
of one of its neighbors: a modulo operation to "nd the
appropriate neighborhood set and an addition to obtain
the index of the neighbor. Therefore, this implementation
is optimized according to both data size and algorithms
speed.

Since the graph structure of the cellular model uses
very few memory, the memory usage of a cellular model
is determined by the data associated with the cells to
represent the scene. The best way to represent a partition
is to use a set of labels and to associate each cell with one
label of the set. Therefore, the memory size of the cellular

model is directly proportional to the number of cells.
This is again similar to classical images, the size of which
depends on the number of voxels. However, if we com-
pare classical images and cellular models, it appears that
a cellular model uses more memory. For example, if we
build a cellular model to represent the same scene as an
image, we must use a cube for each voxel of the image
and represent the cells of lower dimension. Since we use
the group of eight cells of Fig. 17a as an `atoma for
building the cellular model, the size of the cellular model
is eight times the size of the image.

The implementation we propose is very close to a
possible implementation of classical images. The main
di!erence is that the neighborhood set of a voxel de-
pends on the label of the voxel. However, it is possible
to use an object-oriented language such as C## in
order to use the same code for both classical images
and cellular models when the algorithm is mainly
based on the adjacency graph. For example, we imple-
mented a unique function for "nding the connected com-
ponents of an object in a cellular model or in a classical
image using a two pass chamfer method. But it is also
possible to adapt more sophisticated algorithms which
use the geometrical properties of the images. For
example, we de"ned a chamfer distance between the cells
of a cellular model which allows the computation of
distance maps and geodesic distances on cellular model
objects.

5.2. Cellular homotopic deformation algorithms

5.2.1. Simple cell detection
Checking if a cell s is simple or not can be done by

counting connected components on a graph. The nodes
of the graph represent the cells which are in the neighbor-
hood of s and the arcs are the adjacency relationships
between these cells. Thus, the graph depends on the
structure of the neighborhood of s; our cellular model
implementation uses eight di!erent neighborhoods (each
one represents the neighborhood of a basic cell), therefore
there are eight di!erent neighborhood graph implemen-
tations. These graphs are intensively used by the cellular
deformation algorithm, it is thus necessary to build these
eight graphs when the cellular model is created because
their structures depend only on the cellular model struc-
ture. To build these graphs we have to associate to each
neighbor v

�
of a cell s, the set of all cells which are in

the neighborhood of v
�

and in the neighborhood of
s (Fig. 19).

In order to check if a cell s is simple or not in the binary
case, one just has to count the connected components of
the object and of the background in the neighborhood of
s. s is simple if and only if there are exactly two connected
components: one for the object and one for the back-
ground. Since the neighborhood graph of each cell is
"xed, the `simplenessa of a cell s depends only on the
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Fig. 19. Implementation of the neighborhood graph of each
cell s.

membership to the object O of the neighbors of s. There-
fore, the `simplenessa criteria is a binary function with
binary parameters:

simpleness(s, O)"f (b
�
, b

�
,2, b

�
). (17)

In this equation, each binary value b
�
represents the

membership of one neighbor of s to the object O. If N is
the number of neighbors of s, there is exactly 2� di!erent
combinations of f parameters. If N is small enough, it is
possible to precalculate f in a boolean array of size 2�.
Each index i of the array correspond to a con"guration
of f parameters (i"b

�
#2.b

�
#2�.b

�
#22�.b

�
) and

the value at index i contains the result of function f. It is
therefore possible to check if a cell is simple by testing
each neighbor of s only once. This optimization can be
partially applied to cellular models. Indeed, the facets
and the segments have 10 neighbors which implies arrays
with 1024 elements to represent f which is completely
tractable. Unfortunately, cubes and points have 26 neigh-
bors which implies arrays with more than 67 millions of
elements, the use of such huge arrays is not possible in
practical image processing systems; in this case it is
possible to use a mixed approach based on classical
connected component algorithms for points and cubes,
and on precalculated arrays for segments or facets. By
using the mixed approach (1 h 0 min 50 s), we obtained
about 20% better time performance as compared to
a fully classical approach (1 h 16 min 35 s) in a complete
cortex segmentation process (see Section 6). These execu-
tion times are obtained on a Sun Ultra Sparc 250 com-
puter. In this process, the check of simple elements does
not represent the most time consuming part of the algo-
rithm (which is the cost function computation), therefore
one can expect to gain more than 20% time performance
with the mixed approach. Other optimization techniques,
such as binary decision trees, can be considered for cubes
and points in applications which require a very fast
calculation of the simple cells.

