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Abstract—The aim of this paper is to develop a registration
methodology in order to combine anatomical and functional
information provided by thoracic/abdominal computed tomog-
raphy (CT) and whole-body positron emission tomography (PET)
images. The proposed procedure is based on the incorporation
of prior anatomical information in an intensity-based nonrigid
registration algorithm. This incorporation is achieved in an ex-
plicit way, initializing the intensity-based registration stage with
the solution obtained by a nonrigid registration of corresponding
anatomical structures. A segmentation algorithm based on a
hierarchically ordered set of anatomy-specific rules is used to
obtain anatomical structures in CT and emission PET scans.
Nonrigid deformations are modeled in both registration stages by
means of free-form deformations, the optimization of the control
points being achieved by means of an original vector field-based
approach instead of the classical gradient-based techniques,
considerably reducing the computational time of the structure
registration stage. We have applied the proposed methodology to
38 sets of images (33 provided by standalone machines and five by
hybrid systems) and an assessment protocol has been developed to
furnish a qualitative evaluation of the algorithm performance.

Index Terms—Anatomical constraints, free-form deformations
(FFD), nonrigid registration, oncology, thoracic and abdominal
computed tomography (CT), whole-body positron emission to-
mography (PET.

I. INTRODUCTION

THE combination of anatomical and functional information
provided by computed tomography (CT) and positron

emission tomography (PET) imaging modalities can have a
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significant impact [1] on improving medical decisions for
diagnosis, staging, planning, radiotherapy, or monitoring. On
the one hand, PET scans provide valuable knowledge about
metabolic abnormalities, but give limited information on the
anatomy around the increased uptake, making precise lesion
localization quite difficult. On the other hand, CT is not as sen-
sitive as PET but offers accurate anatomic detail, pinpointing
the exact size, shape, and location of diseased tissue. The
benefit of the combination of these complementary imaging
modalities has been proven in a large number of clinical studies.
An extensive review of these works can be found in [2].

Nevertheless, integrating data from these imaging modalities
is a challenging task, in particular in thoracic and abdominal
images. One needs to compensate for the elastic nature of the
organs located in these regions, the large intrasubject variability
in terms of motion, anatomy and metabolic activity and the dif-
ferent physical nature underlying both acquisition techniques,
in order to achieve the combination of both types of informa-
tion. All these factors add up to cause displacements of up to 10
cm between corresponding structures. For instance, Goerres et
al. [3] found a maximum of displacement of 8.29 cm in the di-
aphragm between a PET scan and a CT image acquired at max-
imum inspiration. Until few years ago, physicians visually inte-
grated information provided by CT and PET scans acquired in
separated devices, using their anatomical knowledge and exper-
tise to identify homologous points between the images. Unsur-
prisingly, this procedure was very rough and time-consuming,
and uncertainty in the mapping from one image to another could
lead to uncertainty in clinical decisions.

The development of combined PET-CT systems, introduced
by scanner constructors in the late 1990s [4] represented a
huge step towards an automatic solution of this problem. These
machines allow the acquisition of anatomical and functional
information in the same session and device, thus furnishing
a hardware (or mechanical) integration. Nevertheless, these
systems cannot deal with physiological motions between CT and
PET acquisitions due to breathing, cardiac cycle or insufficient
patient cooperation [3]. Several studies [5]–[8] have proven
the presence of artifacts in images acquired with combined
PET-CT machines in the lungs and the liver, mostly due to
respiration.

Before the introduction of PET-CT combined machines,
software-based registration techniques were the only way to
compensate for differences between images acquired with
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standalone devices. Nowadays, such algorithms can also be
used to cope with physiological-induced deformations between
images acquired with hybrid systems. Some complete reviews
on registration methods can be found in [9]–[13]. Several works
have been published in the context of thoracic and abdominal
CT-PET registration. A study of the role of image registration in
nuclear medicine was published by Hutton et al. [14]. Some of
these registration techniques [15]–[19] employed linear (rigid
or affine) transformations in these regions. However, linear
transformations being unable to compensate deformations
due to normal metabolic activity, some authors have moved
forward to nonrigid registration algorithms. Sato et al. [20]
proposed a point-to-point matching methodology based on a
Cauchy–Navier spline transformation. The main drawback of
this method is the high computational cost associated to the
optimization of the cost function. Meyer et al. [21] applied
a mutual information-based algorithm in thoracic CT-PET
and abdominal computed tomography single photon emission
computed tomography (CT-SPECT) registration applications,
using a full affine mapping and a five-point thin-plate spline
(TPS) warped registration technique. The major drawback
of this method is the manual selection of the control points
required for the TPS model. A similar method was proposed
by Slomka et al. [22], which is based on the extraction of
corresponding control points from the lungs and the applica-
tion of a TPS interpolation algorithm from the corresponding
control points that furnishes a dense nonrigid transformation.
The main drawback of this approach concerns the selection of
the control points. For instance, when working with images
having tumors within the lungs, the ray-tracing technique will
find control points in the tumor rather than in the lung contours.
Furthermore, there is a lack of information in the regions far
away from lungs and body contours (even information within
the structures is not taken into account). Tai et al. [23] have
developed and evaluated a nonrigid CT and whole-body PET
registration method using transmission PET scans. Erdi et al.
[24] also employed the transmission PET image to guide the
registration with the CT image in a thoracic application.

One elegant solution to the registration of chest CT and
transmission PET images was proposed by Mattes et al. [25], in
which deformations were modelled with a -spline FFD trans-
formation and using mutual information (MI) as the similarity
measure. The authors pointed out that obtained results were not
completely satisfactory on more deformable regions such as the
diaphragm or the abdomen. Based on Mattes’ work, Delzescaux
et al. [26] studied the influence of the CT respiration phase and
the free-form deformation (FFD) model ability to cope with
nonlinear deformations due to respiration movements. They
proposed to transform the CT image instead of the PET one in
order to preserve the metabolic information provided by func-
tional images, this approach being well-suited for radiotherapy
applications. Carlsen and Wischmann [27] also proposed a
FFD-based procedure using a CT-derived pseudo-transmission
image to compute a nonrigid transformation based on tricubic

-splines. Recently, Shekhar et al. [28] proposed a MI-guided
elastic registration technique based on multiple rigid-body
registrations. They have applied their methodology to a set of
images acquired with both standalone and combined machines,

obtaining a registration accuracy comparable to interexpert
difference in landmark identification.

All previous nonrigid techniques (except those ones proposed
by Sato [20] and Shekhar [28]) assumed a linear relation, or
even no deformations, between emission and transmission PET
scans. This assumption is not always satisfied because emis-
sion and transmission images are not acquired in a simultaneous
way. Apart from little differences that can appear in cardiac
regions, the main danger of this assumption concerns patholo-
gies or tumors that are only visible in emission PET images. If
only the transmission PET scan is used to guide the registration
process, tumors will not be taken into account. Furthermore, the
liver may not be distinguishable from the surrounding structures
in transmission PET scans, therefore, these methods cannot be
used in abdominal registration applications. With respect to pre-
vious FFD-based registration techniques, none of them directly
work on emission PET scans due to their low-SNR quality and
the lack of constraints on the FFD transformation model. When
working with emission PET images, these approaches tend to
get trapped in local minima of the chosen similarity criterion if
they are not initialized within a relatively narrow range near to
the final solution.

In order to avoid these problems, one can introduce in the
registration procedure prior information about the anatomical
structures involved in the application. The incorporation of prior
anatomical information in registration processes is at the core of
current state-of-the-art research in nonrigid registration.

In the majority of cases, prior anatomical information is in-
troduced in an implicit way. This approach forces the regis-
tration procedure to furnish plausible deformations that have
been found by modeling the expected structure variability and
the spatial relationships between these structures. Biomechan-
ical finite element models (FEMs) such as the NURBS-based
cardiac-torso (NCAT) phantom [29], [30] and statistical model
methods such as the active appearance modeling (AAM) [31],
the statistical deformation modeling (SDM) [32], or the statis-
tical shape models proposed by Wang and Staib [33] can be
used to obtain this prior knowledge. Two major drawbacks are
associated to this approach in the context of our application.
First, relying on anatomical atlases or expected structure mor-
phology and movements seems too risky when working with
pathological images due to the large interpatient variability. Tu-
mors may appear anywhere in the image, considerably modi-
fying the shape and volume of structures, as well as the spa-
tial relationships between them. Secondly, implicit approaches
ask for additional registration processes in order to align prior
anatomical models to the image data. The main consequence is
an increase of the computational overhead of the whole proce-
dure, which is a critical point in our application.

Therefore, we propose a faster approach based on an explicit
incorporation of anatomical prior information into the registra-
tion procedure. Some authors [34]–[37] have presented different
ways of merging this anatomical prior information provided by
some recognized features in the image with information pro-
vided by the whole set of grey-level intensities. Our approach
consists in obtaining anatomical knowledge directly from the
images to register, making use of a novel hierarchical segmen-
tation technique, and computing a nonrigid transformation be-
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Fig. 1. General scheme of the proposed approach. Left part corresponds to the structure registration stage and the right part to the grey-level registration stage.
Transformation obtained between the segmented structures initializes the registration phase that works with the whole set of intensities.

tween the corresponding segmented structures. This informa-
tion is used to initialize deformations as close as possible to the
final solution before applying whole-content registration tech-
niques. With this initialization, the search of the global solu-
tion will be constrained and the algorithm will converge in a
more robust and faster way. This approach does not make any
assumption on the structures themselves or on their deforma-
tions, relying only on available information in the images and
on a set of robust spatial relationships between the structures,
permitting to work with almost any kind of unexpected situa-
tions. Moreover, the extraction of anatomical knowledge from
the images is in general less expensive in terms of computational
cost than registration procedures. The segmentation of corre-
sponding structures in CT and emission PET images is achieved
by means of a hierarchical segmentation method based on the
mathematical modeling of robust spatial relationships between
the targeted structures. Nonrigid deformations are modeled in
both registration stages by means of FFD, but the optimization
of the control points is achieved by an original vector field-based
approach, called gradient vector flow-free-form deformations
(GVF-FFD), instead of the classical gradient-based technique,
considerably reducing (13 times faster) the computational time
of the structure registration stage. We have applied the proposed
methodology to 38 sets of images, 33 provided by standalone
machines and 5 by hybrid systems. A visual assessment pro-
tocol has been developed to furnish a qualitative evaluation of
the algorithm performance.

The paper is organized as follows. A general scheme of the
proposed methodology is presented in Section II. Section III is
devoted to the structure segmentation stage and the subsequent
nonrigid registration stage applied on the segmented anatomical
features is detailed in Section IV. The whole-content registra-
tion phase is presented in Section V. In Section VI, we describe
the evaluation protocol developed to assess in a qualitative way
the accuracy of the registration results. Finally, results are shown
in Section VII and conclusions are given in Section VIII.

II. GENERAL SCHEME

A general scheme of the proposed registration methodology
is shown in Fig. 1. It is divided into two stages: a structure regis-

tration phase (left part of Fig. 1) in which homologous structures
( and ) are extracted from both CT and PET images (A and
B) and nonrigidly registered; and a grey-level registration phase
(right part of Fig. 1) in which a nonrigid registration based on
their full intensity content is applied to the original images (A
and B). The second stage, initialized with the transformation

provided by the structure registration stage, furnishes
the final nonrigid transformation .

In fact, the structure registration phase can be seen as the first
step in an anatomical multiresolution procedure, first extracting
from the data and processing the main anatomical structures,
then transferring the result as an initial estimate to a higher level
where finer anatomical detail is considered. Therefore, the grey-
level registration phase can be considered as a refinement step of
the structure registration results, capable of correcting errors the
segmentation might have induced and improving the registration
in those regions distant from the segmented structures.

The use of this strategy also implies a less expensive registra-
tion procedure in terms of computational cost, the reasons being
the robustness improvement of the registration algorithm in the
presence of local minima, and the reduction of the number of
iterations required for the grey-level registration phase, due to
the proximity of the initial transformation to the final solution.

III. STRUCTURE SEGMENTATION

Our registration methodology requires a set of homologous
structures that can be robustly located in both thoracic/abdom-
inal emission PET and CT images. Based on discussions with
medical experts, we finally chose to segment the following
structures: skin, skeleton1 , lungs, kidneys, and liver. Obtaining
an accurate, fully automatic segmentation of the mentioned
anatomical structures would be on itself a formidable task, in
particular for functional images. Fortunately, segmentation ac-
curacy is not a priority in this application since, in the proposed
registration procedure, segmentation errors will not be propa-
gated to the final registration result. The point is that if more

1The skeleton is only segmented in CT since its extraction with enough ro-
bustness in emission PET scans is difficult. Therefore, the skeleton is only used
at the CT image segmentation stage as a support structure, but it does not play
any role in the registration procedure.
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Fig. 2. Meshes of final segmented structures, including skeleton (white), lungs
(red), kidneys (yellow), and liver (blue). Left: Rendering of CT segmented struc-
tures superimposed on a 2-D coronal grey-level slice. Right: 3-D rendering of
PET segmented structures superimposed on a 2-D coronal grey-level slice.

organs are detected, then results are better because we have
more constraints over the whole volume. But the segmentation
of these organs does not need to be very accurate. Typically,
segmentation errors of a few millimeters are not critical in
our method. Indeed the second intensity-based, registration
stage will be able to correct them. In summary, the quantity
of information is important, but its accuracy is not. Therefore,
the segmentation procedure will focus on speed and reliability
rather than accuracy.