In the case of a scene composed of more than two
objects, we must compute the homotopy set of a cell
s which relies on Proposition 4.5 and is also based on

connected components on the neighborhood graph of s.
It is possible to use the method proposed for the binary
case. Thus we obtain the following algorithm to compute
the homotopy set H

�
of a cell s:

A"object to which s belongs
Q"set of objects in the neighborhood of s
Hs"�A�
If simpleness(s, A)

For each object O of Q
If simpleness(s, O)

Add O to Hs

End If
End For

End If

5.2.2. Deformation algorithm
In this section we introduce the main homotopic defor-

mation algorithm of a binary cellular complex without
constraint related to a speci"c application. This algo-
rithm uses three main functions:

initial}model: This function is used to build the initial
model which is to be deformed. The topology of the
initial model will be preserved during the deformations.

selection}criterion: The choice of the cells which must
be modi"ed is done by this function. It has the responsib-
ility to guide the deformations to the desired solution.

stop}criterion: This criterion must decide if a cellular
model should continue to be deformed or not.

M is a cellular model
P are the parameters of the algorithm
M"initial}model(P)
While stop}criterion(M, P) is false

For each cell s to M
If s is simple and selection}criterion(s, M, P) is
true change the label of s
End If

End For
End While

When this algorithm is implemented, it is important to
note that it is possible to obtain di!erent results with the
same initial}model(P), selection}criterion(s, M, P) and
stop}criterion(M, P) functions. This is due to a well-
known problem in classical image homotopic deforma-
tions: the order used to modify the simple cells can
in#uence the result because the modi"cation of a cell can
change the `simplenessa of its neighbors. With the cellu-
lar model it is possible to limit this problem because the
cells with the same dimension are never neighbors.
Therefore, it is possible to modify all the cells of a given
dimension in any order (even in parallel). Thus, if we
modify the points, then the segments, then the facets, etc.,
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Fig. 20. Diagram of the segmentation process. (a) The model is
initialized on the outer brain volume. (b) Intermediate step
during the deformation process. (c) Final step: the external
surface of the model has penetrated inside the folds. Black lines
are the result of the segmentation superimposed on an image
representing the membership to the cortex (only a part of one
slice is shown, but this process is 3D).

Fig. 21. Cortex segmentation process. Surfacic parts are de-
formed where the cortex folds are very tight (a) and volumic
structures are deformed where there is enough space (b).there is no privileged direction due to the traversing

order.
This deformation algorithm can be easily extended to

a cellular model composed of several objects. We just
have to choose, for each cell s considered by the algo-
rithm, an object in the homotopy set of s and to make
s belong to this object.

6. Application to cortex segmentation

In previous works [20,21], we used an homotopic
cellular deformable model to segment the cerebral cortex
in MR images of the brain. The cortex is a ribbon of gray
matter which surrounds all other brain tissues. It has
a very complex shape with many folds separated by both
very thin (two-dimensional) and volumic structures. We
showed that these structures can be accurately modeled
by a cellular model. It is also well known that the cortex
topology is almost spherical [22}25], therefore it is ne-
cessary to use homotopic deformations during the seg-
mentation process to impose the topology of the results.

We used a cellular model initialized on the outer brain
volume and deformed inside the external part of the
cortex folds (Fig. 20). The deformation was done accord-
ing to both volumic and surfacic constraints. In this
process, the use of a cellular model allowed us to build an
homotopic deformable model where local dimensions
adapt to the cortical folds geometry: surfaces evolves in
thin parts and volumes are deformed in volumic parts.
The description of the cortex segmentation process is
beyond the scope of this paper, further information can
be found in Refs. [13,26]. Fig. 21 shows a detail of a result
obtained from a three-dimensional MRI of the head, the
surface of the resulting cellular model is superimposed on
a membership to the cortex image. It shows that both
volumic and surfacic structures have been deformed in
the brain.

7. Conclusion

In this paper we proposed an original three-dimen-
sional model to deal with complex scenes composed of
several objects having complex shapes and di!erent local
dimensions. This cellular model is based on a cellular
complex structure embedded in the cubic grid. The cellu-
lar structure allows to extend the modeling possibilities
of classical images and the embedding in the cubic grid
makes the cellular model geometrically close to classical
images. It is therefore possible to use a cellular model to
do image processing such as segmentation of complex
objects with di!erent local dimensions. For this purpose
we showed that a cellular model can be used as an
homotopic deformable model.

In order to de"ne homotopic deformation of a cellular
model, we introduced a new de"nition of topology
preserving deformations which is only based on an adjac-
ency graph structure. This de"nition generalizes those
proposed in digital picture framework because it does
not rely on a particular geometrical structure such as the
cubic grid. With our de"nition, any geometrical structure
provided with an adjacency graph and verifying some
local conditions can identify simple elements. Moreover,
we extended the notion of topology preserving deforma-
tion to the case of models composed of more than only
one object and one background. To do this we introduc-
ed two new notions: simple elementary deformation and
homotopy set. Then we showed that these two notions
can be locally characterized and therefore used in an
homotopic deformation process.

Then, we proposed an implementation of the cellular
model which is optimized for both memory usage and
speed. Therefore, the cellular model can be used in any
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application considering objects with complex geometry
such as cortex segmentation from MR image.
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