For the segmentation of the targeted structures, relying only
on their grey-level intensities proved to be an insufficiently ro-
bust strategy, as they depend too much on the acquisition charac-
teristics and suffer from a high inter-patient variability. Conse-
quently, we decided to introduce higher-level information by ex-
ploiting the spatial relationships between organs, less sensitive
to the deformations than shape and less acquisition-dependent
than grey-level values. A hierarchical segmentation procedure
has been proposed [38], based on the mathematical modeling
of robust spatial relationships between the targeted structures to
provide prior constraints that will be combined with informa-
tion from the images. Detailing this method is outside the scope
of this paper and the reader can refer to [38] for a complete de-
scription of the segmentation procedure. A similar strategy has
been successfully used for the segmentation of internal brain
structures [39]. An example of structure segmentation results in
both CT and emission PET images is shown in Fig. 2, where
meshes of final segmented structures, including skeleton, lungs,
kidneys and liver, are superimposed on two-dimensional (2-D)
coronal slices of CT and emission PET grey-level scans.

The proposed method has been positively evaluated by med-
ical experts, in all CT and PET structures. Lung segmentation
results are very accurate in CT images, obtaining subvoxel seg-
mentation accuracy, while some errors (small enough for not
inducing final misregistrations due to the grey-level registration
stage of the proposed methodology) appear in emission PET
scans due to the low SNR of these images. The liver is the most
difficult structure to segment in both CT and PET images due

to the presence of neighboring structures with similar grey-level
values, such as the heart and aorta artery. Nevertheless, a reason-
able approximation of the liver is obtained, notably separating
it from the kidneys and the heart. On the other hand, we have
often found (around 50% of the cases) small structures close to
the liver that our segmentation procedure classifies as false pos-
itive liver voxels.

Finally, a retrospective segmentation evaluation based on the
assessment of final registration results has also been performed.
This has been used to verify that inaccuracies in the segmenta-
tion procedure stay within the capture range of the final grey-
level registration, and can thus be corrected.

IV. STRUCTURE REGISTRATION

The main goal of this stage is to find a transformation between
homologous CT and PET anatomical structures (lungs, kidneys,
liver) that have been recognized in the previous segmentation
phase. The registration method in this phase works with labeled
images (a different label is affected to each three-dimensional
(3-D) surface) and it must estimate the deformation between
corresponding 3-D structures representing segmented thoracic
and abdominal regions.

In our application, the registration procedure must be able to
deal with structures having different characteristics in terms of
geometry, local regularity and even topology (even if they have
in general spherical topology). For instance, the algorithm must
deal with the concavities caused by the bronchia in the CT lungs,
which are seldom visible in PET; or the kidneys, fairly large,
and smooth structures in CT but very crude in PET. Thus, the
registration cannot impose severe regularity constraints.

First, an affine registration technique (see Section IV-A) is
applied to the extracted homologous structures. Afterwards, a
FFD-based registration technique (see Section IV-B), provides
a nonrigid transformation between the CT and emission PET
anatomical features.

Note that, when registering segmented images with nonrigid
techniques such as the ones proposed in this paper, structures
could locally slide along their interfaces without this being re-
flected in the registration similarity measure. Such effect, lim-
ited only by the regularity constraints imposed on the transfor-
mation, could lead to erroneous registration results. However,
this is not a concern in the proposed implementation since the re-
fined registration stage uses the whole content information and
does not rely on interfaces anymore. This introduces additional
constraints on the registration, which is then able to cope with
all possible movements of structures.

A. Affine Registration

In general, nonrigid registration methods compute an initial
rigid or affine transformation in order to cope with global defor-
mations between the images to register. In the developed pro-
cedure, the segmented structures can be easily used to automat-
ically establish a first approximation of the alignment. This in-
cludes translation and scaling in the three axes and cropping
out the parts of the volumes without a correspondence or that
have no interest for our application. This is achieved using a
computed bounding box surrounding the structures to register
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in both modalities. Trivial as it may seem, this simple step al-
lows the whole system to be independent of the actual field-of-
view (FOV) of the original images, unlike classical registration
methods which need a prior manual adjustment (mainly in the z
direction, as in [40]). Thus, once bounding boxes are built, trans-
lation and scale are already roughly recovered just by annotating
the appropriate change in image origin position and voxel size.
Then, we apply a classical affine registration technique [41] be-
tween CT and PET bounding boxes, using Powell’s multidimen-
sional direction set method [42] in order to refine the parameters
of the affine transformation.

B. GVF-FFD

Nowadays, there is a large number of different nonrigid reg-
istration methods available in the literature, mainly differing in
the transformation models used to compensate the deformations
between the features to register. In our opinion, three of these
models are particularly interesting for our application: those
based on radial basis functions (RBFs), fluid methods, and FFD.

Radial basis functions [43], [44], formulate the transforma-
tion as a linear combination of kernel functions such as Thin-
Plate [45] or Clamped-Plate [46] Splines. In general, registra-
tion methods based on RBF use anatomical features detected
in both images as homologous control points. Then, after map-
ping each control point in the source image to its homologous
in the target, the RBF are used to interpolate the control point
displacements to create a dense mapping between both images.
An interesting characteristic of these techniques is that there
are no geometry restrictions to the control point distribution,
i.e., it can be sparse and irregular. On the other hand, numerous
and well-distributed control points in the image are required in
order to assure acceptable registration results when the defor-
mations are very local or do not respond to the inherent phys-
ical model. However, the selection of these control points in a
simple and robust way remains a difficult problem, especially
in emission PET images, and we would not be able to provide
a large enough set of corresponding references adequately dis-
tributed all over the data volumes. Furthermore, as the range of
each control point is not necessarily local, if the number of con-
trol points is elevated this technique is very expensive in com-
putational terms.

Fluid-based techniques [47]–[49] are based on physical laws
that provide an unconstrained model in which the source image
is modeled as a viscous fluid which gradually deforms over time
to match the target image. Such techniques have too many de-
grees of freedom for our purposes, being computationally ex-
pensive and inadequate to be applied in applications involving
noisy imaging modalities such as PET.

FFD based techniques, introduced by Sederberg et al. [50],
are a particular case of FEMs (which have been firstly used by
Gee et al. [51] for medical image registration purposes) based
on radial basis functions that has known an important success in
the field of computer graphics. First used by Rueckert et al. [52]
for medical image registration purposes, they model the trans-
formation as a linear combination of spline basis functions. In
this technique, deformations of the object volume are achieved
by tuning an underlying mesh of control points but, unlike other
RBF, FFD make use of a regularly distributed grid of control

points, the position of these being independent of the underlying
image (grid points no longer need to be homologous anatom-
ical references), thus avoiding the control point selection phase.
Some authors [53], [54] have compared the performance of fluid
and FFD registration algorithms, concluding that FFD furnish
slightly better or equivalent results to the fluid ones. The use of
cubic -splines to interpolate the displacements of the control
point grid guarantees that moving any control point will only
have a local effect on the image, significantly reducing the com-
putational cost associated to its optimization.

Therefore, a nonrigid transformation based on -spline FFD
has been chosen to compensate the deformations involved in our
application.

1) Gradient-Based Optimization: In this technique, defor-
mations of the source volume (the PET scan in our application)
are achieved by tuning a regular mesh of control points ( being
an uniformly spaced grid of control points
with a spacing of and being the indices within the grid).
The spacing between the control points of the FFD grid has
been chosen according to the magnitude of the local deforma-
tions and the resolution and the size of the images to register.
We have empirically set the distance between control points to
20 mm, which has proven to provide accurate enough results.

In general, the optimization of the transformation parameters
(i.e., control point displacements, ) is achieved by applying
iteratively a gradient descent technique to all control points si-
multaneously [52], advancing along the gradient direction until
no further improvement of the similarity measure is found. This
gradient estimation is performed by computing local differences
over the control point grid. This procedure is embedded in a
multistep framework (the initial optimization step is divided
by 2 at each level), in order to cope first with severe deforma-
tions and progressively take finer ones into account.

In addition, a local spring force regularization term has been
included, pulling each node towards the centroid of its neigh-
boring nodes, in order to avoid overfitting and to prevent the
control point grid from autointersecting, which could lead to
unwanted alterations of the structure topology. This force has
been defined heuristically and, despite not strictly forbidding in-
tersections, it has been observed to perform well, provided the
optimization step is small with respect to node separation.

An advantage of working with labelled images is that a simple
and robust criterion such as the root mean square (rms) can be
used as the similarity measure that will guide the registration
(rms-FFD) of the segmented structures. Some tests have been
conducted using more sophisticated measures such as the label
consistency, proposed by Rueckert et al. [55], but without sub-
stantial improvements in the results.

2) Vector Field-Based Optimization: An important drawback
of the classical optimization method described above is its high
computational burden. This is due to the nature of the optimiza-
tion procedure, in which a local gradient estimation is needed
at each iteration to update the control point displacements of
the whole grid. For instance, in a grid of 10 nodes per dimen-
sion, the algorithm must compute at each iteration the gradient
for 3000 parameters. Multiresolution and multigrid approaches
accelerate the convergence of the algorithm, but the gradient es-
timation remains a problem in terms of computation time.
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We have proposed [56] a novel approach to speedup the opti-
mization of the control point displacements, using a 3-D vector
field computed using the contours of segmented target struc-
tures (in our case, CT structures) instead of the gradient-based
procedure employed in the rms-FFD algorithm. This vector field
provides at each image voxel a displacement vector tangent to
a smooth path towards the nearest structure. Making the image
evolve along these paths will generally assure a good matching.

Therefore, at each iteration , we update the displacement
of every control point in the FFD grid according to the informa-
tion provided by the displacement vectors located in its neigh-
borhood

(1)

where denotes the number of source structure contour points
under the influence of a given control point and is a
weight based on the distance between the contour and the con-
trol points. The mean of the resulting vectors is taken as the
optimal control point displacement direction. The magnitude of
the displacement also depends on the step of the optimiza-
tion procedure. At the end of each iteration, a local spring regu-
larization term is applied to prevent the control point grid from
autointersecting.

The convergence of the algorithm depends on the quality of
the computed vector field . In order to avoid undesirable oscil-
lations around the target contour, a precomputed distance map is
checked at the end of each iteration and used as a stop criterion.
The multistep framework also helps reducing this problem by
dealing with large deformations in the first iterations and with
more local ones at the end.

The main advantage of this approach is that the vector field
is computed only once at the beginning of the procedure, unlike
the gradient estimation that must be updated at each iteration.
Moreover, as only the voxels belonging to the structure con-
tours are scanned, the computational burden of the algorithm
is substantially reduced. Algorithm 1 summarizes the proposed
control point optimization procedure.

Algorithm 1 Optimization of control point displacements
with a 3-D dense vector field

for all segmented structures to register do

contour detection of the structures to match already
affinely registered

computation of over target structure contours

While do

While distance(n) distance(n 1) do

for all control points do

computation of

store values of (i.e., ) and weight them
with the distance with respect to the control
point

update control point displacement with (1)

Fig. 3. Evolution of PET lung contours towards their corresponding CT ones
using the GVF-FFD method. A 2-D axial slice of the GVF field derived from
the CT contours is superimposed on them (left), on the PET contours before
(center), and after (right) evolution. Top: 2-D axial slice. Bottom: detail.

end for

application of local spring regularization term

apply FFD grid to source structure contours

computation of the distance between target and
source contours

end while

divide by 2

end while

end for

The simplest way to obtain would be to make use of a vector
distance transform technique computed on CT structure con-
tours. An alternative can be the use of the gradient vector flow
(GVF) technique [57], that is usually employed to guide de-
formable models in segmentation applications. The advantage
of the GVF with respect to the vector distance transform ap-
proach is the presence of a regularization term controlling the
trade-off between the smoothness of the vector field and the fi-
delity to the contour gradients of the image. A smooth vector
field is better suited for optimizing FFD control points in order
to avoid local minima, at the expense of slightly increasing the
computational cost of the algorithm due to the regularization
term.

The left part of Fig. 3 shows a 2-D axial slice of the superim-
position of CT lung contours on the GVF field computed over
them. It can be observed that despite the regularization term,
the local irregularities of the lungs are well coped with. An ex-
ample of the evolution of PET lung contours towards their cor-
responding CT contours is also shown in Fig. 3. We can appre-
ciate the remarkable improvement of the contour match after
applying the GVF-FFD registration method (right in Fig. 3)
with respect to results obtained by a rigid registration procedure
(center in Fig. 3).

It must be pointed out that in our registration context, in which
we need to register several thoracic and abdominal structures at
the same time, some problems could arise if noncorresponding
structures overlap since the labels are not taken into account in
the contour evolution. We deal with this situation by computing
the GVF field and making the source contours for each struc-
ture evolve independently. Therefore, at the end of the structure
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Fig. 4. Structure registration results obtained with the GVF-FFD method. Left part of the figure: 2-D coronal and axial slices of CT (grey) segmented lungs (top
rows) and liver (bottow rows) are superimposed on their homologous PET structures (red), registered with a rigid transformation (first and third row) and with the
GVF-FFD method (second and fourth row). Right part of the figure: a 3-D representation of the same structures is shown (CT lungs in blue, registered PET lungs
in brown, CT liver in green, and registered PET liver in red).

registration procedure, an average of the displacements is taken
for those control points affected by more than one structure.

C. Evaluation of Structure Registration Methods

Examples of results obtained by registering PET segmented
structures (lungs and liver) with their homologous in CT im-
ages using the GVF-FFD and affine registration methods are
displayed in Fig. 4. On the left part of the figure, 2-D axial and
coronal slices of superimposed CT (grey) and registered PET
(red) structures are shown. In a similar way, two different views
of the superimposition of the 3-D CT (blue for CT lungs and
green for CT liver) and registered PET (brown for registered
PET lungs and red for registered PET liver) rendered structures
are also shown.

We have computed three different registration measures be-
tween target and registered structures, aiming at comparing the
performance of the affine, rms-FFD and GVF-FFD structure
registration techniques. Let and be the set of voxels cor-
responding to the target and the registered source structures, re-
spectively, and let the operator be the cardinality of the set
of voxels . The three criteria [58] used for estimating structure
registration accuracy are the following:

(2)

where OM is the Jaccard overlap measure, SENS the sensitivity,
and SPEC the specificity.

The overlap measure (OM) is a classical criterion to evaluate
the matching between two structures and consists of the quotient
between intersection and union of structures to evaluate, which
is equal to 1 if total overlap (best registration) is achieved. The
sensitivity (SENS) and specificity (SPEC) measures give us ad-
ditional information about how the overlap of both structures is
achieved. For instance, if the registration of two structures yields
a low sensitivity value but a high specificity one, it means that
the registered source structure is too small. Both criteria are also
equal to 1 if total overlap is achieved. It must be pointed out that
the registered source must be thresholded at 50% of the nonzero
label value of the structures in order to avoid an overestimation
of the computed measures. In order to avoid this thresholding
phase, the set of fuzzy overlap measures recently proposed by
Crum et al. [59] could be used.

Both nonrigid structure registration methods have been ap-
plied to a database composed of 20 pairs of deformable struc-
tures (13 lungs and seven livers). These structures have been ob-
tained applying the segmentation procedure described in [38] to
CT and PET images of the same patient (eight cases) and using
the NCAT phantom [29], [30] to generate structures at different
stages of the respiratory and cardiac cycles (12 pairs of struc-
tures).

Table I summarizes the results (mean value standard devi-
ation) furnished by the quantitative assessment measures com-
puted on the whole set of registered structure pairs. Whereas
rms-FFD technique provides the most accurate registration re-
sults, the GVF-FFD method still clearly surpasses the affine reg-
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TABLE I
EVALUATION OF STRUCTURE REGISTRATION METHODS. OM: OVERLAP MEASURE. SENS: SENSITIVITY. SPEC: SPECIFICITY.
VALUES CORRESPONDING TO THESE MEASURES REPRESENT THE MEAN AND THE STANDARD DEVIATION OF THESE MEASURES

istration technique. The three evaluated methods provide more
accurate results in the liver than the lungs, and in a similar
way, they perform slightly better with data coming from the
NCAT phantom than from CT and PET derived structures. It
is worth mentioning that differences between segmented struc-
tures coming from real CT and PET data are usually larger than
those from the NCAT phantom, and that lung registration is
more challenging than liver due to the presence of large sur-
face irregularities to deal with. Sensitivity and specificity mea-
sures are close to 1 for both FFD-based methods, with specificity
values slightly lower, proving that, in general, the registered
source structure remains smaller than the target one. On the
contrary, the affine method produces objects overpassing target
structure sizes. Furthermore, we observe that differences of reg-
istration accuracy between results provided by the rms-FFD and
GVF-FFD are larger in structures undergoing more local defor-
mations such as the lungs. These effects are due to the tradeoff
in the computation of the GVF vector field between the rejection
of outliers and the capacity to cope with local deformations.

In addition to the registration accuracy measures, the con-
vergence times of each structure registration method have been
analyzed due to its major significance in our application. All
values have been normalized by the dimensions of the images,
so performances can be compared independently of image size.
As expected, the GVF-FFD method shows much better perfor-
mances (52.610 s/voxel) than the rms-FFD technique (699.365

s/voxel), i.e., around 13 times faster.
In consequence, the choice between the rms-FFD and

GVF-FFD techniques will depend on the priorities for a given
application, concerning registration accuracy or low com-
putational costs. It has already been mentioned that, in the
proposed method, the posterior grey-level registration phase
will complement the structure registration stage, thus at this
point only an approximation of the transformation between the
structures to register is needed. Therefore, we prefer to use
the GVF-FFD technique due to the good trade-off between its
convergence times and the registration accuracy it provides.
Nevertheless, if better registration accuracy were needed for a
given application, the GVF-FFD technique could be used as a
starting point, switching to rms-FFD to refine the results.

V. GREY-LEVEL REGISTRATION

The grey-level based registration phase is the last stage of
the proposed registration methodology. This stage aims at re-
fining registration results provided by the initial structure reg-
istration phase computed on segmented thoracic and abdom-
inal structures. Furthermore, it must furnish a displacement field

for regions far away from the segmented structures and even
within them because at this point, reliable registration infor-
mation based on their own characteristics (mostly grey-level
values) has not yet been taken into account. For instance, this
stage must provide and complete registration information cor-
responding to the ventricles of the heart, since the only infor-
mation available up to this point came from the registration of
the mediastinal wall, as the heart ventricles were not taken into
account in the structure registration stage. Finally, another ob-
jective of this stage is the correction of misregistrations that may
have been introduced by structure segmentation errors, taking
advantage of the entire image grey-level information we are now
working with.

This grey-level registration stage is essentially the method
proposed by Rueckert et al. [52] in a nonrigid registration of
contrast-enhanced breast magnetic resonance imaging (MRI)
application. The nonrigid transformation is modeled by a
FFD based on -splines using normalized mutual information
(NMI) as a similarity measure. This approach has been success-
fully used in several registration applications involving different
imaging modalities [25], [32], [60], [61]. Nevertheless, the lack
of constraints on the FFD model, the lack of uptake of several
structures and the low SNR quality in the emission PET scans
impede the straight use of this methodology in our application.
In fact, this technique tends to converge towards local minima
of the similarity criterion unless a very accurate initialization is
provided. Fig. 5 shows a registration result obtained when ap-
plying a FFD-based registration technique without constraints
between a pair of CT and emission PET scans of the same
patient acquired with standalone machines.

We can observe in the nonrigidly registered emission PET
image (bottom right in Fig. 5) that the FFD-based registration
technique fails to provide acceptable results. For instance, we
can observe that several critical structures are fully misregis-
tered such as the liver or the kidneys and that the lung regis-
tration is not accurate enough. The set of intensities in emis-
sion PET scans corresponding to the boundaries of these struc-
tures are not well distinguished and, depending on the incre-
mental step in the parameter optimization stage and the number
of multigrid and multiresolution levels, some incorrect transfor-
mations can provide good similarity measure values. These pa-
rameters must be large enough to cope with severe deformations
involved in these nonrigid regions, but the lack of constraints in
the FFD model allowing any possible correspondence between
the images produces these misregistrations. The tuning of the
registration parameters could improve these results as well as
the use of multigrid techniques, but we consider that, even if
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Fig. 5. Results obtained by computing an affine + FFD transformation without constraints between CT and emission PET images. Top: CT (left), transmission
(center), and emission PET (right) original images. Bottom: registered emission PET images obtained by applying affine (left) and affine+ FFD (right) transfor-
mations. Displacement field (red arrows) associated to each one of these transformations (affine on the left and FFD on the right) is superimposed on the images.

this NMI-FFD registration technique has been proven to be suc-
cessful in some applications, it must be modified in order to
deal with CT and emission PET images. For these reasons, in
the proposed registration methodology, an accurate initializa-
tion is provided by the structure registration stage, furnishing to
the NMI-FFD approach an initial transformation very close to
the final solution, at least in the neighborhood of the segmented
structures.

Furthermore, the inclusion of the previous initial structure
registration phase allows us to skip some of the lower multires-
olution steps of the time-consuming fine registration, thus sub-
stantially speeding up the overall process. The average compu-
tational time was around 2 h (the range goes from 50 min to 3
h), around 20 min corresponding to the segmentation and struc-
ture registration stages, in a Linux condor cluster (one CPU per
registration) when applying the proposed registration method-
ology, thus reducing by an order of three the time needed for the
FFD registration technique without constraints. It is difficult to
compare these computational costs with other published in the
literature in other medical imaging applications due to the influ-
ence of the image sizes and resolutions, the image quality, the
nature of the deformations to cope with, the number of degrees

of freedom in the transformation model or the available compu-
tational power. Nevertheless, just for giving a reference, Crum
et al. [53] stated that fluid and -spline FFD techniques took
between 2 h and 10 h per registration in an intersubject brain
registration application working with MR images. Considering
that in our application processed images are larger, the fact that
the poor image quality of PET images could easily make the
algorithm converge towards local minima and the larger defor-
mations we need to cope with, we think that results obtained by
the proposed methodology in terms of computational cost are
meritorious.

VI. EVALUATION

Evaluating the result accuracy of a nonrigid registration
method is a complex problem both conceptually and in prac-
tice. Indeed, nonrigid motions are difficult to perceive in three
dimensions, and it must be checked that the registration al-
gorithm corrects deformations in mobile structures while not
introducing new errors in the more stable ones. This problem is
aggravated in our application due to the lack of gold standard
since manual segmentations in emission PET images will not be
reliable enough to assess either a segmentation or a registration
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procedure. Furthermore, even combined PET-CT scanners are
unable to furnish a perfectly registered image that could be
used as a reference for assessing nonrigid registration methods.

A. Visual Assessment Protocol

Even if it is a semi-objective validation technique, visual in-
spection by medical experts allows in our application to judge
and classify, into a scoring scale of error values, registration re-
sults for the most important anatomical structures. Mattes et al.
[25] have employed this approach to evaluate the registration
accuracy of a nonrigid approach applied on chest CT and trans-
mission PET images. We present a similar visual assessment
protocol2 that allows physicians and registration specialists to
rapidly generate a semiobjective and qualitative measure of the
registration accuracy, being repetitive enough to allow statistical
interpretation of the results.

For this purpose, several anatomically significant 2-D slices
of both the original CT and registered emission PET volumes,
are presented. Slices have been evenly spaced through the
volume in order to display the most significant thoracic and ab-
dominal structures. For example, for a 256 256 97 volume,
six coronal and six axial slices are employed. This is performed
by means of an automatic procedure that uses CT segmented
structures in order to decide which 2-D slices must be chosen
for evaluation purposes. However, the user has also access
to all 2-D axial slices of the CT and the registered emission
PET volume if they must be checked in order to confirm any
evaluation score. Furthermore, the user has the possibility of
changing the display intensity range settings of the 2-D slices.

Each pair of 2-D slices has been marked with a ruler that de-
fines some reference or landmark points as it crosses signifi-
cant anatomical structures, such as the chest wall (ribcage), the
mediastinal wall (heart), the diaphragmatic wall (liver), or the
stomach and kidneys walls. These references allow the user to
estimate differences in the position of the mentioned structures
in both 2-D slices and then score the registration accuracy of
the method. For instance, in the case of the lungs, the user must
evaluate the registration result accuracy in the anterior, poste-
rior, inferior, and superior part of both, left and right lungs. Fig. 6
shows one pair of these 2-D slices, corresponding to axial (top)
and coronal (bottom) slices.

This procedure is certainly limited in the sense that the eval-
uation only measures local translation errors at the reference
points that are placed on the surface of some structures, and no
assessment about registration result accuracy in other regions or
even within the evaluated structures is provided. In general, an
expert user needs about 20–30 min to complete the validation
process, thus considerably faster than Mattes’ evaluation inter-
face [25].

The scoring (or dissatisfaction) scale has been defined by
medical specialists keeping in mind that the goal of the regis-
tration method was to attain errors below the resolution of PET
images (in general, voxel dimensions of PET images are around
4.0 4.0 4.0 mm in our database). Table II shows the scale
and its correspondences in millimeters and in pixels.

2It has been developed under the supervision of Dr. H. Foehrenbach, from the
H. I. A. Val de Grâce, Paris, France.

Fig. 6. Example of 2-D axial (top) and coronal (bottom) slices of the CT (left),
registered PET (center) volumes, and the chessboard display (left) used in the
visual assessment protocol. They are marked with the rulers (white) that define
landmark points where registrations must be evaluated.

TABLE II
EVALUATION SCORING SCALE

We have estimated the interobserver consistency of the de-
veloped visual assessment protocol in order to verify if it is
repetitive and objective enough to be used for the evaluation of
registration algorithms. A group of three clinicians of three dif-
ferent clinical centres, all of them with a strong experience in
oncology, have used the developed evaluation protocol in order
to assess registration result accuracy furnished by the proposed
methodology.

The evaluation procedure has been used by these physicians
in an independent way and assessment results have been sent
back by means of the developed online html web form. They
have assessed five registration thoracic and/or abdominal cases
selected from the available database, each one with different
degrees of registration accuracy, for the estimation of the inter-
observer consistency. The number of landmark points in which
the registration has been assessed was: 208 for the lungs; 20 for
the kidneys; 36 for the liver; 22 for the heart; and 10 for the
stomach.

In order to have an estimation of the interobserver consistency
for each targeted region, we have computed the percentage of
landmark points in which the three evaluators have scored the
registration accuracy with the same score; only two of the eval-
uators have agreed with the same score; or when the three eval-
uators do not agree at all. Obtained results are summarized in
Fig. 7. We can appreciate a good performance of the proposed
visual assessment protocol in all the targeted structures in terms
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TABLE III
VISUAL ASSESSMENT PROTOCOL RESULTS. STRUCT: STRUCTURE REGISTRATION. FINAL: GREY-LEVEL REGISTRATION.

RMS: RMS-FFD INITIALIZATION METHOD. GVF: GVF-FFD INITIALIZATION METHOD

Fig. 7. Interobserver consistency measure.

of inter-observer consistency. All cases in which one evaluator
disagrees with the others involve scores differing only in one
step of the scoring scale, i.e., from good to acceptable or from
acceptable to unacceptable, but never from good to unaccept-
able. We also observe that there exists more discrepancies for the
liver and kidneys than for the lungs. This is due to the presence
of several structures in abdominal CT images having similar in-
tensity values. On the other hand, discrepancies in the lungs are
mostly due to the lack of strong contours in emission PET im-
ages, in particular after applying the nonrigid transformation.
An interesting conclusion from Fig. 7 is that the protocol can
correctly assess the registration accuracy when it is not satis-
factory, such as in the stomach. Finally, it must be pointed out
that only in one reference point, the three evaluators have com-
pletely disagreed, also proving the appropriateness of the visual
assessment protocol.

VII. RESULTS

A. Database and Study Description

During this work, 33 data sets composed of CT, emission
and transmission PET scans acquired with standalone machines
of thoracic and/or abdominal regions provided by LifeScan
Louisville, KY, Centre Hospitalier Universitaire (C.H.U.),
Liège, Belgium, Percy Hospital, France, and Hôpital d’Instruc-
tion des Armées (H.I.A.) du Val de Grâce, France, have been
used. Furthermore, five additional data sets were available from

Centre Hospitalier Princesse Grace (C.H.P.G.) of Monaco and
C.H.U. of Liège, acquired with a combined CT-PET machine.

A common problem when using images from different sites
is the lack of homogeneity in terms of image quality, due to the
use of different scanners and clinical protocols employed to ac-
quire the images. We have designed our registration procedure
in order to be as much independent as possible of image acqui-
sition characteristics in order to avoid reformatting our image
database to a common standard. Therefore, CT images have a
size of 256 256 or 512 512 pixels in the plane (axial
plane) and between 60 and 125 slices (depending on their FOV,
corresponding to a thoracic and/or an abdominal case), with
voxel dimensions approximately 1.0 1.0 5.0 mm . PET im-
ages have a size of 144 144 pixels in the plane (axial
plane) with 160 to 230 slices, with voxel dimensions around
4.0 4.0 4.0 mm .

We have employed the visual assessment protocol on the
registration results furnished by the proposed methodology,
without comparing them with the ones provided, for instance,
by the FFD registration approach without constraints. We
consider that, by means of a visual inspection of Fig. 5, one
can clearly observe that the absence of anatomical constraints
on the FFD registration procedure involves inaccurate results.
On the other hand, we have used the evaluation protocol with
the images obtained after the structure registration stage, both
using the rms-FFD and the GVF-FFD strategies to compare
them with the final results and thus to have an estimation of the
performance of the grey-level registration stage.

Therefore, the visual assessment protocol has been used by
five expert evaluators to assess the 33 different CT and emission
PET image registrations coming from standalone machines3 ,
including thoracic and abdominal cases. Results obtained from
the visual assessment protocol are summarized in Table III. It
shows, for each significant thoracic and abdominal structure,
the percentage of landmark points in which the registration error
is scored as good, acceptable or unacceptable, according to the
scoring scale of Table II.

3We consider that the reduced number of cases acquired with combined ma-
chines does not allow to obtain reliable statistics when applying the visual as-
sessment protocol, thus they are just visually evaluated.
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B. RMS-FFD Versus GVF-FFD Initialization Methods

Results shown in Table III are similar to those ones obtained
in Section IV-C with respect to the performance of the two
initialization methods presented in this paper: the GVF-FFD
strategy provides less accurate results than the rms-FFD tech-
nique. Nevertheless, the grey-level registration stage compen-
sates for these differences, at the expense of a minor addition in
computational cost (around 100 min for the rms-FFD and 108
min for the GVF-FFD).

C. Structure Versus Grey-Level Registration

Concerning the comparison between results after the struc-
ture and the grey-level registration stages, we can observe a sub-
stantial improvement at the end of the procedure for all struc-
tures, except the kidneys. This enhancement involves the correc-
tion of possible segmentation errors (the lungs and the liver) as
well as the fact of taking into account the grey-level information
of not-segmented structures (the heart and the stomach). The
lack of improvement in the kidneys is due to the good quality
of their segmentation (very spherical structures) and the lack of
strong deformations on these structures.

D. Stand-Alone Machines

Inspection of Table III illustrates the good performance of the
proposed nonrigid registration methodology for the majority
of the evaluated regions including lungs, kidneys, liver, and
heart. On the other hand, some misregistrations appear near the
stomach. These results are slightly better (registration errors
under PET voxel size of 4 mm against 5 mm errors) to those
ones recently presented by Shekhar et al. [28], but this could be
due to the different image databases or the evaluation protocols
used in both studies. A proper comparison of both registration
methodology performances would be very useful to elucidate
which one is better suited for this particular application or to
combine their respective strengths into a more robust algorithm.

In particular, results obtained in the thoracic wall are very sat-
isfactory, even in the diaphragmatic region where the transfor-
mation computation was very critical due to the large deforma-
tions suffered in this region. The upper part of both lungs have in
all cases small registration errors, while some landmark points
corresponding to the lower part of the lungs have a score of 1.
The unacceptable errors found in the lungs correspond to the
posterior mediastinal wall, due to the large differences in this
region between CT and emission PET images.

The proposed registration methodology takes advantage of
the proximity of the heart to the lungs and the strong constraints
imposed on them to furnish good and acceptable registration
errors of the heart.

We can observe that the kidneys produce the lowest registra-
tion errors, and this is due to the lack of strong deformations
on these structures and their good initialization furnished by the
segmentation-based registration stage. Landmark points corre-
sponding to the kidneys that have a score of 2 concern those ones
of the right kidney close to the stomach, due to the influence of
this structure on their registration. On the other hand, most of the

landmark points corresponding to the left kidney have a score of
0 (even if there are some scores of 1 in zones close to the liver).

The proposed registration methodology provides good and
acceptable registration errors in the liver, despite the difficulties
of this structure. Its landmark points scored as 0 correspond in
general to the upper part and the left wall of the liver, while the
ones in which the registration has been scored as 1 are located
on the lower part of the liver. Some unacceptable registration
errors are found on the right wall of the liver since, sometimes,
there are small abdominal structures close and having similar
intensity values to the liver that can produce good similarity
measure values, even if the registration is not well done.

Most important registration errors have been found in the
stomach (it is the only targeted structure having a mean of scores
close to 1), due to the severity of its deformations and the lack of
strong constraints imposed on this structure. Nevertheless, some
good and acceptable scores have been assigned to the landmark
points corresponding to the stomach that are relatively close to
the kidneys and the lungs because they take advantage of the
initialization registration stage applied to these structures.

One final registration result example is shown in Fig. 8. This
case is very interesting due to the presence of a malignant tumor
located in the left lung. The challenge of the transformation
computation between these images is illustrated in the top row
of coronal slices in Fig. 8, where it can be easily seen that the
tumor is found in distant coronal slices after applying an affine
registration transformation to the emission PET image (Fig. 8,
top row, center). The application of the proposed nonrigid reg-
istration methodology has allowed to obtain a transformation
capable of placing the tumor in the correct coronal slice (Fig. 8,
top row, right).

Nevertheless, it must be pointed out that the performance
of the proposed methodology is not optimal in all patholog-
ical cases, strongly depending on the location of the tumor. The
majority of problems arise when the tumor is located within a
structure suffering strong deformations such as the lungs, since
the structure registration applies a transformation to the tumor
that does not necessarily correspond to its own movement. On
the other hand, as shown in Fig. 8, this situation is no more a
problem when the pathology is located close to the edge of a
segmented structure. The inclusion of tumors as an additional
structure in the segmentation and first registration stages, as de-
tailed in [62], would reduce these problems.

E. Combined Machines

The proposed registration methodology has been also applied
to five images acquired with a combined CT-PET system. Minor
or no improvement has been visually observed on all but one of
the sets of images acquired by a hybrid system when applying
the proposed registration methodology. Fig. 9 demonstrates the
special case in which there is a substantial improvement on the
superimposition of the CT and PET images, located in the car-
diac region, after applying our procedure. Nevertheless, it must
be pointed out that only five of these pairs of images were avail-
able and most of them did not present either substantial visible
artifacts or visible tumors, i.e., cases in which a retrospective
nonrigid registration algorithm could give additional informa-
tion to the mechanical registration furnished by these machines.
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Fig. 8. Final registration result. 2-D coronal slices (top row) of the CT image
(left), the emission PET image registered with an affine transformation (center),
and the emission PET image registered with the proposed nonrigid registration
methodology (right). Mark on the top row points out where the tumor is lo-
cated. It can be seen that the tumor is found in different coronal slices after
applying an affine transformation (center) and that this problem is solved using
the proposed nonrigid registration methodology (right). An axial (second row),
a coronal (third row), and a sagittal (bottom row) 2-D slices of the CT (left) and
the registered emission PET (center) images, and their superimposition (right)
are shown.

Therefore, we cannot draw any conclusions about the applica-
tion of the proposed methodology on these images until a more
exhaustive database is available.

VIII. CONCLUSION

We have presented a registration methodology adapted to
cope with deformations between CT and emission PET images
in order to combine anatomical and functional information
provided by these imaging modalities. It is mostly based on the
explicit incorporation of prior anatomical information into the
registration procedure.

We have visually shown (see Fig. 5) that a FFD registration
technique without constraints fails to provide accurate enough
results when it is directly applied on the grey-level images. Nev-
ertheless, this model has proved to be a flexible technique al-
lowing us to construct an original registration methodology and
providing us a simple way of interaction between the feature-
based and intensity-based registration phases. This interaction
between these two theorically confronted methods, derived from
the chosen strategy, has allowed us to combine their associated
advantages while canceling their drawbacks.

Fig. 9. Case from a combined CT-PET machine in which the proposed method-
ology corrects a large misalignment in the cardiac region. Two-dimensional
coronal slices of the superimposition of the original CT image and the orig-
inal emission PET image before (left) and after (right) registration.

Segmentation results have proven to be accurate enough for a
structure registration procedure to initialize the final grey-level
registration stage close to the optimal solution in the region
around the available structures.

Results provided by the application of a visual assessment
protocol to the pairs of images registered by the proposed
methodology prove that we obtain acceptable registration
errors for the majority of the targeted thoracic and abdominal
structures, except for the stomach. This is due to the absence
of this structure in the initialization phase, the strong deforma-
tions the stomach undergoes and the presence of close small
structures with similar values misleading the intensity-based
registration stage.

These promising registration results illustrate the fact that
better registration is achieved around structures that have been
recognized with the segmentation procedure. Furthermore,
the inclusion of the structure registration stage involves a
considerable reduction (three times) of the computational cost
of the procedure. This allows us to think that the introduction
of the proposed methodology in a clinical environment as an
additional step in the routine is feasible. Then, a more exhaustive
clinical validation of our approach in a larger population could
be done. This would confirm the promising results obtained
in this work in a relatively limited database or identify cases
that the method could potentially fail on. However, a better
code optimization and the use of parallelization methods as
proposed by Rohlfing et al. [63] are still needed to make
it possible.

The proposed registration methodology has been also applied
to five pairs of images acquired with a PET-CT hybrid system.
A substantial improvement has been obtained in one of these
sets of images, but we cannot draw any conclusions about it due
to the reduced number of processed images.

Current work is focused on the development of a gold stan-
dard, using the NCAT phantom [29], [30] and the SIMSET
(http://depts.washington.edu/~simset/html/simset_main.html)
open-source software, that will allow us to assess in a quantita-
tive way the proposed registration methodology. Furthermore,
future work includes a more principled incorporation of
tumor-based constraints into the registration procedure aiming
at preserving functional information after applying the nonrigid
transformation.
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